JPS62193622A - 高炉ガスの発熱量増加方法およびその装置 - Google Patents
高炉ガスの発熱量増加方法およびその装置Info
- Publication number
- JPS62193622A JPS62193622A JP61036199A JP3619986A JPS62193622A JP S62193622 A JPS62193622 A JP S62193622A JP 61036199 A JP61036199 A JP 61036199A JP 3619986 A JP3619986 A JP 3619986A JP S62193622 A JPS62193622 A JP S62193622A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- blast furnace
- calorific value
- furnace gas
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000001179 sorption measurement Methods 0.000 claims abstract description 31
- 239000003463 adsorbent Substances 0.000 claims abstract description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000004793 Polystyrene Substances 0.000 claims abstract description 13
- 229920002223 polystyrene Polymers 0.000 claims abstract description 13
- 238000003795 desorption Methods 0.000 claims abstract description 7
- 238000000926 separation method Methods 0.000 claims description 5
- 230000008929 regeneration Effects 0.000 abstract 1
- 238000011069 regeneration method Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 55
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
Landscapes
- Separation Of Gases By Adsorption (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、高炉ガスの発熱量増加方法およびその装置
に関する。
に関する。
従来の技術
高炉ガス(以下Bガスと呼称)はその発熱量が720
kca l /Nrn3程度と低いために単独で燃料と
して使用する二と、燃焼ガス温度が低くて高温用途には
適さない。また、一方、コークス炉ガス(以下Cガスと
呼称)はその発熱量が480’Okcal/Nm”と高
い。したがって、BガスにCガスを混合したミックスガ
ス(以下Mガスと呼称)として発熱量を増大させて熱風
炉、コークス炉あるいは発電用ボイラの燃料に利用して
いる。従来、BガスをCガスの援助なしで単独で発熱量
を増加させて利用することは行なわれていない。
kca l /Nrn3程度と低いために単独で燃料と
して使用する二と、燃焼ガス温度が低くて高温用途には
適さない。また、一方、コークス炉ガス(以下Cガスと
呼称)はその発熱量が480’Okcal/Nm”と高
い。したがって、BガスにCガスを混合したミックスガ
ス(以下Mガスと呼称)として発熱量を増大させて熱風
炉、コークス炉あるいは発電用ボイラの燃料に利用して
いる。従来、BガスをCガスの援助なしで単独で発熱量
を増加させて利用することは行なわれていない。
製鉄所においては、そのBガスの発生量が極めて多く、
その利用のためにCガスの発生量の30%もを増熱用と
して消費されており、特に近年は高炉が重油吹込みから
微粉炭吹込みに転換されているために、Bガスの発生量
が増々増大する傾向にあり、それにつれてCガスの消費
量も増大することになって該Bガスの化学原料等高付加
価値用途への転換を計るに際して大きな障害になってい
る現状である。
その利用のためにCガスの発生量の30%もを増熱用と
して消費されており、特に近年は高炉が重油吹込みから
微粉炭吹込みに転換されているために、Bガスの発生量
が増々増大する傾向にあり、それにつれてCガスの消費
量も増大することになって該Bガスの化学原料等高付加
価値用途への転換を計るに際して大きな障害になってい
る現状である。
発明の解決しようとする問題点
この発明は、Cガスの援助なしにBガスの発熱量を増大
させることにある。
させることにある。
問題点を解決するための手段
この発明は、加圧下において吸着剤に接触させて吸着分
離を行ない、ついで減圧下でこれを脱着させる圧力変動
式吸着分離方式によってBガス中のCO2およびN2を
アルミナ系吸着剤および多孔性ポリスチレンを使用して
選択的に吸着分離させ、COおよびN2リッチガスとし
て取出してBガスの発熱量を増加させるものである。
離を行ない、ついで減圧下でこれを脱着させる圧力変動
式吸着分離方式によってBガス中のCO2およびN2を
アルミナ系吸着剤および多孔性ポリスチレンを使用して
選択的に吸着分離させ、COおよびN2リッチガスとし
て取出してBガスの発熱量を増加させるものである。
作用
したがって、この発明の構成によれば、一般的なりガス
の組成は、つぎに示す表−1に表示する通りであるので
、すなわち、 表−1 アルミナ系吸着剤はco2を選択的に吸着し、また多孔
性ポリスチレンはN2を選択的に吸着するので、これ等
を圧力変動式吸着分離方式によって分離除去させると、
発熱量の増大したcoおよびN2リッチガスが得られる
。
の組成は、つぎに示す表−1に表示する通りであるので
、すなわち、 表−1 アルミナ系吸着剤はco2を選択的に吸着し、また多孔
性ポリスチレンはN2を選択的に吸着するので、これ等
を圧力変動式吸着分離方式によって分離除去させると、
発熱量の増大したcoおよびN2リッチガスが得られる
。
実施例
つぎに、この発明の実施例を具現するのに適した装置例
について説明すれば、第1図において、アルミナ系吸着
剤9および11をその前段に、多孔性ポリスチレン吸着
剤ioおよび12をその後段に夫々充填しである二基の
吸着塔7および8の各前段とBガスを部分的に貯蔵する
高炉ガスホルダ18とを止め弁3および5、ならびにガ
ス圧縮機1を夫々介装させて導入配管2にょ゛って接続
させるとともに、前記各吸着塔前段から分岐して夫々止
め弁4および6、ならびに真空ポンプ16を介装させた
排出導管19によって吸着ガス排出口17に接続させ、
さらに前記各吸着塔後段を夫々止め弁13および14を
介して発熱量増加ガス排出口15に接続させてなるもの
で、その作動について説述すると、除塵後にガスホルダ
18に貯蔵されであるBガスをガス圧縮機1によって1
.2〜1.5 ata程度、好ましくはLOataまで
昇圧させ、ついで導入配管2によって止め弁3を経由し
て吸着塔7に導入させるが、その際に止め弁13を調節
して該吸着塔内を所、定の圧力に保持させておく。
について説明すれば、第1図において、アルミナ系吸着
剤9および11をその前段に、多孔性ポリスチレン吸着
剤ioおよび12をその後段に夫々充填しである二基の
吸着塔7および8の各前段とBガスを部分的に貯蔵する
高炉ガスホルダ18とを止め弁3および5、ならびにガ
ス圧縮機1を夫々介装させて導入配管2にょ゛って接続
させるとともに、前記各吸着塔前段から分岐して夫々止
め弁4および6、ならびに真空ポンプ16を介装させた
排出導管19によって吸着ガス排出口17に接続させ、
さらに前記各吸着塔後段を夫々止め弁13および14を
介して発熱量増加ガス排出口15に接続させてなるもの
で、その作動について説述すると、除塵後にガスホルダ
18に貯蔵されであるBガスをガス圧縮機1によって1
.2〜1.5 ata程度、好ましくはLOataまで
昇圧させ、ついで導入配管2によって止め弁3を経由し
て吸着塔7に導入させるが、その際に止め弁13を調節
して該吸着塔内を所、定の圧力に保持させておく。
前記吸着塔内に流入させられたBガスのCO2は該塔内
のアルミナ系吸着剤9に主として吸着され、ついで後段
の多孔性ポリスチレン吸着剤10が主にBガス中のN2
を吸着することになるので、残った難吸着ガスのCOお
よびN2を止め弁13を経由させて発熱量増加ガス排出
口15から排出させて有効利用させる。なお、吸着塔7
が吸着工程中は止め弁4を当然に閉じておくものとする
。一方、充分に吸着された吸着塔8は止め弁5および1
4を閉じて止め弁6を開いて減圧させることで脱着工程
に入らせる。すなわち、真空ポンプ16によって吸着塔
8内の圧力を0.2〜0.5 ata程度、望ましくは
001 ataまで減圧させて吸着ガス、主にCO□お
よびN2を吸着ガス排出口17から脱着排気して該吸着
塔の再生を行なわせる。このように二基の吸着塔7およ
び8を吸着工程および脱着工程を交互に行なわせるよう
にしである。なお、前述例のように二基式の場合には入
口ガスの供給を連続的に行なうと、脱着ガス側の真空ポ
ンプ16は断続運転となる。
のアルミナ系吸着剤9に主として吸着され、ついで後段
の多孔性ポリスチレン吸着剤10が主にBガス中のN2
を吸着することになるので、残った難吸着ガスのCOお
よびN2を止め弁13を経由させて発熱量増加ガス排出
口15から排出させて有効利用させる。なお、吸着塔7
が吸着工程中は止め弁4を当然に閉じておくものとする
。一方、充分に吸着された吸着塔8は止め弁5および1
4を閉じて止め弁6を開いて減圧させることで脱着工程
に入らせる。すなわち、真空ポンプ16によって吸着塔
8内の圧力を0.2〜0.5 ata程度、望ましくは
001 ataまで減圧させて吸着ガス、主にCO□お
よびN2を吸着ガス排出口17から脱着排気して該吸着
塔の再生を行なわせる。このように二基の吸着塔7およ
び8を吸着工程および脱着工程を交互に行なわせるよう
にしである。なお、前述例のように二基式の場合には入
口ガスの供給を連続的に行なうと、脱着ガス側の真空ポ
ンプ16は断続運転となる。
さらになお、前述実施例では二基式について説明したが
、三基、西塔等多塔式でも連続化を実現できることはい
うまでもない。また、アルミナ系吸着剤にはγ−アルミ
ナが推奨される。
、三基、西塔等多塔式でも連続化を実現できることはい
うまでもない。また、アルミナ系吸着剤にはγ−アルミ
ナが推奨される。
従来、COを吸着分離するのにCO吸着剤としてゼオラ
イト系吸着剤、あるいは活性炭系吸着剤が知られている
が、COをなるべく吸着しないでCOおよびN2を良く
吸着する吸着剤は知られていなかったが、この発明の実
施例のようにCo2およびN2を夫々選択的に吸着する
アルミナ系吸着剤および多孔性ポリスチレン吸着剤を使
用し、前記二吸着剤を吸着塔の前後段に充填してCo2
およびN2を吸着分離して非吸着側ガスの発熱量の増加
が計られるとともに、該ガスの高回収率が可能となるも
ので、いま、この発明に係る吸着剤および従来吸着剤と
による吸着性能評価試験結果を表−2に表示させると、 表−2の数値のΔqco s ΔQOO% ΔqN2は
夫々の吸着剤の単位吸着削出りの各ガスの吸着量を示す
もので、Δqao /Δqooの数値の大きい程COを
吸着し難くてCO2を多(吸着することを示し、またΔ
qN/Δqooも同様に数値が大きい程N2を多く吸着
することを示しており、さらにまた試験条件は、吸着圧
力を1.5ata、脱着圧力を0゜1ata。
イト系吸着剤、あるいは活性炭系吸着剤が知られている
が、COをなるべく吸着しないでCOおよびN2を良く
吸着する吸着剤は知られていなかったが、この発明の実
施例のようにCo2およびN2を夫々選択的に吸着する
アルミナ系吸着剤および多孔性ポリスチレン吸着剤を使
用し、前記二吸着剤を吸着塔の前後段に充填してCo2
およびN2を吸着分離して非吸着側ガスの発熱量の増加
が計られるとともに、該ガスの高回収率が可能となるも
ので、いま、この発明に係る吸着剤および従来吸着剤と
による吸着性能評価試験結果を表−2に表示させると、 表−2の数値のΔqco s ΔQOO% ΔqN2は
夫々の吸着剤の単位吸着削出りの各ガスの吸着量を示す
もので、Δqao /Δqooの数値の大きい程COを
吸着し難くてCO2を多(吸着することを示し、またΔ
qN/Δqooも同様に数値が大きい程N2を多く吸着
することを示しており、さらにまた試験条件は、吸着圧
力を1.5ata、脱着圧力を0゜1ata。
温度を常温としている。この試験結果がらγ−アルミナ
が他の吸着剤に比較してCO□の吸着選択性が極めて高
く、また多孔性ポリスチレンがN2の吸着選択性が比較
的に良好であることが知られる。
が他の吸着剤に比較してCO□の吸着選択性が極めて高
く、また多孔性ポリスチレンがN2の吸着選択性が比較
的に良好であることが知られる。
しかしながら、詳しくは、各成分ガスの吸着順位および
吸着量はガス組成によって異なるので、所要発熱量、す
なわち最終目標ガスの組成によって最適な吸着剤の組み
合せを選定することが必要である。
吸着量はガス組成によって異なるので、所要発熱量、す
なわち最終目標ガスの組成によって最適な吸着剤の組み
合せを選定することが必要である。
つぎに、横軸に製品ガスの発熱量を、縦軸にその有効成
分、すなわちCo 十H2の回収率をとって、γ−アル
ミナが100%、多孔性ポリスチレンが100%および
γ−アルミナと多孔性ポリスチレンとを各々50%の混
合の三種類の吸着剤についての特性をあられしている第
2図において、製品ガスの発熱量が850 kcal/
Nrn3程度までの増加ならγ−アルミナの性能が良好
であるが、 900 kcal/Nm3以上ではγ−ア
ルミナと多孔性ポリスチレンの両者を使用する方が優れ
ていることが知られ、現在のMガスの発熱量が通常90
0 kcal/Nm3以上で使用されており、したがっ
て、Bガスの発熱量の増加には後者の方が有利である。
分、すなわちCo 十H2の回収率をとって、γ−アル
ミナが100%、多孔性ポリスチレンが100%および
γ−アルミナと多孔性ポリスチレンとを各々50%の混
合の三種類の吸着剤についての特性をあられしている第
2図において、製品ガスの発熱量が850 kcal/
Nrn3程度までの増加ならγ−アルミナの性能が良好
であるが、 900 kcal/Nm3以上ではγ−ア
ルミナと多孔性ポリスチレンの両者を使用する方が優れ
ていることが知られ、現在のMガスの発熱量が通常90
0 kcal/Nm3以上で使用されており、したがっ
て、Bガスの発熱量の増加には後者の方が有利である。
発明の効果
上述したように、この発明は、Cガスの混用援助がなく
てBガス自体の発熱量を増加させられるとともに、該C
ガスを別途に有効に利用できる上に、発熱量を増大させ
たBガスの燃焼温度も高いことから従来のMガスと同様
に燃料として使用できるなど、この発明の産業上の利用
価値は極めて高く、かつ広範である。
てBガス自体の発熱量を増加させられるとともに、該C
ガスを別途に有効に利用できる上に、発熱量を増大させ
たBガスの燃焼温度も高いことから従来のMガスと同様
に燃料として使用できるなど、この発明の産業上の利用
価値は極めて高く、かつ広範である。
第1図は、この発明の実施例に適する装置の回路図、第
2図は、同じく吸着剤の特性曲線図である。 1・・ガス圧縮機、2・・導入配管、3,4,5゜6.
13,14・・止め弁、7,8・・吸着塔、9゜11・
・アルミナ系吸着剤、10.12・・多孔性ポリスチレ
ン吸着剤、15・・発熱量増加ガス排出口、16・・真
空ポンプ、17・・吸着ガス排出口、18・φ高炉ガス
ホルダ、19・・排出導管。
2図は、同じく吸着剤の特性曲線図である。 1・・ガス圧縮機、2・・導入配管、3,4,5゜6.
13,14・・止め弁、7,8・・吸着塔、9゜11・
・アルミナ系吸着剤、10.12・・多孔性ポリスチレ
ン吸着剤、15・・発熱量増加ガス排出口、16・・真
空ポンプ、17・・吸着ガス排出口、18・φ高炉ガス
ホルダ、19・・排出導管。
Claims (1)
- 【特許請求の範囲】 1 加圧下において吸着剤に接触させて吸着分離を行な
い、ついで減圧下においてこれを脱着させる圧力変動式
吸着分離方式によつて高炉ガスの中のCO_2およびN
_2をアルミナ系吸着剤および多孔性ポリスチレンを使
用して夫々選択的に吸着分離させてCOおよびH_2リ
ッチガスを取出すことを特徴とする高炉ガスの発熱量増
加方法。 2 高炉排ガスを部分的に貯蔵する高炉ガスホルダ、該
ガスを圧縮して吸着塔に送るガス圧縮機、アルミナ系吸
着剤および多孔性ポリスチレンを充填した複数の吸着塔
、吸着ガスを真空にして脱着する真空ポンプ、前記した
各機器を結合する配管および吸着、脱着作動切換えを行
なう止め弁からなることを特徴とする高炉ガスの発熱量
増加装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61036199A JPS62193622A (ja) | 1986-02-20 | 1986-02-20 | 高炉ガスの発熱量増加方法およびその装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61036199A JPS62193622A (ja) | 1986-02-20 | 1986-02-20 | 高炉ガスの発熱量増加方法およびその装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62193622A true JPS62193622A (ja) | 1987-08-25 |
Family
ID=12463061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61036199A Pending JPS62193622A (ja) | 1986-02-20 | 1986-02-20 | 高炉ガスの発熱量増加方法およびその装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62193622A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2790483A1 (fr) * | 1999-03-03 | 2000-09-08 | Air Liquide | Procede de sechage de l'air et son application a un procede et a une installation metallurgique |
JP2009108241A (ja) * | 2007-10-31 | 2009-05-21 | Jfe Steel Corp | 高炉ガスの熱量増加方法 |
JP2009120896A (ja) * | 2007-11-14 | 2009-06-04 | Jfe Steel Corp | 高炉ガスの利用方法 |
JP2009120897A (ja) * | 2007-11-14 | 2009-06-04 | Jfe Steel Corp | 高炉ガスの利用方法 |
WO2009116672A1 (ja) * | 2008-03-18 | 2009-09-24 | Jfeスチール株式会社 | 高炉ガスの分離方法 |
WO2009116671A1 (ja) | 2008-03-18 | 2009-09-24 | Jfeスチール株式会社 | 高炉ガスの分離方法および装置 |
JP2009222352A (ja) * | 2008-03-18 | 2009-10-01 | Jfe Steel Corp | 高炉ガスの分離方法 |
JP2009257736A (ja) * | 2008-03-18 | 2009-11-05 | Jfe Steel Corp | 高炉ガスの分離方法 |
JP2010261033A (ja) * | 2009-05-07 | 2010-11-18 | General Electric Co <Ge> | 高炉ガスからn2を分離するための酸素濃縮器の使用 |
WO2023019917A1 (zh) * | 2021-08-19 | 2023-02-23 | 中冶赛迪工程技术股份有限公司 | 基于碳循环的高炉-转炉钢铁生产方法 |
-
1986
- 1986-02-20 JP JP61036199A patent/JPS62193622A/ja active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2790483A1 (fr) * | 1999-03-03 | 2000-09-08 | Air Liquide | Procede de sechage de l'air et son application a un procede et a une installation metallurgique |
JP2009108241A (ja) * | 2007-10-31 | 2009-05-21 | Jfe Steel Corp | 高炉ガスの熱量増加方法 |
JP2009120896A (ja) * | 2007-11-14 | 2009-06-04 | Jfe Steel Corp | 高炉ガスの利用方法 |
JP2009120897A (ja) * | 2007-11-14 | 2009-06-04 | Jfe Steel Corp | 高炉ガスの利用方法 |
WO2009116672A1 (ja) * | 2008-03-18 | 2009-09-24 | Jfeスチール株式会社 | 高炉ガスの分離方法 |
WO2009116671A1 (ja) | 2008-03-18 | 2009-09-24 | Jfeスチール株式会社 | 高炉ガスの分離方法および装置 |
JP2009222352A (ja) * | 2008-03-18 | 2009-10-01 | Jfe Steel Corp | 高炉ガスの分離方法 |
JP2009257736A (ja) * | 2008-03-18 | 2009-11-05 | Jfe Steel Corp | 高炉ガスの分離方法 |
EP2626439A1 (en) | 2008-03-18 | 2013-08-14 | JFE Steel Corporation | Method for separating blast furnace gas |
EP2641980A1 (en) | 2008-03-18 | 2013-09-25 | JFE Steel Corporation | Method for separating blast furnace gas |
JP2010261033A (ja) * | 2009-05-07 | 2010-11-18 | General Electric Co <Ge> | 高炉ガスからn2を分離するための酸素濃縮器の使用 |
WO2023019917A1 (zh) * | 2021-08-19 | 2023-02-23 | 中冶赛迪工程技术股份有限公司 | 基于碳循环的高炉-转炉钢铁生产方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3996028A (en) | Process for purification of argon from oxygen | |
EP2253915B1 (en) | Method and apparatus for separating blast furnace gas | |
JP5567185B2 (ja) | 高炉ガスの分離方法 | |
JPH0724735B2 (ja) | 圧力スイング吸着における過吸着回収システム | |
JPH1087302A (ja) | 単一段二次高純度酸素濃縮機 | |
ZA200203049B (en) | Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream. | |
JP5319140B2 (ja) | 高炉ガスの分離方法、および高炉ガスの分離システム | |
JPS62193622A (ja) | 高炉ガスの発熱量増加方法およびその装置 | |
CN112678773B (zh) | 一种荒煤气制氢联产lng工艺 | |
JP5498661B2 (ja) | 高炉ガスの分離方法 | |
CN209333523U (zh) | 一种新型VOCs处理装置 | |
JPS6246911A (ja) | Coガスの濃縮方法 | |
JP2539443B2 (ja) | 製鉄所排ガスからco▲下2▼を高純度で分離回収する方法 | |
CN208471537U (zh) | 一种回收粗氩气再提纯装置 | |
KR20110097648A (ko) | 아르곤 가스의 정제 방법 및 정제 장치 | |
EP0122874A1 (en) | Process for separating a mixed gas into oxygen and nitrogen under low temperature and low pressure conditions | |
CN210303031U (zh) | 一种多床变温吸附气体净化系统 | |
JP5541985B2 (ja) | 高炉ガスの成分分離方法およびその装置 | |
JPH01176416A (ja) | 燃焼排ガスの清浄化方法 | |
JPH01230416A (ja) | 高炉ガスからの炭酸ガス回収方法 | |
JPH0351647B2 (ja) | ||
JP4171392B2 (ja) | ガスの分離回収方法および圧力スイング吸着式ガス分離回収システム | |
JP2000279740A (ja) | 水及び二酸化炭素の含有量を低減した空気を製造する方法、及び、そのための装置、並びに、吸着剤の再生方法 | |
JPH01234313A (ja) | 高純度二酸化炭素の製造方法 | |
JPS5490073A (en) | Mixed gas concentrator |