JPS6196755A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6196755A
JPS6196755A JP59217723A JP21772384A JPS6196755A JP S6196755 A JPS6196755 A JP S6196755A JP 59217723 A JP59217723 A JP 59217723A JP 21772384 A JP21772384 A JP 21772384A JP S6196755 A JPS6196755 A JP S6196755A
Authority
JP
Japan
Prior art keywords
film
resistor
semiconductor device
insulating film
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59217723A
Other languages
Japanese (ja)
Inventor
Koji Yamazaki
孝二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59217723A priority Critical patent/JPS6196755A/en
Publication of JPS6196755A publication Critical patent/JPS6196755A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Adjustable Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To protect resistance from reduction even in the presence of a passivation or interlayer insulating P-SiN film produced by the plasma CVD technique by a method wherein an Si3N4 film is formed on the interlayer insulating film by the thermal CVD technique. CONSTITUTION:On the surface of a silicon substrate 1, an SiO2 film 2 is formed to serve as a field oxide film and, on the SiO2 film 2, a resistor 3 is formed composed of polycrystalline silicon containing an impurity in high concentration. The impurity to be contained in the resistor 3 may be P, As, B ore the like determining the resistance to be presented by the resistor 3. On top of the resistor 3, a PSG film 4 is formed to serve as an interlayer insulating film, whereon a thermal Si3N4 film 8 is further formed. In a semiconductor device constructed as such, the influence to be exerted by a P-SiN film 7, formed to serve as a passivation film or an interlayer insulating film to cover the entire surface including an Al, does not reach the resistor 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置9%に抵抗体を有する半導体装置及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a resistor in 9% of the semiconductor device, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、半導体装置に形成される抵抗体に、例えば第4図
に示す工うに形成されてい友。丁なわち。
Conventionally, resistors formed in semiconductor devices have been formed, for example, as shown in FIG. Ding nawachi.

半導体素子等が形成されたシリコン基板1上のフィール
ド酸化膜2(8i0z膜)上に、不純物イオンが注入さ
れ規定の抵抗値を有するポリシリコン層からなる抵抗体
3t−形成する。次に、この抵抗体3上に絶縁膜として
2例えばリンシリケートガラス膜(P2O膜)4七形成
し九のち、抵抗体3の両端上のP2O膜に開孔部5會形
成する。続いて。
Impurity ions are implanted onto a field oxide film 2 (8iOz film) on a silicon substrate 1 on which semiconductor elements and the like are formed to form a resistor 3t made of a polysilicon layer having a prescribed resistance value. Next, a phosphosilicate glass film (P2O film) 47, for example, is formed as an insulating film on the resistor 3, and after that, openings 5 are formed in the P2O film on both ends of the resistor 3. continue.

この開孔部5全通して抵抗体3と接続するAt配線6を
形成する。次にパッジベージ曹ン膜及び層間絶縁膜とし
てAt配線6ケ含めた表面にプラズマCVD (Che
mi catVapor Depos i t i o
n)法ニヨるシリコン窒化膜(以下P−8iN膜という
)が形成される。
An At wiring 6 is formed through the entire opening 5 to be connected to the resistor 3. Next, plasma CVD (Che
mi cat Vapor Depos itio
n) A silicon nitride film (hereinafter referred to as P-8iN film) is formed.

一般に、P−8iN膜は、湿気やNa イオンに対する
バリヤ性の点及び段差被覆性の点で優れており、パッジ
ページ冒/膜及び層間絶縁膜に適しており多用されてい
る。
In general, P-8iN films are excellent in barrier properties against moisture and Na ions and in terms of step coverage, and are suitable and widely used as pad page film and interlayer insulating films.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、P−8iN膜を絶縁膜上に堆積しt場合
、抵抗体の抵抗値が減少し信頼性が著しく損われるとい
う欠点がある。特にP−8iNJlll:i形成したの
ちAtのコンタクlt−とる九めの熱処理全行うと抵抗
値の低下は著しいものとなる。この原因としては、P−
8iN膜を堆積する時の下地絶縁膜の損傷及びP−8i
N膜中に含まれる水素等の影響と考えられる。
However, when a P-8iN film is deposited on an insulating film, the resistance value of the resistor decreases, resulting in a significant loss of reliability. In particular, if the ninth heat treatment is performed after forming the P-8iNJlll:i and removing the At contact, the resistance value will drop significantly. The cause of this is P-
Damage to base insulating film and P-8i when depositing 8iN film
This is thought to be due to the influence of hydrogen contained in the N film.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を除去し、上1部にプラズマ
CVD法によるシリコン窒化膜を形成し;      
 ても抵抗値の低下しない信頼性の高い抵抗体を有する
半導体装置及びその製造方法で提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and form a silicon nitride film on the upper part by plasma CVD method;
An object of the present invention is to provide a semiconductor device having a highly reliable resistor whose resistance value does not decrease even when the resistance value is lowered even when the semiconductor device is used, and a method for manufacturing the same.

〔問題勿解決する九めの手段〕 本発明の半導体装置は、シリコン基板表面の酸化膜上に
形成され九ポリシリコン層からなる抵抗体と、該抵抗体
上に形成されm絶R膜と、該絶縁膜上に形成され几熱C
VD法によるシリコン窒化M(以下熱8i3N4膜とい
う)と〒含んで構成される。
[Ninth means for solving the problem] The semiconductor device of the present invention includes a resistor formed on an oxide film on the surface of a silicon substrate and made of a polysilicon layer, a resistor formed on the resistor, The thermal C formed on the insulating film
It is composed of silicon nitride M (hereinafter referred to as thermal 8i3N4 film) formed by the VD method.

また本発明の半導体装置の製造方法は、シリコン基板表
面の酸化膜上にポリシリコン層を形成する工程と、該ポ
リシリコン層に不純物イオン全注入し所定の抵抗値余有
する抵抗体層を形成する工程と、該抵抗体層全バターニ
ングし所定形状の抵抗体全形成する工程と、該抵抗体上
VC絶縁膜全形成する工程と、該絶縁膜上に熱CVD法
に=クシリコン窒化膜を形成する工程と?含んで精成さ
れる。
Further, the method for manufacturing a semiconductor device of the present invention includes the steps of forming a polysilicon layer on an oxide film on the surface of a silicon substrate, and completely implanting impurity ions into the polysilicon layer to form a resistor layer having a predetermined resistance value. a step of patterning the entire resistor layer and forming the entire resistor in a predetermined shape; a step of forming the entire VC insulating film on the resistor; and forming a silicon nitride film on the insulating film by thermal CVD. What is the process? Contains and refines.

本発明に工れば、抵抗体上の絶縁膜が緻密な熱8i3N
4膜に覆われるため、この上にP−8iN膜が形成され
ても、プラズマ発生による荷電粒子等が絶縁膜に損傷勿
与えることがなく、又P−8iN膜中の水素等の影響で
下層の抵抗体の抵抗値上低下させることはない。
If the present invention is used, the insulating film on the resistor will have a dense thermal 8i3N
4 film, even if a P-8iN film is formed on top of the P-8iN film, charged particles caused by plasma generation will not damage the insulating film, and hydrogen in the P-8iN film will damage the underlying layer. There is no decrease in the resistance value of the resistor.

〔実施例〕〔Example〕

次に本発明の実施例を図面上用いて説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の半導体装置の一実施例の断面図でめる
FIG. 1 is a cross-sectional view of one embodiment of the semiconductor device of the present invention.

第1因において、シリコン基板1表面には1例えばフィ
ールド酸化膜としての3iQz膜2が形成されている。
In the first factor, a 3iQz film 2, for example, as a field oxide film, is formed on the surface of the silicon substrate 1.

そして、この810x膜2上ICi、不純物を高濃度に
含むポリシリコン層からなる抵抗体3が形成されている
。この抵抗体3に含まれる不純物HP、As、B等の元
素でるり、その抵抗値全規定している。
A resistor 3 made of ICi and a polysilicon layer containing a high concentration of impurities is formed on this 810x film 2. Elements such as impurities HP, As, and B contained in this resistor 3 completely determine its resistance value.

この抵抗体3の上面には層間絶縁膜として2例えばPI
G膜4が、そしてその上面には熱8i3N4膜8が形成
されている。
The upper surface of this resistor 3 has an interlayer insulating film of 2, for example, PI.
A G film 4 is formed, and a thermal 8i3N4 film 8 is formed on its upper surface.

抵抗体3の両端部上の熱8i3N4膜B、4pso膜4
にに開孔部5が形成され、この開孔部5tとおして抵抗
体3に接続する凝配線6が形成されている。
Heat 8i3N4 film B, 4pso film 4 on both ends of resistor 3
An opening 5 is formed in the opening 5t, and a wire 6 connected to the resistor 3 is formed through the opening 5t.

このLうに溝底された半導体装置においては。In this L-groove semiconductor device.

At配線6を含む表面全体にバッジページ曹ン膜又は層
間絶縁膜としてのP−8iN膜7が形成されてもその影
響は抵抗体3に布達することにない。
Even if the badge page carbon film or the P-8iN film 7 as an interlayer insulating film is formed on the entire surface including the At wiring 6, its influence does not reach the resistor 3.

すなわち、PEG膜4上に形成された熱8i3N4膜8
は、LOCO8構造に用いられているように、緻密性に
優れているため、P−8iN膜を堆積する時の下地絶縁
膜の損傷及び、P−8iN腹中の水素等の影響を少なく
し、抵抗体3の抵抗値を低下させることはない。
That is, the thermal 8i3N4 film 8 formed on the PEG film 4
As used in the LOCO8 structure, it has excellent density, so it reduces damage to the underlying insulating film and the effects of hydrogen in the P-8iN film when depositing the P-8iN film. The resistance value of the resistor 3 is not reduced.

次に本発明の半導体装置の製造方法について説明する。Next, a method for manufacturing a semiconductor device according to the present invention will be explained.

第2図(a)〜(C)は本発明の半導体装置の製造方法
の一実施例全説明する友めの工程断面図でらる。
FIGS. 2(a) to 2(C) are cross-sectional views illustrating an embodiment of the semiconductor device manufacturing method of the present invention.

1ず第2図(a)に示すように、フィールド酸化膜とし
ての8i0z膜2の形成され几シリコン基板1の上面に
、CVD法によりポリシリコン層3a’2約400OA
の厚さに堆積させたのち、不純物としてPkl X 1
0〜I X 10 /an2 の割合でイオン注入する
。この作業にエリポリシリコン層3aは約I X 10
 (Ω・cn)の抵抗値を有する抵抗体となる。
1. As shown in FIG. 2(a), a polysilicon layer 3a'2 of about 400 OA is deposited by CVD on the upper surface of the silicon substrate 1 on which the 8i0z film 2 as a field oxide film is formed.
After depositing Pkl X 1 as an impurity,
Ions are implanted at a ratio of 0 to I x 10 /an2. In this operation, the polysilicon layer 3a is approximately I x 10
It becomes a resistor having a resistance value of (Ω·cn).

次に第2図(b)に示すように、ポリシリコン層3a?
バターニングし規定寸法の抵抗体3を形成したのち、そ
の上面に厚さ0.5〜1.0μmのPEG膜4全4全C
VD法フ形成する。
Next, as shown in FIG. 2(b), polysilicon layer 3a?
After patterning and forming a resistor 3 with specified dimensions, a PEG film 4 with a thickness of 0.5 to 1.0 μm is placed on its upper surface.
Form by VD method.

次に第2図(C)に示すように、PSG膜4上に熱8i
3N4膜8r3000A以上の厚さに堆積する。この熱
8i3N4膜8は、8iH4とNH3と金用い約900
℃の温度でのCVD法に工り形成される。続いて抵抗体
3の両端部上の熱8i、Nシ膜8及びPEG膜4に1反
応性イオンエツチング(RIE)法により開孔部5を形
成する。
Next, as shown in FIG. 2(C), heat 8i is applied on the PSG film 4.
3N4 film 8r is deposited to a thickness of 3000A or more. This thermal 8i3N4 film 8 is made of 8iH4, NH3 and gold with approximately 900%
It is formed by a CVD method at a temperature of .degree. Subsequently, openings 5 are formed in the heat 8i, N film 8 and PEG film 4 on both ends of the resistor 3 by reactive ion etching (RIE).

以下1表面VcAjt−堆積させkのち、パターニング
し、抵抗体3に接続するM配線6金形成することによ?
)第1図に示す半導体装置が得られる。
After depositing VcAjt on one surface, patterning is performed to form a 6-gold M wiring connected to the resistor 3.
) The semiconductor device shown in FIG. 1 is obtained.

第3図はこの工うにして形成した半導体装置の抵抗体の
抵抗値全従来のものと比較してプロットし友ものでるり
、縦軸に抵抗率(Ω・口)七、そして横軸に試料(抵抗
体)の状態?示し友。
Figure 3 plots the resistance values of the resistor of the semiconductor device formed in this way compared with the conventional one. Condition of the sample (resistor)? Show friend.

同図に示される工うに、従来は、抵抗体上にP8G膜全
形成した時の抵抗率がI×100・■でめっ7’Cもの
が(a)、その上にパッシベーション度としてP−8i
N膜が形成されるとその値にI X 10 Ω・■とな
り、更にこれを400〜500℃10分間熱処理すると
、抵抗率は約10・口に1で低下した。
As shown in the figure, conventionally, when a P8G film is entirely formed on a resistor, the resistivity is I × 100 . 8i
When the N film was formed, its value was I x 10 Ω·■, and when this was further heat-treated at 400 to 500°C for 10 minutes, the resistivity decreased to about 1 in 10.

しかるKl上記実施例の工5iC,PSG膜上に熱Si
3N4膜勿形底し次場合も(b2) 、又これt熱処理
し次場合も(C2ハ共に抵抗率の値にほとんど変化しな
かった。従って本発明の半導体装置の抵抗体は、第2図
(a)に示した工程において注入される不純物のfIC
エリその抵抗値が定フるため、ばらつきの少ない、信頼
性の高いものとなる。
However, in the process 5iC of the above example, thermal Si was applied on the PSG film.
There was almost no change in the resistivity value in both cases (b2) when the 3N4 film was formed without forming the bottom, and also when it was heat-treated (C2).Therefore, the resistivity of the semiconductor device of the present invention is fIC of impurities implanted in the step shown in (a)
Since the resistance value of the resistor is constant, it has little variation and is highly reliable.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように9本発明によれば。 As described in detail above, according to the present invention.

層間絶縁膜上に熱CVD法によるSiaN4ffg’に
形成することにエク、パッジページ冒ン膜及び層間絶縁
膜としてプラズマCVD法によるP−8iN膜全形成し
ても、抵抗値の低下しない信頼性の高い抵抗体tVする
半導体及びその製造方法が得られるのでその効果は大き
い。
It is difficult to form SiaN4ffg' on the interlayer insulating film by thermal CVD, and even if the entire P-8iN film is formed by plasma CVD as a Padgepage film and interlayer insulating film, the resistance value does not decrease. The effect is great because a semiconductor with a high resistor tV and a method for manufacturing the same can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第4図は本発明の半導体装置の一実施例の断面図、第2
図(a)〜(C)は本発明の半導体装置の製造方法の一
実施例全説明するための工程断面図、第3図は本発明の
半導体装置の抵抗体の抵抗値全従来のものと比較してプ
ロットし九図、第4図は従来の半導体装置の一例の断面
図でおる。 1・・・シリコン基板、2・・・5iOz膜、3・・・
抵抗体。 4・・・Pb0膜、5・・・開孔部、6・・・At配線
、7・・・P−8iN膜、8・・・熱Si3N4膜。 第1圀
FIG. 4 is a sectional view of one embodiment of the semiconductor device of the present invention;
Figures (a) to (C) are process cross-sectional views for fully explaining one embodiment of the method for manufacturing a semiconductor device of the present invention, and Figure 3 shows all resistance values of the resistor of the semiconductor device of the present invention compared to conventional ones. For comparison, Figure 9 and Figure 4 are cross-sectional views of an example of a conventional semiconductor device. 1... Silicon substrate, 2... 5iOz film, 3...
resistor. 4... Pb0 film, 5... Opening portion, 6... At wiring, 7... P-8iN film, 8... Thermal Si3N4 film. 1st area

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板表面の酸化膜上に形成されたポリシ
リコン層からなる抵抗体と、該抵抗体上に形成された絶
縁膜と、該絶縁膜上に形成された熱CVD法によるシリ
コン窒化膜とを含むことを特徴とする半導体装置。
(1) A resistor made of a polysilicon layer formed on an oxide film on the surface of a silicon substrate, an insulating film formed on the resistor, and a silicon nitride film formed by thermal CVD on the insulating film. A semiconductor device comprising:
(2)シリコン基板表面の酸化膜上にポリシリコン層を
形成する工程と、該ポリシリコン層に不純物イオンを注
入し所定の抵抗値を有する抵抗体層を形成する工程と、
該抵抗体層をパターニングし所定形状の抵抗体を形成す
る工程と、該抵抗体上に絶縁膜を形成する工程と、該絶
縁膜上に熱CVD法にとりシリコン窒化膜を形成する工
程とを含むことを特徴とする半導体装置の製造方法。
(2) a step of forming a polysilicon layer on the oxide film on the surface of the silicon substrate; a step of implanting impurity ions into the polysilicon layer to form a resistor layer having a predetermined resistance value;
The method includes the steps of patterning the resistor layer to form a resistor in a predetermined shape, forming an insulating film on the resistor, and forming a silicon nitride film on the insulating film by thermal CVD. A method for manufacturing a semiconductor device, characterized in that:
JP59217723A 1984-10-17 1984-10-17 Semiconductor device and manufacture thereof Pending JPS6196755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217723A JPS6196755A (en) 1984-10-17 1984-10-17 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217723A JPS6196755A (en) 1984-10-17 1984-10-17 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6196755A true JPS6196755A (en) 1986-05-15

Family

ID=16708726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217723A Pending JPS6196755A (en) 1984-10-17 1984-10-17 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6196755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463174A1 (en) * 1989-12-26 1992-01-02 Sony Corporation Method of manufacturing semiconductor device
US11495452B2 (en) 2019-03-06 2022-11-08 Tohku University Method for producing silicon nitride film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240082A (en) * 1975-09-25 1977-03-28 Nec Corp Resistor element and process for production of same
JPS59159544A (en) * 1983-03-03 1984-09-10 Nec Corp Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240082A (en) * 1975-09-25 1977-03-28 Nec Corp Resistor element and process for production of same
JPS59159544A (en) * 1983-03-03 1984-09-10 Nec Corp Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463174A1 (en) * 1989-12-26 1992-01-02 Sony Corporation Method of manufacturing semiconductor device
US11495452B2 (en) 2019-03-06 2022-11-08 Tohku University Method for producing silicon nitride film

Similar Documents

Publication Publication Date Title
JPH07321298A (en) Manufacture of semiconductor device
US5313417A (en) Semiconductor memory device
US3760242A (en) Coated semiconductor structures and methods of forming protective coverings on such structures
US6660624B2 (en) Method for reducing fluorine induced defects on a bonding pad surface
JP3418548B2 (en) Circuit board and method of manufacturing the same
TW385523B (en) Method for making contact via with a formed component on semiconductor substrate
JPS6196755A (en) Semiconductor device and manufacture thereof
JPH0744178B2 (en) Method for manufacturing semiconductor device
US6365482B1 (en) I.C. thin film resistor stabilization method
JPS6196756A (en) Semiconductor device and manufacture thereof
JPS58135645A (en) Manufacture of semiconductor device
JPH05121727A (en) Semiconductor device and manufacturing method thereof
JPH04199632A (en) Soi wafer and manufacture thereof
JPS6160580B2 (en)
JPS60224229A (en) Semiconductor device
JPS5848940A (en) Semiconductor device
JPH01239940A (en) Semiconductor device
JPH0342834A (en) Semiconductor device
JP2727605B2 (en) Semiconductor device and manufacturing method thereof
JPS6161698B2 (en)
CA1070853A (en) Seal for a semiconductor device and method therefor
JP3147930B2 (en) Method for manufacturing polycrystalline silicon high resistance element
JPH05226479A (en) Manufacture of semiconductor device
EP0053484B1 (en) A method for fabricating semiconductor device
JP3225879B2 (en) Silicon oxide film forming method and multilayer wiring forming method