JPS62190771A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPS62190771A
JPS62190771A JP3326586A JP3326586A JPS62190771A JP S62190771 A JPS62190771 A JP S62190771A JP 3326586 A JP3326586 A JP 3326586A JP 3326586 A JP3326586 A JP 3326586A JP S62190771 A JPS62190771 A JP S62190771A
Authority
JP
Japan
Prior art keywords
electrode forming
insulating film
gate electrode
gate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3326586A
Other languages
Japanese (ja)
Other versions
JPH0551177B2 (en
Inventor
Yoichi Aono
青野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3326586A priority Critical patent/JPS62190771A/en
Publication of JPS62190771A publication Critical patent/JPS62190771A/en
Publication of JPH0551177B2 publication Critical patent/JPH0551177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a gate electrode with a T-shaped cross-section, and to eliminate the dispersion of characteristics due to the displacement of positioning by forming a first insulating film, in which source-drain and gate electrode forming sections are bored selectively, onto a semiconductor operating layer and removing an exposed unnecessary metal through a specific process. CONSTITUTION:A photo-resist layer 16 is patterned through a normal photo- process so that the opening width of a gate-electrode forming section 13 takes a value such as approximately 0.5mum and a space between a source-electrode forming section 14 and a drain-electrode forming section 15 a value such as approximately 2.5mum. The photo-resist layer 16 is removed, and the whole surface is coated with a CVDSiO2 film 17. The gate-electrode forming section 13 is coated selectively with a photo-resist 18, and operating layers 11 in the source and drain electrode forming sections 14, 15 are exposed through etching. A low-resistance GaAs layer 19 is shaped, and a metal forming a Schottky junction with the operating layer such as Al 20 is evaporated on the whole surface. The gate-electrode forming section 13 is coated selectively with a photo- resist 21, and unnecessary Al is removed by using an etching liquid, thus shaping a gate electrode 22 with a T-shaped cross-section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明性電界効果トランジスタの製造方法に関し、さら
に詳しくはショットキ障壁接合をゲート電極に用いたマ
イクロ波相GaAsシ冒ットキグート型電界効果トラン
ジスタ(GaAsM]n8FET)の製造方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect transistor, and more specifically to a method for manufacturing a field effect transistor of the microwave phase GaAs Schottky type field effect transistor (GaAsM field effect transistor) using a Schottky barrier junction as a gate electrode. ]n8FET).

〔従来の技術〕[Conventional technology]

G a A s ME S F ET は、Si A(
ホー/F I、ランシスタの特性限界を打破するマイク
ロ波トランジスタとしてすでに実用化されている。この
様なGaAsME8FET  の高尚dl 4?性はゲ
ート長を短縮し、寄生抵抗を低減することによって改善
できる。そツタめ、C〜X帯用GaAsMB8FET 
にオイては通常、ゲート長は0.5〜1.0μmのもの
が用いられている。従来この様な短いゲートをもったG
aAsME8FETは次の様な方法で作られている。即
ち、第2図(a)に示すように、半絶縁性G a A 
s基板210上に形成されたngGaAll動作層21
1表面に0.5〜1.0μmの開口部を有するホトレジ
スト212を設け、ソース抵抗を低減しドレイン耐圧の
向上を計るために開口部の動作層211を化学エツチン
グで掘り込み(リセス形成)、しかる後直上からシ請ッ
トキ金属213を全面に蒸着し、ホトレジスト212を
取り除(ことにより開口部分のみに金属を残す、いわゆ
るリフトオフ法でゲート電極214を形成した後、第2
図(b)に示すようにソース電極215、ドレイン電極
216を第2図(a)と同様にオーミック金属を蒸着、
リフトオフして形成することにより、GaAsME8F
ET の基本構造を得る方法である。
G a As ME S F ET is Si A (
Ho/F I has already been put into practical use as a microwave transistor that breaks through the characteristic limits of Lancistors. Such a noble dl 4 of GaAsME8FET? The performance can be improved by shortening the gate length and reducing parasitic resistance. GaAsMB8FET for C~X band
Generally, a gate length of 0.5 to 1.0 μm is used. Conventionally, G with such a short gate
The aAsME8FET is manufactured in the following manner. That is, as shown in FIG. 2(a), semi-insulating G a A
ngGaAll operating layer 21 formed on the s-substrate 210
A photoresist 212 having an opening of 0.5 to 1.0 μm is provided on one surface, and the active layer 211 at the opening is dug by chemical etching (recess formation) in order to reduce source resistance and improve drain breakdown voltage. Thereafter, a gate electrode 213 is deposited on the entire surface from directly above, and the photoresist 212 is removed (thereby leaving the metal only in the openings, a so-called lift-off method is used to form a gate electrode 214, and then a second gate electrode 214 is formed.
As shown in FIG. 2(b), the source electrode 215 and the drain electrode 216 are formed by vapor-depositing ohmic metal in the same manner as in FIG. 2(a).
By lift-off and forming, GaAsME8F
This is a method to obtain the basic structure of ET.

〔発明が解決しようとする問題点〕 しかしなか、この様な従来の方法には次の様な欠点があ
る。即ち、1J7トオフ法は有機物であるホトレジスト
を付けた状態でゲート金属が蒸着されるため、動作層表
面に付着している水分を除去する十分な温度での基板の
加熱がレジストパターンの変形を起すのでできず、また
ホトレジスタから不純物が蒸発し、GaAs表面を汚染
する等のため、良好なシ曹ットキ特性が再現性良(得ら
れない。また微細パターン化する程、リセス形成工程に
おいてエツチング液が入りに((なるため、ゲート長の
短縮化に伴つて飽和ドレイン電流In5sのウェーハ面
内ばらつきが大きくなるという欠点がある。さらに、従
来法ではゲート長の短縮化に伴うゲート抵抗の増大は避
けられず、これが高利得化、高効率化を妨げている。さ
らに、ゲート電極に近接してソースおよびドレイン電極
を設けるにはマスクの位置合わせな必要とするが、この
マスク合わせを行うときに合わせずれを生じる。この合
わせずれは再現性がな(、方向、大きさもその都度具な
る。この合わせずれは直接ソース抵抗等に影響し、高周
波特性をばらつかせる。即ち、マスクの位置合わせ精度
により素子特性が大きく影響されるという欠点がある。
[Problems to be Solved by the Invention] However, such conventional methods have the following drawbacks. That is, in the 1J7 to-off method, the gate metal is deposited with an organic photoresist attached, so heating the substrate at a temperature sufficient to remove moisture adhering to the surface of the active layer causes deformation of the resist pattern. In addition, impurities evaporate from the photoresist and contaminate the GaAs surface, making it impossible to obtain good etching characteristics with good reproducibility.Also, the finer the pattern, the more the etching solution is used in the recess formation process. Therefore, as the gate length is shortened, the variation in the saturation drain current In5s within the wafer surface becomes larger. This prevents high gain and high efficiency.Furthermore, providing source and drain electrodes close to the gate electrode requires mask alignment; This misalignment is not reproducible (and the direction and size vary each time. This misalignment directly affects the source resistance, etc., and causes variations in high frequency characteristics. In other words, it depends on the mask alignment accuracy. This has the disadvantage that device characteristics are greatly affected.

本発明の目的は、これら従来の欠点を取り除いた新しい
電界効果トランジスタの製造方法を提供することにある
An object of the present invention is to provide a new method for manufacturing field effect transistors that eliminates these conventional drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタの製造方法は。 A method of manufacturing a field effect transistor according to the present invention is as follows.

半絶縁性半導体基板上の半導体動作層上にソース。Source on semiconductor active layer on semi-insulating semiconductor substrate.

ドレインおよびゲート電極形成部分ム選択的に開口した
第1の絶縁膜を形成した後、前記ゲート電極形成部分の
みを前記第1の絶縁膜よりエツチング速度の大きい第2
の絶縁膜で被覆する工程と。
After forming a first insulating film selectively opening the drain and gate electrode forming portions, a second insulating film having a higher etching rate than the first insulating film is etched only for the gate electrode forming portions.
and a step of covering with an insulating film.

該第1および第2の絶縁膜をマスクとして前記ソースお
よびドレイン電極形成部分に低抵抗半導体層を形成した
後、前記第2の絶縁膜を選択的に除去し、しかる後前記
半導体動作層とシ習ットキ接合を形成する金属を全面に
被着する工程と、前記ゲート電極形成部分を選択的にホ
トレジストで覆い、露出した不要な前記金属を除去する
ことにより、前記ゲート電極形成部分の開口部に断面形
状が丁字形のゲート電極を形成する工程とを含むことに
より構成される。
After forming a low resistance semiconductor layer in the source and drain electrode formation portions using the first and second insulating films as masks, the second insulating film is selectively removed, and then the semiconductor active layer and the semiconductor layer are formed. The opening of the gate electrode formation area is formed by applying the metal that forms the Schittke junction over the entire surface, selectively covering the gate electrode formation area with photoresist, and removing the exposed unnecessary metal. and forming a gate electrode having a T-shaped cross section.

〔実施例〕〔Example〕

以下1本発明の実施例について1図面を参照して説明す
る。本実施例ではC−X帯のGaAsME8PETを例
にとり詳しく説明する。
An embodiment of the present invention will be described below with reference to one drawing. This embodiment will be explained in detail by taking C-X band GaAsME8PET as an example.

第1図(a)〜(g)は本発明の一実施例を説明するた
めに製作工程順に示した要部断面図である。
FIGS. 1(a) to 1(g) are sectional views of main parts shown in order of manufacturing steps to explain one embodiment of the present invention.

i1図(a)に示すように、まず最初に半絶縁性GaA
s基板10上にn型GaAs動作層11(電子濃度n 
’:: 10 ”[−” l厚さt’::0.2μ重)
をエピタキシャル成長させ、その上に後のゲート電極形
成時にマスクとなるプラズマCVD8iN膜12を例え
ば約0.2μmの厚さ形成する。8iN膜12の形成に
際しては、後に形成する5ins膜17とのバッファー
HF (HF : 6NH4F)におけるエツチング選
択比を大きくしてマスク効果をもたせる目的から、−例
として基板温度350℃でNz、NHs。
i1 As shown in Figure (a), first, semi-insulating GaA
An n-type GaAs operating layer 11 (electron concentration n
':: 10 "[-" l thickness t':: 0.2μ weight)
is epitaxially grown, and a plasma CVD 8iN film 12 having a thickness of, for example, about 0.2 μm is formed thereon to serve as a mask when forming a gate electrode later. When forming the 8iN film 12, for the purpose of increasing the etching selectivity in the buffer HF (HF: 6NH4F) with the 5ins film 17 to be formed later and providing a masking effect, for example, Nz and NHs were used at a substrate temperature of 350°C.

8iHaガスをそれぞれ70,6,6SCCM反応室に
流し1反応室の圧力ITorr、RF電力100Wの条
件下で形成する。これらの条件下で形成した8iN膜1
2のバッファーf(Fにおけるエツチング速度は約10
9 K7m i nであり、後に形成する8i0z膜1
7のそれは約60001/minである。
8iHa gas was flowed into 70, 6, and 6 SCCM reaction chambers under the conditions of a pressure of one reaction chamber of ITorr and an RF power of 100 W. 8iN film 1 formed under these conditions
buffer f of 2 (the etching rate in F is about 10
9 K7min, and 8i0z film 1 to be formed later
7 is about 60001/min.

次に、8iN膜12上にホトレジスト(例えば5hip
ley 社の商標AZ1350)を塗布した後、通常の
ホトプロセスにより、ゲート電極形成部13の開口幅が
例えば約0.5μm、ソース電極形成部分14とドレイ
ン電極形成部分15の間隔が例えば約2.5μ電となる
ようにホトレジスト層16をパターニングする。次にホ
トレジスト層16をマスクとしてCF4  ガスを用い
た反応性イオンエツチング(RIE)法により、SiN
膜12をエツチングし動作層11を露出させる。ホトレ
ジスト層16を除去した後、第1図(b)に示すように
、全面ヲCV D S 1OzlIfi 17(例えば
厚さ約0.2μm)で被覆する。8i0z膜17は基板
温度400℃の条件下で通常の8iHiと02ガスを用
いた熱分解法で形成する。次に第1図(C)に示すよう
にゲート電極形成部分13を選択的にホトレジスト(例
えば5hipley 社製の入Z1350)18で覆っ
た後、前述したRIBでエツチングすることにより、ソ
ースおよびドレイン電極形成部分14.15の動作層1
1を露出させる(第1図(d))。
Next, a photoresist (for example, 5hip) is applied on the 8iN film 12.
After coating AZ1350 (Trademark AZ1350 of Ley Corporation), the width of the opening of the gate electrode forming portion 13 is approximately 0.5 μm, for example, and the distance between the source electrode forming portion 14 and the drain electrode forming portion 15 is approximately 2.0 μm, for example, by a normal photo process. The photoresist layer 16 is patterned to have a thickness of 5 μm. Next, using the photoresist layer 16 as a mask, SiN was etched by reactive ion etching (RIE) using CF4 gas.
Film 12 is etched to expose active layer 11. After removing the photoresist layer 16, the entire surface is coated with CV D S 1OzlIfi 17 (eg, about 0.2 μm thick), as shown in FIG. 1(b). The 8i0z film 17 is formed by a conventional thermal decomposition method using 8iHi and 02 gas at a substrate temperature of 400°C. Next, as shown in FIG. 1C, the gate electrode forming portion 13 is selectively covered with a photoresist (for example, 5hipley Z1350) 18, and then the source and drain electrodes are etched using the RIB described above. Active layer 1 of forming part 14.15
1 (Fig. 1(d)).

次に、ハイドライド気相成長法を用いて電子濃度が約2
 X 1G ”7”の低抵抗G a A s層(n+層
)19を例えば約0,2μmの厚さに形成する。このト
tn+層19は8i(h膜17および8iN膜12上に
は全く成長せず、8i0z膜17のパターン通りに忠実
に成長する。仁のn土層19は後に形成されるソースお
よびドレイン電極のコンタクト抵抗の低減とドレイン電
極端での電界集中を緩和する働きをする。次にバッファ
ーIFを用いてS iOx膜17を除去する。このとき
、8iN膜12のエツチング速度は約l/60と遅いの
で殆んどエツチングされず8i0z膜17のみが選択的
に除去される。
Next, using the hydride vapor phase epitaxy method, the electron concentration was reduced to approximately 2.
A low resistance GaAs layer (n+ layer) 19 of X 1G "7" is formed to have a thickness of about 0.2 μm, for example. This tn+ layer 19 does not grow at all on the 8i (h film 17 and 8iN film 12), but grows faithfully according to the pattern of the 8i0z film 17. The SiOx film 17 is removed using the buffer IF.At this time, the etching rate of the 8iN film 12 is approximately 1/60. Since it is slow, only the 8i0z film 17 is selectively removed without being etched.

次に、第1図(f)に示すように動作層とVvsットキ
接合を形成する金属として例えばAl2Oを全面に蒸着
する。この際、良好な7日ツキ特性を得る上で、A!2
0蒸着前に200℃程度の基板加熱を施すことが望まし
い。次に、ゲート電極形成部分13を選択的にホトレジ
スト(AZ1350)21で覆い、HsPO4系のエツ
チング液を用いて不要なAIを除去することにより、第
1図(g)に示すような断面形状が丁字形のゲート電極
22が形成される。最後に5通常のホトプロセスにより
n+層19とオーミックコンタクトを形成する金属とし
て例えばAuGe/Ni  を蒸着、リフトオフ後、ア
ロイを施して低接触抵抗のソース電極23およびドレイ
ン電極24を形成することにより、第1図(glに示す
ようなGaAsME8FET の基本構造ができ上る。
Next, as shown in FIG. 1(f), for example, Al2O is vapor-deposited over the entire surface as a metal forming a Vvs-Stock junction with the active layer. At this time, A! 2
It is desirable to heat the substrate to about 200° C. before evaporation. Next, the gate electrode forming portion 13 is selectively covered with a photoresist (AZ1350) 21, and unnecessary AI is removed using an HsPO4-based etching solution, so that a cross-sectional shape as shown in FIG. 1(g) is obtained. A T-shaped gate electrode 22 is formed. Finally, 5, by depositing, for example, AuGe/Ni as a metal to form an ohmic contact with the n+ layer 19 by a normal photo process, and after lift-off, alloying is performed to form a source electrode 23 and a drain electrode 24 with low contact resistance. The basic structure of a GaAs ME8FET as shown in FIG. 1 (gl) is completed.

尚1以上の実施例ではゲート金属としてAI!を用いた
場合について説明してきたが、他の耐熱性ゲート金属1
例えばTiW、WSi  等を用いても同様に適用でき
ることは勿論である。
In one or more embodiments, the gate metal is AI! Although we have explained the case using other heat-resistant gate metals 1
Of course, it is also possible to use TiW, WSi, etc., for example.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によるGaAsME8FE
Tの製造方法を用いれば、無機物であるSiN膜および
8 ioz  膜がゲート形成時のマスクとなるため、
ゲート金属蒸着前に十分な温度での基板の加熱が可能で
あり、従来のようなホトレジストからの不純物の蒸発、
汚染等もないため、良好なシ■ットキ特性が再現性良(
得られるばかりでなく、断面形状が1字形をした微細ゲ
ート電極が形成できるため、大幅なゲート抵抗の低減が
可能となるとともに、ソース、ドレインおよびゲートの
各電極間距離はマスクの位置合わせ精度に関係な(,1
枚のホトマスクで決定されるため、従来起きていた位置
合わせのずれによる特性のばらつきをな(丁ことができ
、さらに選択n 層の導入により、従来行っていたリセ
ス形成が不要となるので飽和ドレイン電流のウェーハ面
内均一性の悪化を抑えることができるため、高周波特性
に優れ、かつ特性の揃った素子を再現性良(量産するこ
とが可能となった。
As explained above, GaAsME8FE according to the present invention
If the manufacturing method of T is used, the inorganic SiN film and 8 ioz film serve as a mask during gate formation.
It is possible to heat the substrate to a sufficient temperature before gate metal deposition, preventing the evaporation of impurities from the photoresist as in conventional methods.
Since there is no contamination, good shuttling characteristics are achieved with good reproducibility (
Not only that, but also a fine gate electrode with a single-shaped cross section can be formed, which makes it possible to significantly reduce gate resistance, and the distance between the source, drain, and gate electrodes depends on the mask alignment accuracy. Related (,1
Since the determination is made using a single photomask, it is possible to eliminate the variation in characteristics due to misalignment that previously occurred.Furthermore, by introducing the selective n layer, the conventional recess formation is no longer necessary, so the saturation drain can be reduced. Since deterioration in the uniformity of current across the wafer surface can be suppressed, it has become possible to mass-produce elements with excellent high-frequency characteristics and uniform characteristics with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は本発明の一実施例を説明するた
めに工程順に示した主要工程における素子の要部、′断
面図、第2図(a) 、 (b)は従来のGaAsMB
8FETの製造方法を説明するために工程順に示した主
要工程における素子の要部断面図である。 10・・・・・・半絶縁性Ga As基板、11・・・
・・・n型GaAs動作層、12・・・・・・8iN膜
、13・−・・・・ゲート電極形成部分、14・・・・
−・ソース電極形成部分。 15・・・・・・ドレイン電極形成部分、16・・・・
・・ホトレジスト、17・・・・−・8i0z膜、18
・−・・・・ホトレジスト、19・・・・・・n+層、
20・−・・・・AI、21・・・・・・ホトレジスト
、22・・・・・・ゲート電極、23・−・・・・ソー
ス電極、24・・・・・・ドレイン電極、21O・−・
・・・半絶縁性GaAs基板、211・・・・・・n型
GaAs動作層、212・・・・・・ホトレジスト、2
13・・・・・・シッットキ金属、214・・・・・・
ゲート電極、215・・・・・・ソース電極、216・
・・・・・ドレイン電極。 $1  団
Figures 1 (a) to (g) are cross-sectional views of the main parts of the element in the main steps shown in order to explain one embodiment of the present invention, and Figures 2 (a) and (b) are conventional GaAsMB
FIG. 2 is a cross-sectional view of a main part of the element in main steps shown in the order of steps to explain the manufacturing method of the 8FET. 10... Semi-insulating Ga As substrate, 11...
. . . n-type GaAs operating layer, 12 . . . 8iN film, 13 . . . gate electrode forming part, 14 .
-・Source electrode forming part. 15... Drain electrode forming part, 16...
...Photoresist, 17...--8i0z film, 18
・−・・Photoresist, 19・・・・n+ layer,
20...AI, 21...photoresist, 22...gate electrode, 23...source electrode, 24...drain electrode, 21O... −・
...Semi-insulating GaAs substrate, 211...N-type GaAs operating layer, 212...Photoresist, 2
13...Shitki metal, 214...
Gate electrode, 215...Source electrode, 216.
...Drain electrode. $1 group

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板上の半導体動作層上にソース
、ドレインおよびゲート電極形成部分を選択的に開口し
た第1の絶縁膜を形成した後、前記ゲート電極形成部分
のみを前記第1の絶縁膜よりエッチング速度の大きい第
2の絶縁膜で被覆する工程と、該第1および第2の絶縁
膜をマスクとして前記ソースおよびドレイン電極形成部
分に低抵抗半導体層を形成した後、前記第2の絶縁膜を
選択的に除去し、しかる後前記半導体動作層とショット
キ接合を形成する金属を全面に被着する工程と、前記ゲ
ート電極形成部分を選択的にホトレジストで覆い、露出
した不要な前記金属を除去することにより、前記ゲート
電極形成部分の開口部に断面形状がT字形のゲート電極
を形成する工程とを含むことを特徴とする電界効果トラ
ンジスタの製造方法。
(1) After forming a first insulating film in which the source, drain, and gate electrode forming portions are selectively opened on the semiconductor active layer on the semi-insulating semiconductor substrate, only the gate electrode forming portions are opened in the first insulating film. A step of coating with a second insulating film having a higher etching rate than the insulating film, and forming a low-resistance semiconductor layer in the source and drain electrode forming portions using the first and second insulating films as masks, and then forming the second insulating film. selectively removing the insulating film, and then depositing a metal on the entire surface to form a Schottky junction with the semiconductor active layer, and selectively covering the gate electrode forming portion with photoresist, removing the exposed unnecessary portion of the insulating film. A method for manufacturing a field effect transistor, comprising the step of forming a gate electrode having a T-shaped cross section in the opening of the gate electrode forming portion by removing metal.
(2)前記第1の絶縁膜がプラズマCVDSiN膜で、
前記第2の絶縁膜がCVDSiO_2膜であることを特
徴とする特許請求の範囲第1項の記載の電界効果トラン
ジスタの製造方法。
(2) the first insulating film is a plasma CVDSiN film;
2. The method for manufacturing a field effect transistor according to claim 1, wherein the second insulating film is a CVDSiO_2 film.
JP3326586A 1986-02-17 1986-02-17 Manufacture of field-effect transistor Granted JPS62190771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326586A JPS62190771A (en) 1986-02-17 1986-02-17 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326586A JPS62190771A (en) 1986-02-17 1986-02-17 Manufacture of field-effect transistor

Publications (2)

Publication Number Publication Date
JPS62190771A true JPS62190771A (en) 1987-08-20
JPH0551177B2 JPH0551177B2 (en) 1993-07-30

Family

ID=12381689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326586A Granted JPS62190771A (en) 1986-02-17 1986-02-17 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPS62190771A (en)

Also Published As

Publication number Publication date
JPH0551177B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US4746628A (en) Method for making a thin film transistor
JPH048943B2 (en)
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
US5776805A (en) Method for manufacturing MESFET
JPS59222965A (en) Manufacture of schottky barrier gate type field-effect transistor
JPS62190771A (en) Manufacture of field-effect transistor
JPS60165764A (en) Manufacture of compound semiconductor device
JP2914429B2 (en) Manufacturing method of semiconductor integrated circuit
JPH0574814A (en) Manufacture of schottky-gate type field-effect transistor
JPS5833714B2 (en) Method for manufacturing gallium arsenide Schottky barrier gate field effect transistor
JPS59167028A (en) Manufacture of compound semiconductor integrated circuit device
JPS62156877A (en) Schottky gate field effect transistor and manufacture of the same
JPS61154177A (en) Manufacture of semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JPS59224178A (en) Manufacture of field effect transistor
JPH02237113A (en) Formation of multilayer electrode
JPH03274736A (en) Field-effect transistor and manufacture thereof
KR100266560B1 (en) Fabrication method of thin-film transistor
JPH0521473A (en) Manufacture of field-effect transistor
JPS59229875A (en) Manufacture of schottky gate type field effect transistor
JPS6257256A (en) Manufacture of field effect type semiconductor device
JPH02266535A (en) Manufacture of field-effect semiconductor device
JPH047101B2 (en)
JPH0216734A (en) Manufacture of semiconductor device
JPS616870A (en) Manufacture of field-effect transistor