JPS62202061A - 微細結晶粒を有するアルミニウム合金材料の製造方法 - Google Patents

微細結晶粒を有するアルミニウム合金材料の製造方法

Info

Publication number
JPS62202061A
JPS62202061A JP4572086A JP4572086A JPS62202061A JP S62202061 A JPS62202061 A JP S62202061A JP 4572086 A JP4572086 A JP 4572086A JP 4572086 A JP4572086 A JP 4572086A JP S62202061 A JPS62202061 A JP S62202061A
Authority
JP
Japan
Prior art keywords
temperature
alloy
temp
solution treatment
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4572086A
Other languages
English (en)
Other versions
JPH0588302B2 (ja
Inventor
Mamoru Matsuo
守 松尾
Toshio Komatsubara
俊雄 小松原
Toshiki Muramatsu
俊樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP4572086A priority Critical patent/JPS62202061A/ja
Publication of JPS62202061A publication Critical patent/JPS62202061A/ja
Publication of JPH0588302B2 publication Critical patent/JPH0588302B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 この発明はJI32000番系、6000番系あるいは
7000番系で代表される展伸用熱処理型アルミニウム
合金からなる微細結晶粒を有するアルミニウム合金材料
の製造方法に関し、特に超塑性加工用材料に最適なアル
ミニウム合金材料の製造方法に関するものである。
従来の技術 近年に至り微細結晶粒を有する金属材料の超塑性現象を
利用して超塑性加工を行なう技術が注目を集めるように
なっている。微細結晶粒による超塑性現象は、展伸用熱
処理型アルミニウム合金においても認められるものであ
り、結晶粒を25JJm程度以下の微細なものとすれば
所定の超塑性温度域での加工により超塑性を呈すること
が知られている。
従来、このような超塑性加工が可能となる程度に結晶粒
が微細な熱処理型アルミニウム合金圧延板を製造する方
法と1ノでは、 (イ)金属間化合物の粗大粒子を過時効処理により析出
させて、温間加工で歪を与える方法(例えば特開昭53
−132420号)、(ロ)溶体化処理後急冷して、冷
間圧延にて歪を与える方法(例えば特開昭80−862
51号)、(ハ)溶体化処理温度から徐冷lノて冷間圧
延する方法(例えば特開昭60−125354号)、が
知られている。
発明が解決すべき問題点 前述のような微細結晶粒を有するアルミニウム合金圧延
板を製造するための各方法のうち、(イ)の方法では、
過時効処理や温間加工を行なうために生産性が低くなら
ざるを得ないという問題がある。また(口)の方法では
、結晶粒は微細化することができるが、溶体化処理・急
冷後の圧延が困難となる問題がある。ざらに(ハ)の方
法では、圧延性は良いものの、微細な結晶粒を得るため
には90%以上もの強冷間加工が必要どなる問題がめる
この発明は以上の事情を背景としてなされたもので、生
産性低下、冷間圧延性低下などの諸問題を招くことなく
、超塑性加工に適した微細な結晶粒を有する材料を実際
的に得ることができる方法を提供することを目的とする
ものである。
問題点を解決するための手段 この発明の方法は、基本的には、溶体化処理温度近傍の
温度からの徐冷によって析出粒子を粗大に析出させて、
これを再結晶核とし、しかもその後の溶体化処理温度の
40〜70%の温度域からの焼入れによって、冷間圧延
性を溶体化処理温度から焼入れした場合(完全焼入れの
場合)よりも向上させるとともに残留する合金元素の固
溶もしくは微細析出を図ってマトリックス内の転位密度
、変形帯を多くし、もって再結晶時における核発生頻度
を向上させ、結晶粒を微細化させるものでおる。
具体的には、第1発明の方法は、展伸用熱処理型アルミ
ニウム合金でおって、しかもMn 0.05〜、5%、
Or 0.05〜0.4%、Zr0.05〜0.3%の
うちの1種または2種以上を含有するアルミニウム合金
を素材とし、その合金鋳塊に対して均質化処理として、
その合金の溶体化処理温度の90%以上の温度で0.5
−24時間加熱し、その後o、ooi〜0.05℃/ 
Secの範囲内の冷却速度で溶体化処理温度の70〜9
0%の温度まで冷却し、その温度から直ちにもしくはそ
の温度に24時間以内保持してから熱間圧延を開始して
、溶体化処理温度の40〜70%の温度で熱間圧延を終
了させ、引続いて0.1℃/ 580以上の冷却速度で
180℃以下、好ましくは室温まで冷却し、その後加工
率60%以上の冷間加工を行なった後、その合金の再結
晶温度以上の温度に1℃/ 580以上の昇温速度で昇
温させて再結晶させることを特徴とするものである。
また第2発明の方法は、展伸用熱処理型アルミニウム合
金であって、しかもMn0.05〜、5%、Cr 0.
05〜0.4%、Z r 0.05〜0.3%のうちの
1種または2種以上を含有するアルミニウム合金を素材
とし、その合金鋳塊に対して均質化処理として、その合
金の溶体化処理温度の90%以上の温度で0.5〜24
時間加熱し、その後0.001〜0.05℃/ SeC
の範囲内の冷却速度で室温まで冷却し、次いで溶体化処
理温度の70〜90%の温度に再加熱して、直らにもし
くはその温度に24時間以内保持してから熱間圧延を開
始し、溶体化処理温度の40〜70%の温度で熱間圧延
を終了させ、引続いて0.1℃/ sec以上の冷却速
度で180℃以下、好ましくは室温まで冷却し、その後
加工率60%以上の冷間加工を行なった後、その合金の
再結晶温度以上の温度に1℃/ see以上の昇温速度
で昇温させて再結晶させることを特徴とするものでおる
作  用 先ずこの発明において対象とするアルミニウム合金につ
いて説明する。
この発明の方法は、Af−Cu系合金(JIS2000
番系) 、Al−MCl−8i系合金(JIS 600
0番系) 、Al−Zn−Mg系合金(JIS 700
0番系)で代表される所謂展伸用の熱処理型合金には全
て適用可能である。但し、これらの熱処理型合金におい
て通常含有されているCu1あるいはMgおよびSi1
あるいはznみよびMg等のほか、必須成分として特に
Mn 0.05〜、5%、Cr0.05〜0.4%、Z
r0.05へ一〇。3%のうちから選ばれた1種または
2種以上が含有されていることが必要である。すなわち
、Mn、 Or、zrはいすも金属間化合物析出粒子の
生成を通じて結晶粒微細化に有効な元素であって、これ
らを含有させることによってこの発明で目的とする超塑
性加工可能な微細結晶組織を得ることが可能となる。こ
こでMn5Cr、またはZrの含有量が0.05%未満
では微細な結晶粒を得ることが困難となり、一方Mn、
5%以上、もしくはOro、4%以上、またはZr0.
3%以上を含有する場合には鋳造時にこれらの元素が充
分に固溶されずに巨大金属間化合物が発生して充分な伸
びが得られなくなる。したがってMnは0.05〜、5
%、Crは0.05〜0.4%、7−rは0.05〜0
.3%の範囲内とした。
なおここで展伸用熱処理型合金とは最も広い意味で使用
するものとし、前述のようにAffi−Cu系合金であ
る2000番系合金、例えばJIS規格やAA規格の2
014合金、2017合金、2024合金、2219合
金、あるいはAl−Mg−3i系合金である6000番
系合金、例えば6061合金、ざらには1−Zr1−M
Cl系合金でおる7000番系合金、例えば7075合
金、7475合金、7N01合金、7003合金等がお
る。そしてこの発明の場合、前述のようにMn、 Cr
、Zr以外の成分組成は、熱処理型となるような成分組
成でおれば特に限定されず、用途や要求される特性等に
応じて定めれば良いが、例えばAl−CU系合金の場合
、CUを、5〜6.3%程度含有し、ざらに必要に応じ
てMCIを0.2〜、8%程度、3iを0.2〜、3%
程度含有するものとすれば良く、またA1−Mg−5i
系合金の場合、3iを0、20〜、2%程度、Mgを0
.35〜、5%程度含有し、さらに必要に応じてCUを
0.10−0.40%程度含有するものとすれば良く、
またAl−Zn−Mg系合金の場合znを0.8〜6.
1%、Mgを0.5〜2.9%程度含有し、ざらに必要
に応じてCuを、2〜2.0%程度含有するものとすれ
ば良い。
い。
次にこの発明の方法におけるプロセスについて説明する
先ず常法にしたがって連続鋳造もしくは半連続鋳造等に
よって前述のようにMn、 Or、 Zrの1種以上を
含有する熱処理型アルミニウム合金の鋳塊を製造する。
次いでその鋳塊に対する均質化処理を施す。この均質化
処理は、対象となる合金の溶体化処理温度近傍の温度、
すなわち溶体化処理温度の90%以上の温度(但し摂氏
温度の90%以上;以下の温度の%についても同様)で
0.5〜24時間加熱することによって行なう。ここで
均質化処理の温度が溶体化処理温度の90%未満では均
質化が不充分であり、また合金成分元素の溶体化が不充
分となる。
均質化処理時間が0.5時間未満でも均質化、溶体化が
不充分であり、一方24時間を越えればその効果は飽和
し、経済的に不利となるだ【プである。
なおここで溶体化処理温度は、対象とする合金のα相領
域における同相線温度と溶解度曲線との間の温度であり
、具体的な最適温度は合金組成によって異なるが、典型
的にはAA規格あるいはJIS規格に代表的な溶体化処
理温度が示されており、これによれば2014合金の場
合は495〜505℃、2017合金では495〜51
0℃、2024合金(板材)では490〜500℃、6
061合金では515〜550℃、7075合金(板材
)では46()〜500℃、7475合金では460〜
499℃、7NO1合金では約450℃が最適とされて
いる。したがってこの発明で溶体化処理温度のX%とは
、上述のような各合金の溶体化処理最適温度のX%とす
ることが好ましい。
上”pL (7) 均質化処理は、0.001〜0.0
5℃、”sacの範囲内の冷却速度で溶体化処理温度の
70〜90%の温度まで冷却(第1発明の場合)し、必
要に応じてその温度に24時間以内保持し、その温度で
熱間圧延を開始する。あるいはまた均質化処理後、o、
 ooi〜0.05℃/ Secの範囲内の冷却速度で
室温まで冷却(第2発明の場合)し、その後、溶体化処
理温度の70〜90%の温度まで再加熱し、必要に応じ
てその温度に24時間以内保持し、その温度で熱間圧延
を開始する。このような均質化処理後の0、001〜0
.05℃/ Secの冷却速度での徐冷によって、強化
成分元素の粒子が粗大に析出される。ここで、冷却速度
が0.05℃/ SeC以上では析出が不充分となり、
一方o、ooi℃/ SeC未満の冷却速度では生産性
が阻害されて経済的に不利となる。また熱間圧延開始温
度が溶体化処理温度の70%未満では熱間圧延が困難と
なり、一方溶体化処理温度の90%を越える場合は、粗
大析出物の析出が少な過ぎて、最終板での結晶粒微細化
が不充分となる。
上述のようにして溶体化処理温度の70〜90%の温度
域で開始した熱間圧延は、溶体化処理温度の40〜70
%の温度で終了させ、その温度から0.1℃/sec以
上の冷却速度で180℃以下、好ましくは室温まで冷却
することにより焼入れを行なう。このように溶体化処理
温度の40〜70%の温度から焼入れることによって、
冷間圧延性が完全焼入れの場合(溶体化処理温度から焼
入れる場合)はど低下することなく、しかも析出せずに
残留している合金元素の固溶もしくは微細析出を図って
固溶や微細析出による71〜リツクス内の転位密度、変
形帯の増大を図り、最終板において微細結晶粒組織を得
ることが可能となるのである。ここで、溶体化処理温度
の40%より低い温度から冷却(焼入れ)した場合は、
固溶・時効による転位の導入が少なくなって結晶粒微細
化の効果が得られない。一方溶体化処理温度の70%を
越える高温から冷却(焼入れ)した場合は、焼きが入り
過ぎて硬質化し、次の冷間圧延が困難となる。また焼入
れのための冷却速度が0.1℃/sec未満では焼きが
充分に入らず、その後の圧延による歪の導入が不充分と
なって結晶粒微細化が達成されない。
また焼入終了時の温度は180℃以下とし、できれば室
温まで焼入れることが望ましい。180℃より高温で焼
入れを終了すれば、その後の冷却で粗大析出物が形成さ
れ、焼入れの効果が全く認められない。焼入終了時の温
度は低いほどマトリックス中に固溶もしくは微細粒子と
して析出する溶質量は多く、その後の冷間圧延でマトリ
ックス内の転位密度や変形帯が増加し、最終的に微細結
晶粒組織を得やすい。
なお上述のように溶体化処理温度の40〜70%の温度
で熱間圧延を終了させてその温度から0.1℃/ se
e以上の冷却速度で焼入れするためには、熱間圧延を終
了したコイルに、引続き圧延クーラントを付加して冷却
するか、あるいはスプレー水冷または強制空冷装置を用
いて冷却すれば良く、いずれの手段も量産的規模で効率
良く適用することができる。
溶体化処理温度の40〜70%の温度からの焼入れ侵に
は、60%以上の加工率で冷間圧延等の冷間加工を行な
う。この冷間加工は歪を導入してその後の再結晶時にお
ける結晶粒微細化を図るためのものであり、加工率が6
0%未満では歪の導入が不充分となり、結晶粒の微細化
が充分に図れない。
上述の冷間加工後には、対象合金の再結晶温度以上に1
℃/sec以上の加熱速度で昇温させて、再結晶させる
。この再結晶にあたって昇温速度が速いほど再結晶粒微
細化には有利となり、昇温速度が1℃/ SeC未満で
は超塑性加工に適した微細結晶粒が得られないから、昇
温速度を1℃/ sec以上に限定した。このように1
℃/ see以上で急速加熱するだめには、具体的には
ソルトバスや、連続空気加熱炉を用いれば良い。なお再
結晶温度は合金の種類によって異なるが、その合金の溶
体化処理温度は必ず再結晶温度以上となっているから、
実際の操業にあたっては溶体化処理温度を目途に加熱す
れば充分である。なおまた再結晶のための加熱後は常法
にしたがって水焼入れすれば良い。
以上のように、熱間圧延前の均質化処理を溶体化処理温
度の90%以上の温度域で行なった後、0、001〜0
.05℃/ SeCの冷却速度で徐冷して粗大金属間化
合物粒子を粗大に析出させ、熱間圧延終了に引続いても
しくは熱間圧延後、溶体化処理温度の40〜70%の温
度域から0.1℃/sec以上の冷却速度で焼入れるこ
とにより、残留している合金元素の固溶もしくは微細析
出を図り、ざらに60%以上の冷間加工を行なってから
再結晶させることによって、再結晶粒を著しく微細化す
ることができる。ここで、再結晶前に歪を導入するため
の冷間加工としてはさほど大きな加工率は必要なく、前
述のように加工率60%以上であれば最終的に微細結晶
粒を得ることができるから、生産性の低下や冷間圧延の
困難を招くことなく冷間加工を実施することができる。
実施例 [実施例1] 第1表に示す成分組成の合金1〜5について、400a
n厚のスラブをDC鋳造法により鋳造した。
得られたスラブに対し第2表に示す加熱条件、冷却条件
A−Hで均質化処理および熱間圧延を施して、6#I厚
の熱延板とした。次いで冷間圧延率80%で圧延し、再
結晶のために各合金の溶体化処理温度にソルトバスによ
り急速加熱し、10分間保持した後、水焼入れした。ま
た合金1について条件記号Aにて均質化処理、熱間圧延
を行なったものの一部は、冷間圧延率80%で圧延した
後、比較法として0.01℃/ secで昇温させて再
結晶させた(記号I)。
以上のようにして得られた再結晶後の最終板の板面の結
晶粒度を調べた結果、第3表に示す結果が得られた。
第3表から、所要量のMn、 Or、もしくはzrを含
有する発明合金1〜4についてこの発明で規定する条件
で処理した圧延板は、いずれも結晶粒径がIIJJII
+以下と著しく小さいことが明らかであり、これらの圧
延板については充分に超塑性加工をなし得ることが判明
した。
一方Mn、zr、 Crを実質的に含まない比較合金5
についてこの発明の条件範囲内で処理した場合(条件記
@E)には結晶粒径が355Jmと大きくなった。また
条件記号Fは溶体化処理温度の90%以上の温度での均
質化処理を行なわなかったものであり、この場合も結晶
粒径が33JJと大きくなった。ざらに条件記号Gは熱
間圧延開始温度が高過ぎた例でおり、この場合も結晶粒
径が487,1mと大きくなった。また条件記号Hは、
熱間圧延終了後の溶体化処理温度の40〜70%の温度
からの焼入れ(0,1℃/ Sec以上の冷却〉を行な
わなかったものであり、この場合も結晶粒径が33νm
と大きかった。
ざらに条件記号Iは、再結晶焼入れのための加熱を律速
昇温で行なった例であり、この場合には結晶粒径が35
0JJmと粗大化してしまった。
第1表 轡1:MjJl格による    −2:JIS規格によ
る第3表 [実施例2] 実施例1の合金1について、第2表の条件記号Aに従っ
て均質化処理および熱間圧延するにあたり、均質化処理
後3X10’℃/ Secの冷却速度で室温まで冷却し
た後、熱間圧延開始温度まで再加熱を行なった。また実
施例1の合金3についても、第2表の条件記@Cに従っ
て均質化処理および熱間圧延するに必たり、均質化処理
後3X10’℃/SeCの冷却速度で室温まで冷却した
後、熱間圧延開始温度まで再加熱した。その他の条件は
実施例1と同様にして処理した。
得られた再結晶後の圧延板の結晶粒径は、合金1では9
JJ111、合金3ではl0JJITIであり、実施例
1の場合と同様に充分に微細化されていることが判明し
た。
[実施例3] 実施例1の合金1および合金3について、それぞれ第2
表の条件記号A、Cに従って均質化処理および熱間圧延
した後、圧延率80%の冷間圧延を行ない、次いで連続
焼鈍炉を用いて20℃/ Secの昇温速度で合金1は
480℃に、合金3は490℃に昇温し、7分間で通板
させ、炉の出側で水冷することにより連続的な再結晶化
処理を行なった。
得られた再結晶板の結晶粒径を調べたところ、合金1で
はIOJ、1m、合金3では11J、1mであり、いず
れも微細結晶粒組織となっていることが判明した。
[実施例4] 実施例1の第1表の合金3について、実施例1の第2表
中の条件Cと同じ条件で均質化処理、熱間圧延を行なっ
た。その後、冷間圧延率を55%、75%、90%と3
種に変えて冷間圧延を行ない、次いで実施例1と同様に
ソルトバスにて加熱して再結晶させた。
この実施例3における最終板の結晶粒径を冷間圧延率に
対応して第4表に示す。
第4表 発明の効果 この発明の方法によれば、超塑性加工に適した微細な結
晶粒を有するアルミニウム合金圧延板を得ることができ
、しかも単にそればかりでなく、冷間圧延性を低下させ
ことなく、しかも冷間加工の加工率をさほど大きくせず
にかつ過時効処理や温間加工等を行なうことなく微細結
晶粒を得ることができるため、生産性が低下したり冷間
加工が困難となったりすることなく、量産的規模で実際
的に超塑性加工に適したアルミニウム合金圧延板を製造
することが可能となった。

Claims (2)

    【特許請求の範囲】
  1. (1)展伸用熱処理型アルミニウム合金であって、しか
    もMn0.05〜1.5%(重量%、以下同じ)、Cr
    0.05〜0.4%、Zr0.05〜0.3%のうちの
    1種または2種以上を含有するアルミニウム合金を素材
    とし、その合金鋳塊に対して均質化処理として、その合
    金の溶体化処理温度の90%以上の温度で0.5〜24
    時間加熱し、その後0.001〜0.05℃/secの
    範囲内の冷却速度で溶体化処理温度の70〜90%の温
    度まで冷却し、その温度から直ちにもしくはその温度に
    24時間以内保持してから熱間圧延を開始して、溶体化
    処理温度の40〜70%の温度で熱間圧延を終了させ、
    引続いて0.1℃/sec以上の冷却速度で180℃以
    下、好ましくは室温まで冷却し、その後加工率60%以
    上の冷間加工を行なった後、その合金の再結晶温度以上
    の温度に1℃/sec以上の昇温速度で昇温させて再結
    晶させることを特徴とする微細結晶粒を有するアルミニ
    ウム合金材料の製造方法。
  2. (2)展伸用熱処理型アルミニウム合金であって、しか
    もMn0.05〜1.5%、Cr0.05〜0.4%、
    Zr0.05〜0.3%のうちの1種または2種以上を
    含有するアルミニウム合金を素材とし、その合金鋳塊に
    対して均質化処理として、その合金の溶体化処理温度の
    90%以上の温度で0.5〜24時間加熱し、その後0
    .001〜0.05℃/secの範囲内の冷却速度で室
    温まで冷却し、次いで溶体化処理温度の70〜90%の
    温度に再加熱して、直ちにもしくはその温度に24時間
    以内保持してから熱間圧延を開始し、溶体化処理温度の
    40〜70%の温度で熱間圧延を終了させ、引続いて0
    .1℃/sec以上の冷却速度で180℃以下、好まし
    くは室温まで冷却し、その後加工率60%以上の冷間加
    工を行なった後、その合金の再結晶温度以上の温度に1
    ℃/sec以上の昇温速度で昇温させて再結晶させるこ
    とを特徴とする微細結晶粒を有するアルミニウム合金材
    料の製造方法。
JP4572086A 1986-03-03 1986-03-03 微細結晶粒を有するアルミニウム合金材料の製造方法 Granted JPS62202061A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4572086A JPS62202061A (ja) 1986-03-03 1986-03-03 微細結晶粒を有するアルミニウム合金材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4572086A JPS62202061A (ja) 1986-03-03 1986-03-03 微細結晶粒を有するアルミニウム合金材料の製造方法

Publications (2)

Publication Number Publication Date
JPS62202061A true JPS62202061A (ja) 1987-09-05
JPH0588302B2 JPH0588302B2 (ja) 1993-12-21

Family

ID=12727181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4572086A Granted JPS62202061A (ja) 1986-03-03 1986-03-03 微細結晶粒を有するアルミニウム合金材料の製造方法

Country Status (1)

Country Link
JP (1) JPS62202061A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333538A (ja) * 1986-07-24 1988-02-13 Kobe Steel Ltd 押出鍛造用Al−Mg−Si合金
JPH03247738A (ja) * 1990-02-22 1991-11-05 Kobe Steel Ltd 曲げ加工性に優れたアルミ合金
US6048415A (en) * 1997-04-18 2000-04-11 Kabushiki Kaisha Kobe Seiko Sho High strength heat treatable 7000 series aluminum alloy of excellent corrosion resistance and a method of producing thereof
JP2001040444A (ja) * 1999-05-25 2001-02-13 Nippon Light Metal Co Ltd 精密加工用アルミニウム合金板材およびその製造方法
WO2014003074A1 (ja) * 2012-06-27 2014-01-03 株式会社Uacj ブロー成形用アルミニウム合金板およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333538A (ja) * 1986-07-24 1988-02-13 Kobe Steel Ltd 押出鍛造用Al−Mg−Si合金
JPH03247738A (ja) * 1990-02-22 1991-11-05 Kobe Steel Ltd 曲げ加工性に優れたアルミ合金
US6048415A (en) * 1997-04-18 2000-04-11 Kabushiki Kaisha Kobe Seiko Sho High strength heat treatable 7000 series aluminum alloy of excellent corrosion resistance and a method of producing thereof
JP2001040444A (ja) * 1999-05-25 2001-02-13 Nippon Light Metal Co Ltd 精密加工用アルミニウム合金板材およびその製造方法
WO2014003074A1 (ja) * 2012-06-27 2014-01-03 株式会社Uacj ブロー成形用アルミニウム合金板およびその製造方法
JPWO2014003074A1 (ja) * 2012-06-27 2016-06-02 株式会社Uacj ブロー成形用アルミニウム合金板およびその製造方法
US10907241B2 (en) 2012-06-27 2021-02-02 Uacj Corporation Aluminum alloy sheet for blow molding and production method therefor

Also Published As

Publication number Publication date
JPH0588302B2 (ja) 1993-12-21

Similar Documents

Publication Publication Date Title
KR20060133996A (ko) 소부 경화성 및 헤밍성이 뛰어난 Al―Mg―Si합금판의 제조방법
JPH02194153A (ja) 未再結晶薄肉平坦圧延製品及びその製造方法
US5441582A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
US5098490A (en) Super position aluminum alloy can stock manufacturing process
JPS619561A (ja) 熱間成形性の優れたAl合金板の製造法
JPH05501588A (ja) 冷間圧延特性を改良した板またはストリップ材の製造方法
JPS60114558A (ja) 時効硬化性チタニウム銅合金展伸材の製造法
JPS62202061A (ja) 微細結晶粒を有するアルミニウム合金材料の製造方法
JPS60258454A (ja) 成形用アルミニウム合金硬質板の製造方法
JPS5953347B2 (ja) 航空機ストリンガ−素材の製造法
JPS63125645A (ja) 微細結晶粒を有するアルミニウム合金材料の製造方法
JP6467154B2 (ja) 高強度高延性アルミニウム合金板の製造方法
EP0247264B1 (en) Method for producing a thin casting of cr-series stainless steel
JP3278119B2 (ja) 成形性及び焼付硬化性に優れたAl−Mg−Si系合金板の製造方法
WO1988003575A1 (en) Aluminum-lithium alloys and process therefor
JPH11343529A (ja) 高強度・高延性・高靱性チタン合金部材およびその製法
JP2652016B2 (ja) 微細結晶粒を有するアルミニウム合金材料の製造方法
JPH039183B2 (ja)
JPH062090A (ja) 異方性が小さい高強度成形用アルミニウム合金板の製造方法
JPS62202060A (ja) 微細結晶粒を有するアルミニウム合金材料の製造方法
JPS6144166A (ja) チタン合金板の製造方法
JPS61110756A (ja) チタン合金板の圧延方法
JPS62202063A (ja) アルミニウム合金板の製造方法
JPS62199755A (ja) 成形加工用アルミニウム合金材の製造方法
JPH0623423B2 (ja) Al―Cu―Mg系合金軟質材の製造方法