JPS62183142A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS62183142A JPS62183142A JP2437086A JP2437086A JPS62183142A JP S62183142 A JPS62183142 A JP S62183142A JP 2437086 A JP2437086 A JP 2437086A JP 2437086 A JP2437086 A JP 2437086A JP S62183142 A JPS62183142 A JP S62183142A
- Authority
- JP
- Japan
- Prior art keywords
- film
- heat treatment
- bpsg
- substrate
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012298 atmosphere Substances 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 13
- 239000005360 phosphosilicate glass Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims 1
- 150000003018 phosphorus compounds Chemical class 0.000 claims 1
- 239000005380 borophosphosilicate glass Substances 0.000 abstract description 25
- 239000000758 substrate Substances 0.000 abstract description 13
- 238000002844 melting Methods 0.000 abstract description 9
- 230000008018 melting Effects 0.000 abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 description 12
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 239000011574 phosphorus Substances 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 phosphorus compound Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Local Oxidation Of Silicon (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体装置の製造方法、特に段差構造を有する
基板面をボロンリンケイ酸ガラス(以下、BPSGと略
す)膜被覆により平坦化する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for flattening a substrate surface having a step structure by coating with a boron phosphosilicate glass (hereinafter abbreviated as BPSG) film.
従来の技術
リンケイ酸ガラス(以下、PSGと略す)の溶融(リフ
ロー)による平坦化は、従来より行われているが、PS
Gのりフロ一温度が1oQo℃以上と高いために、この
処理工程で例えばMO3型素子のソース、ドレイン拡散
層の不純物の拡散深さが深くなり、素子のチャネル長が
2μm以下の超LSI等で必要となる短チャネル長の精
密制御などを実現するのは困難である。Conventional technology Flattening by melting (reflow) phosphosilicate glass (hereinafter abbreviated as PSG) has been conventionally performed, but PSG
Because the G glue flow temperature is as high as 1oQo°C or more, this process increases the depth of impurity diffusion in the source and drain diffusion layers of MO3 type devices, for example, and is difficult to use in ultra-LSI devices with channel lengths of 2 μm or less. It is difficult to achieve the necessary precision control of short channel lengths.
一方、PSGの燐濃度を増すことでPSGのりフロ一温
度を下げることもできるが、燐濃度を増すことは半導体
装置の信頼性の低下をまねく等の不都合がある。この様
な問題を解決できる方法として、近年、PSGに代わり
1000℃以下の低温でも溶融()、ロー)するBPS
Gが注目されている。On the other hand, the PSG adhesive flow temperature can be lowered by increasing the phosphorus concentration of PSG, but increasing the phosphorus concentration has disadvantages such as lowering the reliability of the semiconductor device. In recent years, as a method to solve these problems, BPS, which melts even at low temperatures below 1000°C, has been introduced instead of PSG.
G is attracting attention.
従来のBPSGのフローを採用したチャネルMO3型半
導体装置の製造工程を第2図(a)〜(、)を参照して
説明する。まず、第2図(−)に示すようにシリコン基
板1の上に選択酸化(LOCO3)膜2.ゲート酸化膜
3.多結晶シリコンゲート層4.拡散層5を形成し、さ
らに基板表面全域に窒化シリコン膜6を堆積する。The manufacturing process of a channel MO3 type semiconductor device employing a conventional BPSG flow will be described with reference to FIGS. First, as shown in FIG. 2(-), a selective oxidation (LOCO3) film 2. Gate oxide film 3. Polycrystalline silicon gate layer 4. A diffusion layer 5 is formed, and a silicon nitride film 6 is further deposited over the entire surface of the substrate.
次に第2図(b) K示すように例えばボロン濃度3重
量%、燐濃度4重量係のBPSG膜7を堆積し、BPS
G膜を焼きしめるため酸素ガス中、900℃で60分間
の熱処理(フロー)を施す。引き続き第2図(c)に示
すようにBPSG膜7と窒化シリコン膜6にコンタクト
孔9を開孔する。次に第2図(d)K示すようにフォス
フイン(PH3)を含む酸素ガス中、950’Cで10
分間の熱処理を施す。この熱処理によりBPSG膜7は
再び溶融(リフロー)され平坦化できると同時に、重金
属やNa等がリンゲッタされるため半導体素子特性の信
頼性が向上する・また、コンタクト孔内のシリコン基板
にリンが深く熱拡散されるため拡散が浅い場合に、アル
ミニウム配線時にアルミニウム電極とシリコン基板の合
金化によって生じたスパイクに起因する接合の破壊にと
もなうコンタクト部でのリーク電流の発生も抑制される
。Next, as shown in FIG. 2(b) K, a BPSG film 7 with, for example, a boron concentration of 3% by weight and a phosphorus concentration of 4% by weight is deposited.
In order to bake the G film, heat treatment (flow) is performed at 900° C. for 60 minutes in oxygen gas. Subsequently, as shown in FIG. 2(c), contact holes 9 are formed in the BPSG film 7 and the silicon nitride film 6. Next, as shown in Fig. 2(d)K, in oxygen gas containing phosphine (PH3), 10
Apply heat treatment for 1 minute. Through this heat treatment, the BPSG film 7 can be remelted (reflowed) and flattened, and at the same time, heavy metals, Na, etc. are removed as phosphorus, improving the reliability of the semiconductor device characteristics.In addition, the BPSG film 7 can be re-melted (reflowed) and flattened, and at the same time, the reliability of the semiconductor device characteristics is improved because heavy metals, Na, etc. are phosphorus-gettered. Because of thermal diffusion, if the diffusion is shallow, the occurrence of leakage current at the contact portion due to junction breakdown due to spikes caused by alloying of the aluminum electrode and silicon substrate during aluminum wiring is also suppressed.
この後、第2図(、)に示すようにリフロ一工程でシリ
コン露出面に形成された酸化膜を除去し、最後にアルミ
ニウム配線8を形成することによりnチャネルMO3型
トランジスタが完成する。Thereafter, as shown in FIG. 2(a), the oxide film formed on the exposed silicon surface is removed in a reflow process, and finally an aluminum wiring 8 is formed to complete an n-channel MO3 type transistor.
発明が解決しようとする問題点
しかしながら、この場合はBPSG膜に開孔した微細な
コンタクト孔がリフロ一工程の熱処理の際にBPSGの
溶融によって消滅することがしばしばある。Problems to be Solved by the Invention However, in this case, fine contact holes formed in the BPSG film often disappear due to melting of the BPSG during heat treatment in the reflow step.
BPSG膜のボロン濃度や燐濃度を低くし、リフローの
程度を抑えることでコンタクト孔の消滅を防止できるか
、フロ一工程においてBPSG膜を充分に平坦化するこ
とができない。一方、BPSG膜のりフローを抑えるた
めにす70一工程の熱処理湯度を下げることや熱処理時
間を短くした場合、重金属等のリンゲッタ効果が小さく
なり、半導体素子の特性が劣化するという問題が生じる
。Either it is possible to prevent the contact hole from disappearing by lowering the boron concentration or phosphorus concentration of the BPSG film and suppressing the degree of reflow, or the BPSG film cannot be sufficiently planarized in a single flow process. On the other hand, when lowering the heat treatment temperature or shortening the heat treatment time in step 70 in order to suppress the flow of the BPSG film, the problem arises that the ring getter effect of heavy metals etc. is reduced and the characteristics of the semiconductor element are deteriorated.
問題点を解決するための手段
前記問題点を解決するため本発明は、半導体装置の所望
の領域に窒化シリコン膜を被着する工程と、前記窒化シ
リコン膜上にボロンリンケイ酸ガラス膜を堆積する工程
と、前記ボロンリンケイ酸ガラス膜を水蒸気で熱処理す
る工程と、上記ボロンリンケイ酸ガラス膜および上記窒
化シリコン膜にコンタクト孔を開孔する工程と、燐化合
物を含むガス雰囲気中で熱処理する工程を有することを
特徴とする半導体装置の製造方法を提供する。Means for Solving the Problems In order to solve the above problems, the present invention provides a step of depositing a silicon nitride film on a desired region of a semiconductor device, and a step of depositing a boron phosphosilicate glass film on the silicon nitride film. and a step of heat treating the boron phosphosilicate glass film with water vapor, a step of forming contact holes in the boron phosphosilicate glass film and the silicon nitride film, and a step of heat treating the boron phosphosilicate glass film in a gas atmosphere containing a phosphorus compound. A method for manufacturing a semiconductor device with features is provided.
作 用
上記手段によれば、BPSG膜のフローが水蒸気雰囲気
であるため充分な平坦化が可能であシ、またフローの熱
処理中にボロン(B)やリン(P) (特にB)の外方
拡散が進み、フロ一工程終了後はBPSG中のBやP(
特にB)濃度が低減する。このため、す70一工程にお
いて熱処理条件を変更せず、BPSG膜の溶融が抑制さ
れBPSG膜に開孔した微細なコンタクト孔が消滅する
ことなく、コンタクト孔の上端部に適当なりフロー形状
が得られる。Effect According to the above means, sufficient flattening is possible because the flow of the BPSG film is in a water vapor atmosphere, and during the heat treatment of the flow, boron (B) and phosphorus (P) (particularly B) are removed from the outside. As the diffusion progresses, B and P in BPSG (
In particular, B) the concentration decreases. Therefore, without changing the heat treatment conditions in step 70, the melting of the BPSG film is suppressed, the fine contact holes opened in the BPSG film do not disappear, and an appropriate flow shape can be obtained at the upper end of the contact hole. It will be done.
実施例
以下、本発明にかかるMO8型半導体集積回路の製造方
法の一実施例について述べる。なお、簡明化のために一
個のMO3型トランジスタ部を拡大して示した第1図会
参照し説明する。EXAMPLE An example of the method for manufacturing an MO8 type semiconductor integrated circuit according to the present invention will be described below. For the sake of simplicity, the description will be made with reference to FIG. 1, which shows an enlarged view of one MO3 type transistor section.
まず、第1図体)に示すようにシリコン基板1の上に形
成したLOGO8膜2.ゲート酸化膜3゜多結晶シリコ
ンゲート層4を有し、さらに多結晶シリコンゲート層4
の両側の基板1内に拡散層6を形成した試料に、基板表
面全域に例えば膜厚1000Aの窒化シリコンM6を堆
積する。次に第1図(ロ)に示すように、ボロン濃度3
重量%、燐濃度4重量%、膜厚8000A+7)BPS
G膜7を前記窒化シリコン膜6上に堆積する。First, as shown in Figure 1), a LOGO8 film 2. is formed on a silicon substrate 1. The gate oxide film 3 has a polycrystalline silicon gate layer 4, and further has a polycrystalline silicon gate layer 4.
For example, silicon nitride M6 having a thickness of 1000 Å is deposited over the entire substrate surface on a sample in which diffusion layers 6 are formed in the substrate 1 on both sides of the substrate. Next, as shown in Figure 1 (b), boron concentration 3
Weight%, phosphorus concentration 4% by weight, film thickness 8000A+7) BPS
A G film 7 is deposited on the silicon nitride film 6.
これに続いて、第1図(C)K示すようにBPSG膜7
の焼きしめと溶融(フロー)を目的として水蒸気中にて
900″C,6o分間の熱処理を施す。Following this, as shown in FIG. 1(C)K, the BPSG film 7 is
For the purpose of hardening and melting (flow), heat treatment is performed in steam at 900''C for 60 minutes.
この後第1図(d)に示すようにホトレジストをマスク
にしてエツチングを行いコンタクト孔9を開孔する。次
に第1図(6m) K示すように、BPSG膜702回
目の溶融(リフロー)とコンタクト拡散層の形成のため
、フォスフイン(PH3)を含む雰囲気中、960°C
で10分間熱処理する。この熱処理過程でシリコン露出
面に酸化膜が形成されるので、酸化膜を除去した後、ア
ルミニウム配線8を形成する。以上でnチャネルMO3
型トランジスタが完成する。Thereafter, as shown in FIG. 1(d), etching is performed using a photoresist as a mask to open a contact hole 9. Next, as shown in Figure 1 (6m) K, for the second melting (reflow) of the BPSG film 70 and the formation of a contact diffusion layer, it was heated at 960°C in an atmosphere containing phosphine (PH3).
Heat-treat for 10 minutes. During this heat treatment process, an oxide film is formed on the exposed silicon surface, so after removing the oxide film, the aluminum wiring 8 is formed. Above is n channel MO3
type transistor is completed.
以上の実施例では、コンタクト孔の開孔前に水蒸気中で
BPSGi膜の溶融(フロー)を行うため、ボロン濃度
、燐濃度を低く抑えたBPSG膜でも充分に平坦化する
とともに、この水蒸気熱処理過程においてはボロンの外
方拡散がドライ酸素ガス雰囲気の場合よりも進行するた
め、フロー終了後BPSGのB、P濃度が低減する。そ
の結果、リフロ一工程でのBPSGの溶融は適度に抑制
されるため微細なコンタクト孔は消滅しない。BPSG
膜の平坦化、コンタクト孔の微細化、コンタクト拡散層
の形成という矛盾した条件を本発明で解決できる。In the above embodiment, since the BPSGi film is melted (flowed) in water vapor before forming the contact hole, even the BPSG film with low boron and phosphorus concentrations can be sufficiently flattened, and the water vapor heat treatment process In this case, the outward diffusion of boron progresses more than in the case of a dry oxygen gas atmosphere, so the B and P concentrations of the BPSG decrease after the flow ends. As a result, the melting of BPSG in one reflow process is moderately suppressed, so that fine contact holes do not disappear. BPSG
The present invention can resolve the contradictory conditions of film flattening, contact hole miniaturization, and contact diffusion layer formation.
本発明はMOS型集、積回路の製造を例示して説明した
が、本発明はBPSG膜のりフローが必要な半導体装置
全般に応用できるものである。Although the present invention has been explained by exemplifying the manufacture of MOS type integrated circuits, the present invention can be applied to all semiconductor devices requiring a BPSG film bonding flow.
発明の効果
本発明によれば、BPSG膜を用いて基板表面、 を
充分に平坦にし、微細なコンタクト孔も消滅させること
なく、コンタクト拡散層を形成できる・以上のように、
本発明は、従来のBPSG膜の溶融熱処理で発生した不
都合を除くことができ、高集積半導体装置の製造に大き
く寄与する。Effects of the Invention According to the present invention, a contact diffusion layer can be formed by using a BPSG film to sufficiently flatten the substrate surface and without eliminating even minute contact holes.As described above,
The present invention can eliminate the inconveniences caused by conventional melting heat treatment of BPSG films, and greatly contributes to the production of highly integrated semiconductor devices.
第1図(−)〜(e)は本発明の一実施例を説明するた
めの工程断面図、第2図(a)〜(e)は従来技術を説
明するための工程断面図である。
1・・・・・・シリコン基板、2・・・・・・LOCO
3酸化膜、3・・・・・・ゲート酸化膜、4・・・・・
多結晶シリコンゲート層、5・・・・・拡散層、6・・
・・・・窒化シリコン膜、7・・・・・・B P S
G膜、8・・・・・・アルミニウム配線、9・・・・・
・コンタクト孔。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第1図
第2図
第2図FIGS. 1(-) to 1(e) are process sectional views for explaining an embodiment of the present invention, and FIGS. 2(a) to 2(e) are process sectional views for explaining the prior art. 1...Silicon substrate, 2...LOCO
3 oxide film, 3... Gate oxide film, 4...
Polycrystalline silicon gate layer, 5...diffusion layer, 6...
...Silicon nitride film, 7...B P S
G film, 8... Aluminum wiring, 9...
・Contact hole. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Figure 2
Claims (1)
程と、前記窒化シリコン膜上にボロンリンケイ酸ガラス
膜を堆積する工程と、前記ボロンリンケイ酸ガラス膜を
水蒸気中で熱処理する工程と、前記ボロンリンケイ酸ガ
ラス膜および前記窒化シリコン膜にコンタクト孔を開孔
する工程と、燐化合物を含むガス雰囲気中で熱処理する
工程とを有することを特徴とする半導体装置の製造方法depositing a silicon nitride film on a desired region of a semiconductor device; depositing a boron phosphosilicate glass film on the silicon nitride film; heat-treating the boron phosphosilicate glass film in water vapor; A method for manufacturing a semiconductor device, comprising the steps of forming a contact hole in a glass film and the silicon nitride film, and performing heat treatment in a gas atmosphere containing a phosphorous compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2437086A JPS62183142A (en) | 1986-02-06 | 1986-02-06 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2437086A JPS62183142A (en) | 1986-02-06 | 1986-02-06 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62183142A true JPS62183142A (en) | 1987-08-11 |
Family
ID=12136303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2437086A Pending JPS62183142A (en) | 1986-02-06 | 1986-02-06 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62183142A (en) |
-
1986
- 1986-02-06 JP JP2437086A patent/JPS62183142A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6242385B2 (en) | ||
JPS6220698B2 (en) | ||
JPS59159544A (en) | Semiconductor device and manufacture thereof | |
GB2044533A (en) | A semiconductor device and method of manufacturing same | |
JPS62235739A (en) | Manufacture of semiconductor device | |
JPS62183142A (en) | Manufacture of semiconductor device | |
JPS59200418A (en) | Manufacture of semiconductor device | |
JPS62235752A (en) | Manufacture of semiconductor device | |
JPS6032974B2 (en) | Manufacturing method of semiconductor device | |
JPH02125449A (en) | Manufacture of semiconductor device | |
JPS59222945A (en) | Manufacture of semiconductor device | |
JPS61237448A (en) | Manufacture of semiconductor device | |
JPS61237449A (en) | Manufacture of semiconductor device | |
JPS62122173A (en) | Semiconductor device | |
JPS58132950A (en) | Manufacture of semiconductor device | |
JPS6218040A (en) | Flattening of phosphosilicate glass film | |
JPS6365647A (en) | Manufacture of semiconductor integrated circuit device | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPS62291146A (en) | Manufacture of semiconductor device | |
JPS6059737A (en) | Manufacture of semiconductor device | |
JPH0391245A (en) | Thin-film semiconductor device and manufacture thereof | |
JPS586138A (en) | Flattening method for phosphorus silicate glass film | |
JPH0318034A (en) | Manufacture of semiconductor device | |
JPH0441510B2 (en) | ||
JPS61156853A (en) | Complementary semiconductor device and manufacture thereof |