JPH0587975B2 - - Google Patents

Info

Publication number
JPH0587975B2
JPH0587975B2 JP59033485A JP3348584A JPH0587975B2 JP H0587975 B2 JPH0587975 B2 JP H0587975B2 JP 59033485 A JP59033485 A JP 59033485A JP 3348584 A JP3348584 A JP 3348584A JP H0587975 B2 JPH0587975 B2 JP H0587975B2
Authority
JP
Japan
Prior art keywords
insulating film
substrate
wiring
forming
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59033485A
Other languages
Japanese (ja)
Other versions
JPS60178661A (en
Inventor
Nobuhiro Endo
Tsuneo Hamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59033485A priority Critical patent/JPS60178661A/en
Publication of JPS60178661A publication Critical patent/JPS60178661A/en
Publication of JPH0587975B2 publication Critical patent/JPH0587975B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、誘電体層上に設けた半導体素子の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor element provided on a dielectric layer.

誘電体上に半導体素子を形成する技術は、従来
サフアイア(A2O3)やスピネル(MgA2O3
などの単結晶誘電体基板上に成長した単結晶シリ
コン薄膜、いわゆるSOS基板を用いて開発されて
きた。また最近ではSOS基板に替わる非晶質絶縁
膜上にレーザアニール技術等を用いて単結晶シリ
コン膜を形成するSOI(Silicon on Insulator)も
注目されるようになつてきた。これらのSOSある
いはSOI構造を用いると単結晶膜をMOSデバイ
スのソース・ドレイン接合深さ程度にすることに
よつて、接合を誘電体上に形成できるため接合容
量を減らしデバイスの高速性を実現できる。さら
に相補型MOS(CMOS)デバイスを形成した場合
には、バルクシリコン基板上で寄生的に存在する
pnpnサイリスタに起因するラツチアツプ現象は
考慮しなくてもよく、デバイス設計が容量となる
長所があつた。
Conventional techniques for forming semiconductor elements on dielectric materials include sapphire (A 2 O 3 ) and spinel (MgA 2 O 3 ).
It has been developed using single-crystal silicon thin films grown on single-crystal dielectric substrates such as so-called SOS substrates. Recently, SOI (Silicon on Insulator), which uses laser annealing technology to form a single crystal silicon film on an amorphous insulating film as an alternative to an SOS substrate, has also been attracting attention. When these SOS or SOI structures are used, the junction can be formed on the dielectric by making the single crystal film as deep as the source/drain junction of a MOS device, thereby reducing junction capacitance and realizing high-speed devices. . Furthermore, when a complementary MOS (CMOS) device is formed, the
There was no need to consider the latch-up phenomenon caused by pnpn thyristors, and the device design had the advantage of being capacitive.

しかし一方、異種接合によるエピタキシヤル膜
は、基板とのわずかな格子定数との一不致や熱膨
張係数の相異によつて大きな結晶欠陥密度を有
し、その上に形成されたデバイスのリーク電流特
性や高速性を劣化させる欠点もあつた。さらに従
来のSOSやSOI構造では完全に誘体分離されてい
るので、基板自身の配線を通常表面から形成する
ことは困難である。このため基板が電気的に浮遊
した状態となり、電流−電圧特性にヒステリシス
をもつたり、キンク現象が生じる原因となつてい
た。これは、素子寸法が微細になり、電源電圧が
下がる場合には高速動作や安定性・信頼性に大き
な問題を引起すと考えられる。
However, on the other hand, epitaxial films formed by heterojunctions have large crystal defect densities due to slight mismatches in lattice constants and differences in thermal expansion coefficients with the substrates, and leakage current of devices formed thereon. There were also drawbacks that degraded characteristics and high speed. Furthermore, since conventional SOS and SOI structures are completely dielectrically isolated, it is usually difficult to form wiring on the substrate itself from the surface. This causes the substrate to be electrically floating, causing hysteresis in current-voltage characteristics and kink phenomenon. This is thought to cause major problems in high-speed operation, stability, and reliability when element dimensions become finer and power supply voltage decreases.

本発明の目的は、従来のSOSやSOIの長所を維
持し、その問題点を解決する新しいSOI構造を有
する半導体装置の製造方法を提供するものであ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor device having a new SOI structure that maintains the advantages of conventional SOS and SOI and solves their problems.

上記目的を達成するために、本発明は、半導体
基板上に非晶質絶縁膜を形成し、半導体素子領域
の窓開けをする工程と、露出した前記半導体基板
上にのみ選択エピタキシヤル層を形成する工程
と、前記選択エピタキシヤル層に半導体素子を形
成する工程と、前記半導体素子の形成面を接着剤
(甲)で保持基板に接着し、前記非晶質絶縁膜が
露出するまで前記半導体基板を裏面から研磨しな
がら除去する工程と、次いで除去した面に接着剤
(甲)の融点より低い温度で絶縁膜を堆積した後、
配線すべき領域の窓開けを行う工程と、配線を形
成する工程と、前記配線の形成面を接着剤(乙)
を介して、支持基板に固定する工程とを設けたも
のである。
In order to achieve the above object, the present invention includes a step of forming an amorphous insulating film on a semiconductor substrate, opening a window in a semiconductor element region, and forming a selective epitaxial layer only on the exposed semiconductor substrate. forming a semiconductor element on the selective epitaxial layer, bonding the surface on which the semiconductor element is to be formed to a holding substrate with an adhesive (A), and pressing the semiconductor substrate until the amorphous insulating film is exposed; After removing the adhesive while polishing it from the back side, and then depositing an insulating film on the removed surface at a temperature lower than the melting point of the adhesive (A),
A process of opening a window in the area where the wiring is to be made, a process of forming the wiring, and applying an adhesive (B) to the surface where the wiring is to be formed.
A step of fixing it to a support substrate via a step is provided.

従来構造と本発明で形成する構造との違いにつ
いて図を用いてさらに詳しく述べる。第1図は従
来SOI構造の一例を模式的に示した断面図で、1
は基板、2は非晶質絶縁膜例えばSiO2膜、3は
単結晶化したシリコン膜、4はゲート酸化膜、5
はゲート電極用多結晶シリコン、6および7はそ
れぞれドレインおよびソース領域、8は層間絶縁
膜、という構成が多用されている。ここでドレイ
ン・ソース領域の底部は絶縁膜2によつて分離さ
れ、寄生容量の減少に寄与しているが、トランジ
スタの基板3の電位は浮遊状態になつている。第
2図は、本発明構造を模式的に示した断面図であ
る。11は基板、12は素子分離領域、13はシ
リコン単結晶、14はゲート酸化膜、15はゲー
ト電極用多結晶シリコン、16および17はそれ
ぞれドレインおよびソース領域、18は層間絶縁
膜、19は導電性配線、20は接着材をそれぞれ
示している。ソース・ドレイン領域16および1
7は絶縁膜によつて分離されていないが、シリコ
ン単結晶13に配線19がオーム接触しているこ
とが特徴的で、この配線から電圧印加することに
よつて素子の基板13の電位は、ある印加電圧又
は接地電圧に固定され、通常の半導体基板に形成
された素子同様に安定な特性が得られる。ソー
ス・ドレイン領域を絶縁体で分離するにはフイー
ルド領域の絶縁膜12の膜厚をソース・ドレイン
拡散深さと同程度にすることにより容易に実現で
きる。
The difference between the conventional structure and the structure formed by the present invention will be described in more detail using figures. Figure 1 is a cross-sectional view schematically showing an example of a conventional SOI structure.
2 is a substrate, 2 is an amorphous insulating film such as SiO 2 film, 3 is a single crystal silicon film, 4 is a gate oxide film, 5 is
A frequently used structure is polycrystalline silicon for a gate electrode, 6 and 7 a drain and source region, respectively, and 8 an interlayer insulating film. Here, the bottoms of the drain and source regions are separated by an insulating film 2, which contributes to reducing parasitic capacitance, but the potential of the substrate 3 of the transistor is in a floating state. FIG. 2 is a cross-sectional view schematically showing the structure of the present invention. 11 is a substrate, 12 is an element isolation region, 13 is a silicon single crystal, 14 is a gate oxide film, 15 is polycrystalline silicon for gate electrode, 16 and 17 are drain and source regions, respectively, 18 is an interlayer insulating film, and 19 is a conductive film. and 20 indicate the adhesive material. Source/drain regions 16 and 1
7 is not separated by an insulating film, but is characterized in that a wiring 19 is in ohmic contact with the silicon single crystal 13, and by applying a voltage from this wiring, the potential of the substrate 13 of the element is It is fixed at a certain applied voltage or ground voltage, and stable characteristics can be obtained like elements formed on ordinary semiconductor substrates. Isolating the source/drain regions with an insulator can be easily achieved by making the thickness of the insulating film 12 in the field region approximately the same as the depth of the source/drain diffusion.

本発明を用いることにより、SOSやSOIの特徴
である完全誘電分離構造を損うことなく、基板の
配線を行うことができ、しかも半導体層はバルク
半導体基板を種結晶としたエピタキシヤル層を用
いているため、本質的な結晶欠陥密度はバルクと
同程度である。また選択エピタキシヤル膜はフイ
ールド絶縁膜の表面と平坦になるように形成され
るため、段差は少く、表面配線の形状は極めて良
好であり、歩留りも高い。本発明をCMOSデバ
イスの製造に適用することによつて、バルクで得
られるキヤリアの高移動度と低リーク特性、基板
配線が可能であるという種々の長所を有し、しか
もSOIでのみ実現できるラツチアツプフリーとい
う特徴をもつため、高速、低消費電力がより秀れ
たCMOSデバイスを得ることができる。
By using the present invention, substrate wiring can be performed without damaging the complete dielectric isolation structure that is a feature of SOS and SOI, and the semiconductor layer can be formed using an epitaxial layer using a bulk semiconductor substrate as a seed crystal. Therefore, the essential crystal defect density is comparable to that of the bulk. Furthermore, since the selective epitaxial film is formed so as to be flat with the surface of the field insulating film, there are few steps, the shape of the surface wiring is extremely good, and the yield is high. By applying the present invention to the manufacture of CMOS devices, it has various advantages such as high carrier mobility and low leakage characteristics that can be obtained in bulk, and the possibility of wiring on a substrate, and also provides a latch that can only be realized with SOI. Because it has the feature of being startup-free, it is possible to obtain a CMOS device with superior high speed and low power consumption.

次に図を用いて実施例を説明する。第3図a,
b,c,d,eはCMOSインバータを実施例と
したその製造工程の模式的断面図である。
Next, an example will be described using figures. Figure 3a,
b, c, d, and e are schematic cross-sectional views of the manufacturing process using a CMOS inverter as an example.

(100)の面方位をもつp型シリコン基板31
の上に約2μmの膜厚の熱酸化膜32を形成し、写
真蝕刻技術とドライエツチングによつて素子領域
の前記熱酸化膜をエツチング除去する。しかる
後、950℃でジクロルシラン(SiH22)をソ
ースガス、水素をキヤリアガスとした雰囲気中に
塩化水素ガス(HC)を添加し、非晶質絶縁膜
32の上に堆積しないように選択的に素子領域の
みにp型のエピタキシヤル膜33を成長する。次
にレジストをマスクとしてpチヤネル素子領域の
みにリンをイオン注入し、1100℃で20時間の押込
みを行うと約3μmの深さのn型領域(nウエル)
34が形成され、第3図aが得られる。
P-type silicon substrate 31 with (100) plane orientation
A thermal oxide film 32 having a thickness of approximately 2 μm is formed on the substrate, and the thermal oxide film 32 in the element region is etched away by photolithography and dry etching. Thereafter, hydrogen chloride gas (HC) is added to an atmosphere containing dichlorosilane (SiH 2 C 2 ) as a source gas and hydrogen as a carrier gas at 950° C., and is selectively heated so as not to deposit on the amorphous insulating film 32. Then, a p-type epitaxial film 33 is grown only in the element region. Next, using the resist as a mask, phosphorus ions are implanted only into the p-channel device region, and by indentation at 1100°C for 20 hours, an n-type region (n-well) with a depth of approximately 3 μm is formed.
34 is formed, and FIG. 3a is obtained.

次にゲート酸化膜35を形成し、イオン注入法
によつて所定のしきい値電圧値が得られるように
不純物層36を制御して導入する。導電性多結晶
シリコンをCVD法によつて堆積し、写真蝕刻技
術によつてゲート電極37を形成する。続いてn
チヤネル領域には砒素などのn型不純物を、pチ
ヤネル領域にはボロンなどのp型不純物をイオン
注入法によつて高濃度に注入し、それぞれソー
ス・ドレイン領域38および39とする。
Next, a gate oxide film 35 is formed, and an impurity layer 36 is controlled and introduced by ion implantation so that a predetermined threshold voltage value is obtained. Conductive polycrystalline silicon is deposited by CVD, and gate electrode 37 is formed by photolithography. followed by n
An n-type impurity such as arsenic is implanted into the channel region, and a p-type impurity such as boron is implanted into the p-channel region at a high concentration by ion implantation to form source/drain regions 38 and 39, respectively.

次に層間絶縁膜40をCVD法で堆積し、コン
タクトホールを設けた後、アルミニウムを真空蒸
着法によつて被着する。写真蝕刻法を用いて金属
配線41を形成し、再び層間絶縁膜42を堆積す
ると第3図bが得られる。
Next, an interlayer insulating film 40 is deposited by CVD, contact holes are formed, and then aluminum is deposited by vacuum evaporation. A metal wiring 41 is formed using photolithography, and an interlayer insulating film 42 is deposited again to obtain the structure shown in FIG. 3B.

層間絶縁膜42の上に接着剤43例えばエポキ
シ系樹脂を塗布し、ガラス板のような保持基板4
4を接着固定する。続いてエツチングおよびメカ
ノケミカルポリシングによつてシリコン基板31
を裏面からフイールド絶縁膜32をストツパーと
して平坦に除去すると第3図cが得られる。
An adhesive 43 such as an epoxy resin is applied on the interlayer insulating film 42, and a holding substrate 4 such as a glass plate is attached.
4. Glue and fix. Subsequently, the silicon substrate 31 is etched and mechanochemically polished.
When removed flatly from the back surface using the field insulating film 32 as a stopper, the image shown in FIG. 3c is obtained.

次にさらに層間絶縁膜42を低温で堆積した
後、コンタクトホールを形成し、続いて第2のア
ルミニウムを被着し、写真蝕刻法によつて配線電
極45とする。層間絶縁膜42で表面を保護した
後、例えば低融点ガラス46を介して他の保持基
板47に接着固定すると第3図dが得られる。
Next, an interlayer insulating film 42 is further deposited at a low temperature, contact holes are formed, and then a second aluminum layer is deposited to form wiring electrodes 45 by photolithography. After protecting the surface with an interlayer insulating film 42, the structure shown in FIG. 3D is obtained by adhesively fixing it to another holding substrate 47 via, for example, a low melting point glass 46.

保持基板44をエツチングもしくはポリシング
によつて除去し、しかる後適切な有機溶媒を用い
て接着剤43を除去すると、第3図eが得られ
る。その後適当な熱処理によつてアルミニウムの
合金化や、ボンデイング領域の保護膜の除去が成
され、仕上がる。
After removing the holding substrate 44 by etching or polishing and then removing the adhesive 43 using a suitable organic solvent, FIG. 3e is obtained. Thereafter, an appropriate heat treatment is performed to alloy the aluminum and remove the protective film in the bonding area, thereby completing the process.

また実施例ではアルミニウムの配線を用いてい
るが、導電体の多結晶シリコンや金属シリサイ
ド、その他の金属を用いても本発明の有効性は変
わらない。さらに半導体としてシリコンの他に
−化合物、例えばガリウム砒素やインジウムリ
ン等の半導体基板も用いることができる。
Furthermore, although aluminum wiring is used in the embodiment, the effectiveness of the present invention remains unchanged even if polycrystalline silicon, metal silicide, or other metals are used as conductors. Furthermore, in addition to silicon, semiconductor substrates of compounds such as gallium arsenide and indium phosphide can also be used as semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図の従来のSOI構造を有する半導体装置の
模式的断面図で、第2図は第1図に対比して示し
た本発明による構造の模式的断面図である。第3
図a,b,c,d,eは本発明の実施例をある
CMOSインバータを工程順に示した半導体装置
の製造工程の模式的断面図である。 図中の番号は、1,31……シリコン基板、2
……非晶質絶縁膜、12,32……フイールド酸
化膜、3……単結晶シリコン、13,33……選
択エピタキシヤル層、34……nウエル、4,1
4,35……ゲート酸化膜、36……しきい値電
圧調整用イオン注入層、5,15,37……多結
晶シリコンのゲート配線、6,16,7,17…
…ソース又はドレイン領域、38……nチヤネル
素子のソース・ドレイン領域、39……pチヤネ
ル素子のソース・ドレイン領域、8,18,4
0,42……層間絶縁膜、41……金属配線、1
9,45……本発明による配線、20,46……
低融点ガラス等の接着層、11,44,47……
保持板、43……接着剤、をそれぞれ示す。
1 is a schematic cross-sectional view of a semiconductor device having a conventional SOI structure, and FIG. 2 is a schematic cross-sectional view of a structure according to the present invention shown in contrast to FIG. 1. Third
Figures a, b, c, d, e show embodiments of the present invention.
FIG. 3 is a schematic cross-sectional view of a semiconductor device manufacturing process showing a CMOS inverter in the order of steps. Numbers in the diagram are 1, 31...silicon substrate, 2
...Amorphous insulating film, 12,32...Field oxide film, 3...Single crystal silicon, 13,33...Selected epitaxial layer, 34...N well, 4,1
4, 35... Gate oxide film, 36... Ion implantation layer for threshold voltage adjustment, 5, 15, 37... Polycrystalline silicon gate wiring, 6, 16, 7, 17...
...source or drain region, 38...source/drain region of n-channel element, 39...source/drain region of p-channel element, 8, 18, 4
0,42...Interlayer insulating film, 41...Metal wiring, 1
9,45... Wiring according to the present invention, 20,46...
Adhesive layer such as low melting point glass, 11, 44, 47...
Holding plate, 43...adhesive, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に非晶質絶縁膜を形成し、半導
体素子領域の窓開けをする工程と、露出した前記
半導体基板上にのみ選択エピタキシヤル層を形成
する工程と、前記選択エピタキシヤル層に半導体
素子を形成する工程と、前記半導体素子の形成面
を接着剤(甲)で保持基板に接着し、前記非晶質
絶縁膜が露出するまで前記半導体基板を裏面から
研磨しながら除去する工程と、次いで除去した面
に接着剤(甲)の融点より低い温度で絶縁膜を堆
積した後、配線すべき領域の窓開けを行う工程
と、配線を形成する工程と、前記配線の形成面を
接着剤(乙)を介して、支持基板に固定する工程
とからなることを特徴とする半導体装置の製造方
法。
1. A step of forming an amorphous insulating film on a semiconductor substrate and opening a window in a semiconductor element region, a step of forming a selective epitaxial layer only on the exposed semiconductor substrate, and a step of forming a semiconductor layer on the selective epitaxial layer. a step of forming an element, a step of adhering the formation surface of the semiconductor element to a holding substrate with an adhesive (A), and removing the semiconductor substrate while polishing it from the back side until the amorphous insulating film is exposed; Next, after depositing an insulating film on the removed surface at a temperature lower than the melting point of the adhesive (A), a step of opening a window in the area where wiring is to be made, a step of forming wiring, and a step of depositing the wiring forming surface with adhesive. A method for manufacturing a semiconductor device, comprising the step of fixing it to a support substrate via (B).
JP59033485A 1984-02-24 1984-02-24 Manufacture of semiconductor device Granted JPS60178661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033485A JPS60178661A (en) 1984-02-24 1984-02-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033485A JPS60178661A (en) 1984-02-24 1984-02-24 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60178661A JPS60178661A (en) 1985-09-12
JPH0587975B2 true JPH0587975B2 (en) 1993-12-20

Family

ID=12387852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033485A Granted JPS60178661A (en) 1984-02-24 1984-02-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60178661A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308386A (en) * 1987-01-30 1988-12-15 Sony Corp Semiconductor device and manufacture thereof
JP4606545B2 (en) 2000-05-02 2011-01-05 イーグル工業株式会社 Compressor shaft seal mechanism with mechanical seal

Also Published As

Publication number Publication date
JPS60178661A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
US5414276A (en) Transistors using crystalline silicon devices on glass
EP0166218B1 (en) Silicon-on-insulator transistors
US7364958B2 (en) CMOS on hybrid substrate with different crystal orientations using silicon-to-silicon direct wafer bonding
US5420048A (en) Manufacturing method for SOI-type thin film transistor
US8097516B2 (en) Dual trench isolation for CMOS with hybrid orientations
CN100411180C (en) Semiconductor structure and method for manufacturing semiconductor structure
EP0140965B1 (en) Method of making a nonvolatile semiconductor memory device
JP2000196103A (en) Soi element and its manufacture
US4619033A (en) Fabricating of a CMOS FET with reduced latchup susceptibility
EP0352801B1 (en) Production method of a semiconductor-on-insulator structure with gettering sites
US5399231A (en) Method of forming crystalline silicon devices on glass
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
US4131909A (en) Semiconductor integrated circuit isolated through dielectric material and a method for manufacturing the same
US5760443A (en) Silicon on insulator with active buried regions
WO1988005600A1 (en) Process for producing thin single crystal silicon islands on insulator
US7834425B2 (en) Hybrid orientation SOI substrates, and method for forming the same
US5641691A (en) Method for fabricating complementary vertical bipolar junction transistors in silicon-on-sapphire
JPH0587975B2 (en)
JP3243071B2 (en) Dielectric separated type semiconductor device
JPH06291265A (en) Semiconductor device and its manufacturing method
US6552395B1 (en) Higher thermal conductivity glass for SOI heat removal
JPH06302791A (en) Semiconductor substrate and manufacture thereof
JPH06310427A (en) Manufacture of semiconductor device
JPS62203364A (en) Manufacture of semiconductor device
JPS60178660A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees