JPS62203364A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62203364A
JPS62203364A JP4665186A JP4665186A JPS62203364A JP S62203364 A JPS62203364 A JP S62203364A JP 4665186 A JP4665186 A JP 4665186A JP 4665186 A JP4665186 A JP 4665186A JP S62203364 A JPS62203364 A JP S62203364A
Authority
JP
Japan
Prior art keywords
substrate
film
semiconductor
holder
backside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4665186A
Other languages
Japanese (ja)
Inventor
Tsuneo Hamaguchi
恒夫 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4665186A priority Critical patent/JPS62203364A/en
Publication of JPS62203364A publication Critical patent/JPS62203364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76275Vertical isolation by bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76286Lateral isolation by refilling of trenches with polycristalline material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To cut down the manufacturing time while promoting the reliability by a method wherein a resin holder is formed on the surface of a semiconductor substrate formed of semiconductor elements while the backside thereof is ground to expose an insulating layer in element isolation regions forming an insulating film and then a holding substrate is bonded to the backside to remove the holder. CONSTITUTION:Grooves 3 with specified depth and vertical shape to be isolated regions of a semiconductor element are cut in the surface of a silicon substrate 1 to form a silicon dioxide film 2a and a silicon nitride film 6 on the overall surface of substrate 1. First, another silicon dioxide film 2b is formed only on the surface of polycrystalline silicons 4 buried in the grooves 3. Second, a semiconductor element comprising a gate film 5, a gate electrode 7, a source.drain region 8, an interlayer insulating film 9 and an interconnection 10 is formed and then a protective layer 12 of resin is formed on the surface. Third, the backside of substrate 1 is physically and chemically ground to expose the film 2a and then a holding substrate 15 is bonded to the backside formed of an insulating film 13 through the intermediary of a bonding agent 14 and then a holder 12 is removed. Through these procedures, the manufacturing time can be cut down while promoting the reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

半導体基板にスイッチングなどの機能素子を形成しな場
合、素子として機能するのは基板の表面から高々10μ
m程度であり、残りの半導体基板領域は絶縁体基板にお
きかえた方が、特性E部会の良いことが多い。例えば絶
縁体基板上の半導体素子はSo I (Silicon
 on In5ulator)構造と呼ばれ、素子の高
速化、高耐圧化などに有効である。しかし、従来のSo
l構造形成法、例えばレーザあるいは電子ビームによる
再結晶化法ではシリコンの結晶性が充分でないため、期
待される特性が発揮できないという問題がある。
When functional elements such as switching are not formed on a semiconductor substrate, the elements that function as elements are at most 10μ from the surface of the substrate.
m, and the characteristic E section is often better if the remaining semiconductor substrate region is replaced with an insulating substrate. For example, a semiconductor element on an insulating substrate is So I (Silicon
This structure is called an inverter (on inverter) structure, and is effective for increasing the speed and breakdown voltage of devices. However, the conventional So
In the l-structure formation method, for example, the recrystallization method using a laser or an electron beam, there is a problem in that expected characteristics cannot be exhibited because the crystallinity of silicon is insufficient.

そこで、半導体単結晶基板上にすでに形成しである素子
表面層を接着剤を用いて、第1の支持基板に固定し、基
板の裏面を物理1ヒ学的研磨法などによって薄膜1ヒし
、続いて、その面を第2の支持基板に絶縁性の接着剤を
用いて固定した後、第1の支持基板を再び物理(ヒ学7
i1F磨法により除去して、素子表面を露出させるいわ
ゆるデバイス・I・ランスフγ法がジャパニーズ・ジャ
ーナル・オブ・アプライド・フィシ・ソクス(Japa
nese Journalor Applied I’
1lysics ) 、 23巻、io号、L815頁
(1984年)に報告されている。
Therefore, an element surface layer that has already been formed on a semiconductor single crystal substrate is fixed to a first supporting substrate using an adhesive, and a thin film is applied to the back surface of the substrate using a physical polishing method or the like. Next, after fixing that surface to the second support substrate using an insulating adhesive, the first support substrate is again physically
The so-called Device I Lansf γ method, in which the device surface is exposed by removing it using the i1F polishing method, was published in the Japanese Journal of Applied Physics.
nese Journal Applied I'
1lysics), Volume 23, Issue IO, Page L815 (1984).

(発明が解決しようとする問題点〕 しかしながら、従来のデバイストランスファ法では、素
子を第2の支持基板に移すのに2回の研磨工程が・ピ・
要であり、製造時間が長くかかる欠点をもっている9ま
た、半導体素子を形成している半導体基板が直接接着剤
に接しているため、接着剤中の不純物が素子形成層の中
へ導入され、半導体装置の誤動作の原因になり、その信
頼性を低下させるという問題点がある。
(Problems to be Solved by the Invention) However, in the conventional device transfer method, two polishing steps are required to transfer the element to the second support substrate.
In addition, since the semiconductor substrate forming the semiconductor element is in direct contact with the adhesive, impurities in the adhesive may be introduced into the element formation layer, causing the semiconductor There is a problem in that it causes malfunction of the device and reduces its reliability.

本発明の目的はこれl′、の問題を解決し、製造時間を
短縮すると共にイS頼性の向上した半導体装置の製造方
法を提供することにある。
An object of the present invention is to solve the problem l', and to provide a method for manufacturing a semiconductor device that shortens manufacturing time and improves reliability.

r発明の構成〕 本発明の半導体装置の製造方法は、半導体基板表面に所
定の潔さを有し少くとも絶縁層を含む素子分離領域を形
成する工程と、前記素子分離領域間の半導体基板表面に
半導体素子を形成する工程と、゛卜導体素子か形成され
た前記半導体基板表面に樹脂からなる保持体を形成する
工程と、保持体が形成された前記半導体基板の裏面を物
理1ヒ学的に研磨し前記素子分離領域の絶縁層を露出さ
せる工程と、絶縁層が露出した前記半導体基板の裏面に
絶縁膜を形成する一L程と、絶縁膜が形成された前記半
導体基板の裏面に接着剤を介して支持基板を固定した後
前記保持体を除去する工程とを含んで構成される。
rStructure of the Invention] A method for manufacturing a semiconductor device of the present invention includes a step of forming an element isolation region having a predetermined cleanliness on a surface of a semiconductor substrate and including at least an insulating layer; forming a holder made of resin on the surface of the semiconductor substrate on which the conductive element has been formed; polishing to expose the insulating layer in the element isolation region, forming an insulating film on the back surface of the semiconductor substrate with the exposed insulating layer, and adhering to the back surface of the semiconductor substrate on which the insulating film is formed. The method includes a step of fixing the supporting substrate via a material and then removing the holder.

〔実施例〕〔Example〕

次に、図面に基づき本発明の実施例について説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図(a)〜(f)は本発明の一実施例を説明する為
の工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

まず第1図(a>に示すようにシリコン基板1の表面に
二酸化シリコン膜2を形成し、この二酸化シリコン膜2
の所定部を写真食刻法、特にドライエツチング等の微細
加工技術を用いて除去し、残りの部分の二酸化シリコン
膜2をマスクとしてシリコン基板1に所望の深さと垂直
形状を有する渦3をドライエ・ソチング法により形成す
る。このitM 3は半導体素子の分離領域となるため
、分離溝3の幅を微細にするほど、素子の集積度は向上
する。
First, as shown in FIG. 1 (a), a silicon dioxide film 2 is formed on the surface of a silicon substrate 1, and this silicon dioxide film 2 is
A predetermined portion of the silicon substrate 1 is removed using a microfabrication technique such as photolithography, especially dry etching, and a vortex 3 having a desired depth and vertical shape is formed on the silicon substrate 1 using the remaining silicon dioxide film 2 as a mask.・Form by soching method. Since this itM3 becomes an isolation region of the semiconductor element, the finer the width of the isolation groove 3, the higher the degree of integration of the element.

次に、第1図(b)に示すようにマスクとして用いた二
酸化シリコン膜2を除去した後、再度二酸1ヒシリコン
膜2aとシリコン窒化rIA6を基板全面に形成する。
Next, as shown in FIG. 1(b), after removing the silicon dioxide film 2 used as a mask, a monoarsenic dioxide film 2a and a silicon nitride rIA6 are again formed on the entire surface of the substrate.

次に、第1図(c)に示すように、多結晶シリコン4を
気相成長法より、溝3の深さ以上の厚みに成長させて、
満3を埋め通常のllF壱法等によりに面を平坦にし、
その後、シリコン窒化膜6をマスクとして熱酸化を施す
ことにより、分ZW i’A内に埋め込まれた多結晶シ
リコン4の表面のみに二酸化シリコン膜2bを形成する
Next, as shown in FIG. 1(c), polycrystalline silicon 4 is grown to a thickness equal to or greater than the depth of the groove 3 by vapor phase growth.
Fill in the full 3 and make the surface flat using the usual llf 1 method, etc.
Thereafter, by performing thermal oxidation using the silicon nitride film 6 as a mask, a silicon dioxide film 2b is formed only on the surface of the polycrystalline silicon 4 embedded in the portion ZW i'A.

次に、第1図(+i )に示すように、溝3の中以外の
シリコン窒化膜6と酸化膜2aを除去した後、改めて、
所望の厚さのグー1−酸化膜5を熱酸化法で形成し、続
いて多結晶シリコンでグー1〜電極7を形成する。更に
ゲート電極7をマスクにして、イオン注入法によりソー
ス・トレイン領域8を形成し、その後層間絶縁膜9をC
VD法で堆積した後、コンタクトホールを形成し、l?
配線10を形成することによりMO3集積回路の素子か
完成する! 次に、第1図(e)に示すように、素子形成面に樹脂、
例えばエポキシ系またはイミド系(4脂を500μIn
の厚さにスクリーン印刷し保持体12を形成した後シリ
コン基板1の裏面を物理化学研磨法で除去する。
Next, as shown in FIG. 1 (+i), after removing the silicon nitride film 6 and oxide film 2a outside the groove 3,
A goo 1-oxide film 5 of a desired thickness is formed by thermal oxidation, and then goo 1-electrode 7 are formed of polycrystalline silicon. Furthermore, using the gate electrode 7 as a mask, a source/train region 8 is formed by ion implantation, and then the interlayer insulating film 9 is coated with carbon.
After deposition by VD method, contact holes are formed and l?
By forming the wiring 10, the MO3 integrated circuit element is completed! Next, as shown in FIG. 1(e), resin is applied to the element forming surface.
For example, epoxy type or imide type (500μIn of 4 fats)
After forming the holder 12 by screen printing to a thickness of , the back surface of the silicon substrate 1 is removed by physical-chemical polishing.

この研磨工程では砥粒としてコロイダルシリカを用い、
(ヒ学液として有機アミンを用いているため、溝3を被
覆している二酸化シリコンj摸2aはシリコン基板より
も加工速度がかなり小さいため、研磨加工を溝の深さで
止めることができ、素子形成層のみを容易に残すことが
できる。
In this polishing process, colloidal silica is used as the abrasive grain,
(Because an organic amine is used as the abrasive solution, the polishing speed of the silicon dioxide layer 2a covering the groove 3 is much lower than that of the silicon substrate, so the polishing process can be stopped at the depth of the groove. Only the element forming layer can be easily left.

次に、第1図(f゛)に示すように、フ゛ラズマCVD
法による二酸化シリコン又は窒化シリコン等からなる絶
縁膜13を、研磨したシリコン基板1の裏面全体に形成
する。CVD法による絶縁膜13の形成温度は保持体1
2を形成している樹脂の融点より低いことが望ましい。
Next, as shown in FIG. 1(f), plasma CVD
An insulating film 13 made of silicon dioxide, silicon nitride, or the like is formed on the entire back surface of the polished silicon substrate 1 by a method. The temperature at which the insulating film 13 is formed by the CVD method is
It is desirable that the melting point is lower than the melting point of the resin forming No. 2.

ランプ加熱等高温短時間の熱処理法によっても絶縁膜を
形成できる。
The insulating film can also be formed by a heat treatment method such as lamp heating at high temperature and for a short time.

続いて、この絶縁膜13上にエポキシ又はポリイミドか
らなる接着層14を形成し、シリコンや石英ガラス等か
らなる支持基板15を固定した後、シリコン基板1表面
に形成した保持体12を有機溶剤で除去する。
Subsequently, an adhesive layer 14 made of epoxy or polyimide is formed on this insulating film 13, and a support substrate 15 made of silicon, quartz glass, etc. is fixed, and then the holder 12 formed on the surface of the silicon substrate 1 is treated with an organic solvent. Remove.

このように本実施例によれば、良好な結晶性を有する素
子形成層を1回の物理化学的研磨工程で容易に支持基板
上に形成することができる。しかも絶縁膜が形成されて
いる為接着層からの汚染がなく素子特性が劣化すること
はない。また、素子形成層の厚みは素子分離領域を形成
する溝の深さにより制御することができる。
As described above, according to this embodiment, an element formation layer having good crystallinity can be easily formed on a support substrate in one physicochemical polishing process. Furthermore, since an insulating film is formed, there is no contamination from the adhesive layer and the device characteristics do not deteriorate. Further, the thickness of the element forming layer can be controlled by the depth of the groove forming the element isolation region.

尚、上記実施例においては、接着層として、エポキシ系
またはポリイミド系接着剤を用いたか池に、シリコーン
系およびポリニスデル系等を用いてもよい。
In the above embodiments, instead of the epoxy or polyimide adhesive used as the adhesive layer, a silicone adhesive, a polynisdel adhesive, or the like may be used.

また、実施例において、MO8集積回路の形成を例にあ
げたか、バイポーラ型集積回路等の他の種類の素子につ
いても同様に作ることができる。
Further, in the embodiments, the formation of an MO8 integrated circuit has been taken as an example, but other types of devices such as a bipolar type integrated circuit can also be formed in the same manner.

さらに、実施例ではシリコン基板について述I\たが、
池の半導体単結晶基板、例えば砒化ガリウムやインジウ
ムリンについても本発明を用いることができる。また素
子分離法としてはL OCOS法やその変形など絶縁物
で素子分離する方法であれば用いることができる。
Furthermore, although a silicon substrate was described in the embodiment,
The present invention can also be used for semiconductor single crystal substrates such as gallium arsenide and indium phosphide. Further, as the element isolation method, any method that isolates elements using an insulator, such as the LOCOS method or a modification thereof, can be used.

[′発明の効果〕 以上説明したように、本発明は1回の研磨工程でデバイ
スI・ランスファを行なうことかてきるので、製造時間
が短縮されるとともに、素子形成層と接着層の間に絶縁
層を設けることにより、素子のfM Ta性を向上させ
ることができる効果がある。
['Effects of the Invention] As explained above, the present invention allows device I transfer to be performed in one polishing process, which shortens the manufacturing time and also reduces the amount of material between the element forming layer and the adhesive layer. Providing the insulating layer has the effect of improving the fM Ta properties of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の一実施例を説明する為
の工程順に示した半導体チップの断面図である。 1・・・シリコン基板、2.2a、2b・・・二酸化シ
リコン膜、3・・・溝、4・・・多結晶シリコン、5・
・・デーl−酸化膜、6・・・シリコン窒化膜、7・・
・ゲート電極、8・・・ソース・ドレイン領域、9・・
・層間絶縁膜、10・・・へe配線、12・・・保持体
、13・・・絶縁膜、14・・・接着層、15・・・支
持基板。 3講 第1図
FIGS. 1(a) to 1(f) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2.2a, 2b... Silicon dioxide film, 3... Groove, 4... Polycrystalline silicon, 5...
...D-oxide film, 6...Silicon nitride film, 7...
・Gate electrode, 8... Source/drain region, 9...
- Interlayer insulating film, 10... e-wiring, 12... holder, 13... insulating film, 14... adhesive layer, 15... supporting substrate. Lecture 3 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に所定の深さを有し少くとも絶縁層を含
む素子分離領域を形成する工程と、前記素子分離領域間
の前記半導体基板表面に半導体素子を形成する工程と、
半導体素子が形成された前記半導体基板表面に樹脂から
なる保持体を形成する工程と、保持体が形成された前記
半導体基板の裏面を物理化学的に研磨し前記素子分離領
域の絶縁層を露出させる工程と、絶縁層が露出した前記
半導体基板の裏面に絶縁膜を形成する工程と、絶縁膜が
形成された前記半導体基板の裏面に接着剤を介して支持
基板を固定した後前記保持体を除去する工程とを含むこ
とを特徴とする半導体装置の製造方法。
forming an element isolation region having a predetermined depth and including at least an insulating layer on the surface of the semiconductor substrate; forming a semiconductor element on the surface of the semiconductor substrate between the element isolation regions;
forming a holder made of resin on the surface of the semiconductor substrate on which the semiconductor element is formed; and physicochemically polishing the back surface of the semiconductor substrate on which the holder is formed to expose the insulating layer in the element isolation region. a step of forming an insulating film on the back surface of the semiconductor substrate with an exposed insulating layer; and removing the holder after fixing the support substrate to the back surface of the semiconductor substrate with the insulating film formed thereon via an adhesive. A method for manufacturing a semiconductor device, comprising the steps of:
JP4665186A 1986-03-03 1986-03-03 Manufacture of semiconductor device Pending JPS62203364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4665186A JPS62203364A (en) 1986-03-03 1986-03-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4665186A JPS62203364A (en) 1986-03-03 1986-03-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62203364A true JPS62203364A (en) 1987-09-08

Family

ID=12753217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4665186A Pending JPS62203364A (en) 1986-03-03 1986-03-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62203364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117047A (en) * 1987-10-29 1989-05-09 Sony Corp Manufacture of semiconductor device
EP0485719A2 (en) * 1990-11-16 1992-05-20 Shin-Etsu Handotai Company Limited Dielectrically isolated substrate and a process for producing the same
US6037634A (en) * 1996-02-02 2000-03-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with first and second elements formed on first and second portions
JP2008244498A (en) * 1994-05-11 2008-10-09 Chipscale Inc Semiconductor fabrication with contact processing for wrap-around flange interface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507912A (en) * 1973-05-30 1975-01-27
JPS5541767A (en) * 1978-09-19 1980-03-24 Nec Corp Fixing semiconductor wafer to jig
JPS6116543A (en) * 1984-07-03 1986-01-24 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507912A (en) * 1973-05-30 1975-01-27
JPS5541767A (en) * 1978-09-19 1980-03-24 Nec Corp Fixing semiconductor wafer to jig
JPS6116543A (en) * 1984-07-03 1986-01-24 Nec Corp Semiconductor device and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117047A (en) * 1987-10-29 1989-05-09 Sony Corp Manufacture of semiconductor device
EP0485719A2 (en) * 1990-11-16 1992-05-20 Shin-Etsu Handotai Company Limited Dielectrically isolated substrate and a process for producing the same
EP0485719A3 (en) * 1990-11-16 1995-12-27 Shinetsu Handotai Kk Dielectrically isolated substrate and a process for producing the same
JP2008244498A (en) * 1994-05-11 2008-10-09 Chipscale Inc Semiconductor fabrication with contact processing for wrap-around flange interface
US6037634A (en) * 1996-02-02 2000-03-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with first and second elements formed on first and second portions

Similar Documents

Publication Publication Date Title
US7528463B2 (en) Semiconductor on insulator structure
JP4319251B2 (en) Semiconductor device having a support body in which a substrate having a semiconductor element and having conductor tracks formed thereon is bonded by an adhesive layer
JP2987081B2 (en) Semiconductor device manufacturing method
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP2001127149A (en) Semiconductor device and its manufacturing method
KR100297867B1 (en) Insulator type silicon semiconductor integrated circuit manufacturing method
JPH06268054A (en) Semiconductor device
JP4060882B2 (en) Manufacturing method of electronic device
JPS62203364A (en) Manufacture of semiconductor device
JPH11330438A (en) Manufacture of soi wafer and soi wafer
JPH113842A (en) Substrate for semiconductor electronic element and manufacture thereof
JPH04262576A (en) Semiconductor device and manufacture thereof
JP5231772B2 (en) Method for manufacturing transmissive liquid crystal display element substrate
JPH06302791A (en) Semiconductor substrate and manufacture thereof
JPH04199632A (en) Soi wafer and manufacture thereof
JPS62183168A (en) Manufacture of semiconductor device
JPH0468770B2 (en)
JP2001298169A (en) Semiconductor device and producing method therefor
JPH06310427A (en) Manufacture of semiconductor device
JPH061778B2 (en) Semiconductor device and manufacturing method thereof
JPH04299859A (en) Manufacture of semiconductor device
JP4064682B2 (en) Integrated circuit
JPS63107161A (en) Manufacture of semiconductor element
JP3086958B2 (en) Method for manufacturing semiconductor device
JPH0587975B2 (en)