JPS59159544A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59159544A
JPS59159544A JP3475283A JP3475283A JPS59159544A JP S59159544 A JPS59159544 A JP S59159544A JP 3475283 A JP3475283 A JP 3475283A JP 3475283 A JP3475283 A JP 3475283A JP S59159544 A JPS59159544 A JP S59159544A
Authority
JP
Japan
Prior art keywords
film
silicon
polycrystalline silicon
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3475283A
Other languages
Japanese (ja)
Inventor
Isamu Takashima
勇 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3475283A priority Critical patent/JPS59159544A/en
Publication of JPS59159544A publication Critical patent/JPS59159544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent a film from reducing and a layer resistance from varying by using as an interlayer inslating film between a polycrystalline silicon layer and upper wirins an insulating film of 3-layer structure of silicon oxidized film- silicon nitrided film-PSG film and reflowing the PSG film of low density. CONSTITUTION:A polycrystalline silicon film is selectively formed on a semiconductor substrate 1, the surface is thermally oxidized to form a silicon oxidized film 7. Then, a silicon nitrided film 8 is grown on the film 7, a phosphorus glass layer 9 is grown on the film 8, the layer 9 is softened, thereby smoothing the stepwise difference on the surface of the substrate 1. The smoothing step is at 950 deg.C or lower and of oxidizing at high pressure is oxidative atmosphere of 4-10kg/cm<2>.

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特に半導体基板上に多結晶
シリコンを素材とした電極・配線あるいは抵抗素子を具
備した半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly to a semiconductor device including electrodes, wiring, or resistance elements made of polycrystalline silicon on a semiconductor substrate.

多結晶シリコンを用いた半導体装置としてはシリコンゲ
−1−MO8ICが良く知られている。シリコンゲー)
MOS  ICでは不純物をドーグした多結晶シリコン
をゲート電極、配線および抵抗素子として用い、ゲート
に対するソース・ドレインのセルファライン化および多
結晶シリコン配線と金1−属配線との多層配線構造に↓
シ装置の小型化、高性能化が可能である。バイポーラI
Cにおいても、多結晶シリコンを素材とした抵抗素子は
単結晶基板内に形成した拡散抵抗に比べ、温度係数が小
さいこと、あるいはPN接合部の空光層の影響がないた
めにバイアス依存性のない等の長所から抵抗素子の一つ
として使用されている。
Silicon G-1-MO8 IC is well known as a semiconductor device using polycrystalline silicon. silicon game)
In MOS IC, polycrystalline silicon doped with impurities is used as gate electrodes, wiring, and resistance elements, and self-alignment of source and drain to the gate and multilayer wiring structure of polycrystalline silicon wiring and metal wiring are possible.↓
It is possible to downsize the device and improve its performance. Bipolar I
Also in C, resistance elements made of polycrystalline silicon have a smaller temperature coefficient than diffused resistors formed in a single crystal substrate, and bias dependence is reduced because there is no effect of the optical layer at the PN junction. It is used as one of the resistive elements due to its advantages such as:

しかし、多結晶シリコンを用いた半導体装置において、
第1の問題点は多層配線構造における上部金属配線が多
結晶シリコンパターン端の段部において断線することで
ある。最近のパターンの微細化に作力い多結晶シリコン
のエツチングには反応性イオンエツチング法による異方
性エツチングが用いられ、多結晶シリコン端部はよりき
シ立った形状を有する。さらにこの多結晶シリコンパタ
ーンを横切る金属配線自身も巾の細いものが要求されて
いる。このため、金属配線の段切れはよシ発生しやすい
状態となる。
However, in semiconductor devices using polycrystalline silicon,
The first problem is that the upper metal wiring in the multilayer wiring structure is disconnected at the stepped portion at the end of the polycrystalline silicon pattern. Recently, anisotropic etching by reactive ion etching is used for etching polycrystalline silicon, which is effective for miniaturizing patterns, and the edges of polycrystalline silicon have a sharper shape. Furthermore, the metal wiring itself that crosses this polycrystalline silicon pattern is also required to be narrow in width. As a result, breaks in the metal wiring are more likely to occur.

その対策としてはリンシリケートガラス(PSG)層の
りフロー法が知られている。すなわち、高濃度のリンを
含んたPSG膜は高温で軟化して流動的となるため、多
結晶ソリコンパターン上にl) S G膜を形成し95
0℃以上の高温処理をすれば上記多結晶シリコン端部の
表面段差は平滑にすることが出来る(以下、これをP 
S G IJアフロ−法呼ぶ)。
As a countermeasure against this problem, a phosphosilicate glass (PSG) layer glue flow method is known. In other words, since a PSG film containing a high concentration of phosphorus softens and becomes fluid at high temperatures, a SG film is formed on a polycrystalline solicon pattern95.
The surface step at the end of the polycrystalline silicon can be smoothed by high-temperature treatment at 0°C or higher (hereinafter referred to as P
SG IJ Afro-method).

1〜かし々から、このpsoリフロー法にも多くの問題
がある。すなわち、PSG膜をリフローしやすくするだ
めには、■熱処理温度を上げる(〉1000℃)、■高
圧力で酸化する、■PSG膜中のリン濃度を上げる等の
方法があるが、まず■で発生する問題点は、高温の熱処
理は単結晶基板中に拡散されている拡散層、例えばシリ
コンゲートMO8ICではソースドレイン領域が深くな
るととである。パターンの微細化と共に浅い接合を得る
ことが半導体装置の小型化、高性能化につながるため、
上記高温の熱処理はこの障害となる。次に■で発生する
問題点は、高圧酸化では単結晶シリコンおよび多結晶シ
リコンの酸化速度が大きくなるため多結晶シリコン膜の
減少が大きくなり、この結果、導入されている不純物が
酸化膜中に取込まれて層抵抗が高く変化することである
。■で発生する問題点は、1) S G膜のリン濃度が
高すき゛ると金属配線としてアルミニウムを用いた場合
、アルミニウム配線の腐蝕が起きやすくなることである
From 1 to 1, there are many problems with this PSO reflow method. In other words, there are ways to make the PSG film easier to reflow, such as: ■ increasing the heat treatment temperature (>1000°C), ■ oxidizing at high pressure, and ■ increasing the phosphorus concentration in the PSG film. A problem that arises is that the high temperature heat treatment deepens the diffusion layer diffused into the single crystal substrate, for example the source/drain region in a silicon gate MO8IC. Obtaining shallow junctions along with finer patterns will lead to smaller semiconductor devices and higher performance.
The above-mentioned high temperature heat treatment becomes an obstacle to this. Next, the problem that occurs in (■) is that high-pressure oxidation increases the oxidation rate of single-crystal silicon and polycrystalline silicon, resulting in a large reduction in the polycrystalline silicon film, and as a result, the introduced impurities enter the oxide film. This is due to the fact that the layer resistance changes greatly due to the incorporation. The problems caused by (2) are: 1) If the phosphorus concentration of the SG film is high, corrosion of the aluminum wiring is likely to occur when aluminum is used as the metal wiring.

本発明けPSG膜を用いたことによる上記の欠点を解法
して信頼性の高い半導体装置およびそれを製造するため
の方法を提供するものである。
The present invention provides a highly reliable semiconductor device and a method for manufacturing the same by solving the above-mentioned drawbacks caused by using a PSG film.

すなわち、本発明は半導体基板」二に形成された多結晶
シリコン層と上部配線との間の層間絶縁膜としてシリコ
ン酸化膜−シリコン窒化膜−PSG膜の3層構造の絶縁
膜を用い、PSGSフリフロー法低温の高圧酸化を用い
て比較的低濃度のPSG膜をリフローさせることを特徴
とする。
That is, the present invention uses an insulating film with a three-layer structure of a silicon oxide film, a silicon nitride film, and a PSG film as an interlayer insulating film between a polycrystalline silicon layer formed on a semiconductor substrate and an upper wiring. It is characterized by reflowing a relatively low-concentration PSG film using high-pressure oxidation at extremely low temperatures.

シリコン酸化膜はシリ二1ン窒化膜と多結晶シリコン層
との間の歪みを緩和させる働きがあシ、シリコン窒化膜
は高圧酸化時の02および112の浸入を防止して単結
晶シリコン中の拡散層の層抵抗の変化および多結晶シリ
コン膜の膜減シと層抵抗の変化を防ぐことが出来る。そ
して高圧酸化法を用いれば比較的低濃度のPSG膜でも
リフロー出来、さらに熱処理温度を下げることが出来る
ため、浅い接合を維持して装置の小型化、高性能化が可
能となる。
The silicon oxide film has the function of alleviating the strain between the silicon nitride film and the polycrystalline silicon layer, and the silicon nitride film prevents the intrusion of 02 and 112 during high-pressure oxidation. Changes in layer resistance of the diffusion layer, thinning of the polycrystalline silicon film, and changes in layer resistance can be prevented. If high-pressure oxidation is used, even a PSG film with a relatively low concentration can be reflowed, and the heat treatment temperature can be lowered, so shallow junctions can be maintained, making it possible to downsize and improve the performance of the device.

以下本発明の一実施例としてシリコンゲートMO8IC
について説明する。
Below, as an embodiment of the present invention, a silicon gate MO8IC
I will explain about it.

第1図(a)〜(d)はその製造工程に従う半導体装置
の断面図である。まず、第1図(a)に示すように、シ
リコン基板1上にフィールド酸化膜2を約1,71m形
成し、フィールド酸化膜を窓開けしてゲート酸化膜3を
形成する。その後、LPCV’D法によりシリコン基板
表面上に多結晶シリコン膜を約600ON成長し、フォ
ト)/シストパターン6をマスクとシテトライエッチン
グ法により多結晶シリコンjJ%をエツチングしてゲー
ト電極4aおよび配線あるいは抵抗素子4bを形成する
。七の俊ソースおよびドレイン領域のためにゲート酸化
膜をバッフアート弗酸によりエツチングして開孔15を
形成する。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor device according to its manufacturing process. First, as shown in FIG. 1(a), a field oxide film 2 of about 1.71 m long is formed on a silicon substrate 1, and a gate oxide film 3 is formed by opening a window in the field oxide film. Thereafter, a polycrystalline silicon film of approximately 600 nm is grown on the surface of the silicon substrate by the LPCV'D method, and using the photo/cyst pattern 6 as a mask, the polycrystalline silicon jJ% is etched by the site-try etching method to form the gate electrode 4a and wiring. Alternatively, a resistive element 4b is formed. Openings 15 are formed by etching the gate oxide film with buffered hydrofluoric acid for the source and drain regions of Shichinoshun.

次に、第1図中)に示す様に、イオン注入法または熱拡
散法によシボロン、リンまたはヒ素等の不純物を導入し
てソースおよびドレイン領域5,5′を形成する。、こ
の時、多結晶シリコン中にも上記不純物が導入される。
Next, as shown in FIG. 1), impurities such as cibron, phosphorus, or arsenic are introduced by ion implantation or thermal diffusion to form source and drain regions 5, 5'. At this time, the above impurities are also introduced into the polycrystalline silicon.

そして、900℃〜1000℃の酸化性雰囲気でシリコ
ン基板を熱酸化I2てソース、ドレイン領域5,5′の
基板表面にシリコン酸化膜を形成すると同時に多結晶シ
リコン4al 4b表面にシリコン酸化膜7を約500
 A°影形成る。
Then, the silicon substrate is thermally oxidized I2 in an oxidizing atmosphere at 900°C to 1000°C to form a silicon oxide film on the substrate surface of the source and drain regions 5 and 5', and at the same time, a silicon oxide film 7 is formed on the surface of the polycrystalline silicon 4al and 4b. Approximately 500
A°Shadow formation.

しかる後、第1図(C)に示す様に、基板上にLPCV
D法によシリコンゲート8を500〜100ONに成長
し、つづいて常圧CVD法等によシロ〜12mo1係の
リンを含むPSG膜9を約1μの厚さに形成する。次に
コンタクトポールのパターンを形成して1・゛ライエツ
チング法等によりPSG膜9を選択的にエンチングする
。その後、高圧酸化法すなわち950℃v下の低温でか
つ圧力4 Ky/cイ〜10に9/’Cゴの1−12−
02 あるいはドライ02の酸化性雰囲気で基板を熱処
理して1” S G膜をリフローさせる。
After that, as shown in Figure 1(C), LPCV is placed on the substrate.
A silicon gate 8 is grown to a thickness of 500 to 100 ON using the D method, and then a PSG film 9 containing phosphorus at a concentration of 1 to 12 mo1 is formed to a thickness of about 1 μm using an atmospheric pressure CVD method or the like. Next, a contact pole pattern is formed, and the PSG film 9 is selectively etched using a 1-etching method or the like. Thereafter, high-pressure oxidation, i.e., 1-12-
02 or dry 02 in an oxidizing atmosphere to reflow the 1''SG film.

その後筒1図(d)のように、コンタクトホール部のシ
リコン窒化膜8およびシリコン酸化膜をそれぞれプラズ
マエツチング法およびバッフフード弗酸でエツチングし
てコンタクトホール10を開孔する。次にアルミニウム
を蒸着法等によシ基板表面に形成し、パターンを形成し
てアルミニウム配線11を形成する。これによって、シ
リコンゲートMO8ICが得られる。
Thereafter, as shown in FIG. 1(d) of the cylinder 1, the silicon nitride film 8 and the silicon oxide film in the contact hole portion are etched using plasma etching and buffer hood hydrofluoric acid, respectively, to form a contact hole 10. Next, aluminum is formed on the surface of the substrate by vapor deposition or the like, and a pattern is formed to form aluminum wiring 11. This results in a silicon gate MO8IC.

以上に示した本発明によれば、高圧酸化を行なってもシ
リコン窒化膜8によって多結晶シリコン層4al 4b
の膜厚さ層抵抗が変化せず、゛また高圧酸化によシ低温
でもPEG膜9をリフローできてソース、ドレイン領域
5.5′の接合深さも変化しない。さらに、多結晶シリ
コン層4a、4bの酸化膜7は窒化膜8との間の歪みを
緩和させる。
According to the present invention described above, even if high-pressure oxidation is performed, the polycrystalline silicon layer 4al 4b is formed by the silicon nitride film 8.
The film thickness layer resistance does not change, and the PEG film 9 can be reflowed even at low temperatures by high-pressure oxidation, and the junction depth of the source and drain regions 5.5' does not change. Furthermore, the oxide film 7 of the polycrystalline silicon layers 4a and 4b eases the strain between it and the nitride film 8.

上記実施例は一層ボリシリ構造のシリコンゲートMO8
1cについで述べたが、二層以上のポリシリコン構造の
MOS  ICについても本発明を適用出来る。さらに
バイポーラ型や他の半導体装置にも本発明を適用出来る
。要は、本発明は基板上に直接又は絶縁膜を介して多結
晶シリコン層が形成された半導体装置すべてに適用され
るものであるから、実施例に限定されない。
The above embodiment is a silicon gate MO8 with a single layer structure.
1c, the present invention can also be applied to MOS ICs having a polysilicon structure of two or more layers. Furthermore, the present invention can be applied to bipolar type and other semiconductor devices. In short, the present invention is applicable to all semiconductor devices in which a polycrystalline silicon layer is formed directly or via an insulating film on a substrate, and therefore is not limited to the embodiments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(d)は本発明の一実施例を工程11
戸に示す半導体装16’/、の断面図である。 1・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・ゲート酸化J4.4a・・・
・・・多結晶シリコンのゲート!極、41)・・・・・
・多結晶シリコンの配線および抵抗、5・・・・・・ソ
ース領域、5′・・・・・・ドレイン領域、6・・・・
・・フォトレジスト、7・・・・・・シリコン酸化膜、
8・・・・・・シリコン開化膜、9・・・・・・リンシ
リケートガラス層、10・・・・・・コンタクトホール
、11・・曲アルミ配綜、15・・・・・・ソース、ド
レイン形成窓。 −1艷
FIGS. 1(a) to 1(d) show an embodiment of the present invention in step 11.
It is a sectional view of the semiconductor device 16' shown in the door. 1...Silicon substrate, 2...Field oxide film, 3...Gate oxidation J4.4a...
...Polycrystalline silicon gate! Extreme, 41)...
・Polycrystalline silicon wiring and resistance, 5...source region, 5'...drain region, 6...
...Photoresist, 7...Silicon oxide film,
8...Silicon opening film, 9...Phosphorsilicate glass layer, 10...Contact hole, 11...Curved aluminum heald, 15...Source, Drain forming window. -1 ship

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に多結晶シリコンを有する半導体装
置において、該多結晶シリコン層と上部配線との間の層
間絶縁膜が該多結晶シリコン表面を熱酸化法によって形
成したシリコン酸化膜と、該シリコン酸化膜上に形成さ
れたシリコン窒化膜と、さらにその上に形成されたリン
ガラス層とを含む膜が利用されていることを特徴とする
半導体装置。
(1) In a semiconductor device having polycrystalline silicon on a semiconductor substrate, an interlayer insulating film between the polycrystalline silicon layer and the upper wiring includes a silicon oxide film formed by thermally oxidizing the surface of the polycrystalline silicon; A semiconductor device characterized in that a film including a silicon nitride film formed on a silicon oxide film and a phosphorous glass layer further formed thereon is used.
(2)半導体基板上に多結晶シリコン膜を選択的に形成
する工程と、該多結晶シリコン膜表面を熱酸化してシリ
コン酸化膜を形成する工程と、シリコン窒化膜を該シリ
コン酸化膜上に成長する工程と、該シリコン窒化膜上に
リンガラス層を成長する工程と、上記リンガラス層を軟
化させることによシ半導体基板表面の段差部を清らかに
する工程とを含むことを特徴とする半導体装置の製造方
法。
(2) A step of selectively forming a polycrystalline silicon film on a semiconductor substrate, a step of thermally oxidizing the surface of the polycrystalline silicon film to form a silicon oxide film, and a step of forming a silicon nitride film on the silicon oxide film. a step of growing a phosphorus glass layer on the silicon nitride film; and a step of softening the phosphorus glass layer to clear the stepped portion on the surface of the semiconductor substrate. A method for manufacturing a semiconductor device.
(3)前記滑らかにする工程が温度950’C以下であ
って圧力4Kf/c7乃至10 Kg/cmの酸化性雰
囲気で高圧酸化することを特徴とする特許請求の範囲第
(2)項記載の半導体装置の製造方法。
(3) The smoothing step is performed by high-pressure oxidation in an oxidizing atmosphere at a temperature of 950'C or lower and a pressure of 4 Kf/c7 to 10 Kg/cm. A method for manufacturing a semiconductor device.
JP3475283A 1983-03-03 1983-03-03 Semiconductor device and manufacture thereof Pending JPS59159544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3475283A JPS59159544A (en) 1983-03-03 1983-03-03 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3475283A JPS59159544A (en) 1983-03-03 1983-03-03 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59159544A true JPS59159544A (en) 1984-09-10

Family

ID=12423052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3475283A Pending JPS59159544A (en) 1983-03-03 1983-03-03 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59159544A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196755A (en) * 1984-10-17 1986-05-15 Nec Corp Semiconductor device and manufacture thereof
JPS61196543A (en) * 1985-02-26 1986-08-30 Nec Corp Semiconductor device
JPS62125658A (en) * 1985-11-26 1987-06-06 Sony Corp Semiconductor device
JPH01147835A (en) * 1987-12-04 1989-06-09 Sony Corp Semiconductor device
US4948743A (en) * 1988-06-29 1990-08-14 Matsushita Electronics Corporation Method of manufacturing a semiconductor device
US5324974A (en) * 1990-09-04 1994-06-28 Industrial Technology Research Institute Nitride capped MOSFET for integrated circuits
US5793114A (en) * 1993-12-17 1998-08-11 Sgs-Thomson Microelectronics, Inc. Self-aligned method for forming contact with zero offset to gate
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6107194A (en) * 1993-12-17 2000-08-22 Stmicroelectronics, Inc. Method of fabricating an integrated circuit
US6284584B1 (en) 1993-12-17 2001-09-04 Stmicroelectronics, Inc. Method of masking for periphery salicidation of active regions
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196755A (en) * 1984-10-17 1986-05-15 Nec Corp Semiconductor device and manufacture thereof
JPS61196543A (en) * 1985-02-26 1986-08-30 Nec Corp Semiconductor device
JPS62125658A (en) * 1985-11-26 1987-06-06 Sony Corp Semiconductor device
JPH01147835A (en) * 1987-12-04 1989-06-09 Sony Corp Semiconductor device
US4948743A (en) * 1988-06-29 1990-08-14 Matsushita Electronics Corporation Method of manufacturing a semiconductor device
US5324974A (en) * 1990-09-04 1994-06-28 Industrial Technology Research Institute Nitride capped MOSFET for integrated circuits
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US7148542B2 (en) 1992-02-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US7649227B2 (en) 1992-02-25 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US5793114A (en) * 1993-12-17 1998-08-11 Sgs-Thomson Microelectronics, Inc. Self-aligned method for forming contact with zero offset to gate
US6107194A (en) * 1993-12-17 2000-08-22 Stmicroelectronics, Inc. Method of fabricating an integrated circuit
US6284584B1 (en) 1993-12-17 2001-09-04 Stmicroelectronics, Inc. Method of masking for periphery salicidation of active regions
US6514811B2 (en) 1993-12-17 2003-02-04 Stmicroelectronics, Inc. Method for memory masking for periphery salicidation of active regions

Similar Documents

Publication Publication Date Title
JPS6220698B2 (en)
JPS6242385B2 (en)
JPS59159544A (en) Semiconductor device and manufacture thereof
JPS6042866A (en) Semiconductor device and manufacture thereof
JPH11340327A (en) Method for manufacturing semiconductor device
JPS60145664A (en) Manufacture of semiconductor device
JPH06177239A (en) Manufacture of trench element isolation structure
JPS6228591B2 (en)
JPS60246675A (en) Manufacture of semiconductor device
JPS5842254A (en) Manufacture of semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JPH03198339A (en) Manufacture of semiconductor device
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPS6161539B2 (en)
JPH088262A (en) Manufacture of semiconductor device
JPS6161268B2 (en)
JPH0586653B2 (en)
JP2720179B2 (en) Semiconductor device and manufacturing method thereof
JP3158486B2 (en) Method for manufacturing semiconductor device
JPS61247073A (en) Manufacture of semiconductor device
JP2530177B2 (en) Method for manufacturing semiconductor device
JPH0216019B2 (en)
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS59222939A (en) Semiconductor device
JPH0831597B2 (en) Method for manufacturing insulated gate field effect semiconductor device