JPS62174356A - Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging - Google Patents

Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging

Info

Publication number
JPS62174356A
JPS62174356A JP1330686A JP1330686A JPS62174356A JP S62174356 A JPS62174356 A JP S62174356A JP 1330686 A JP1330686 A JP 1330686A JP 1330686 A JP1330686 A JP 1330686A JP S62174356 A JPS62174356 A JP S62174356A
Authority
JP
Japan
Prior art keywords
forging
aluminum alloy
content
small
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330686A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tsuji
辻 美絋
Makoto Shimada
誠 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1330686A priority Critical patent/JPS62174356A/en
Publication of JPS62174356A publication Critical patent/JPS62174356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obviate the necessity of soaking and hardening treatments of a cold forging stock, by subjecting an Al alloy to which prescribed percentages of Mg, Si, Sn, Cu, Ti, B, etc., are incorporated to cooling from the casting temp. to ordinary temp. at a prescribed cooling rate. CONSTITUTION:The Al alloy having a composition consisting of, by weight, 0.3-0.8% Mg, 0.4-1.5% Si, 0.01-1% Sn, 0.05-1% Cu, 0.001-0.1% Ti, 0.0001-0.01% B, etc., and satisfying Si>Mg is refined. This Al alloy is cooled from a casting temp. of 550 deg.C to ordinary temp. at >=100 deg.C/min cooling rate.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はAl−Mg−8i系遅時効硬化型鍛造泪アルミ
ニウム合金小径鋳造棒の製造法に関し、さらに詳しくは
、遅時効硬化冷間鍛造用素材としてソーキングおよび焼
入処理を省略することができるAt  Mg  Si系
遅遅時効硬化型鍛造用アルミニウム合金小径鋳造棒製造
法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a method for manufacturing an Al-Mg-8i-based slow-age hardening type forged aluminum alloy small-diameter cast rod, and more specifically, to a method for producing a small-diameter cast rod for slow-aging hardening forged aluminum alloy. The present invention relates to a method for producing a small-diameter cast rod of an AtMgSi-based slow age hardening aluminum alloy for forging, which can omit soaking and quenching treatments for the raw material.

[従来技術1 最近、アルミニウム合金の冷間鍛造材の使用が増加して
きているが、Al−Mg  Si系合金、例えば、Mg
0.45−0.8wt%、Si 0.6〜1.2u+L
%含有の6151合金は変形抵抗が小さく、冷間鍛造性
がよいのでCu 3.5〜5.Ou+t%含有のAl−
Cu系合金に代わりつつあるのが現状である。
[Prior art 1] Recently, the use of cold forged aluminum alloy materials has been increasing, but aluminum alloys such as Al-Mg Si alloys, such as Mg
0.45-0.8wt%, Si 0.6-1.2u+L
The 6151 alloy containing 3.5 to 5% Cu has low deformation resistance and good cold forgeability. Al− containing O+t%
Currently, it is being replaced by Cu-based alloys.

しかして、アルミニウム合金の鍛造用素材として、冷間
鍛造時の変形抵抗を下げるために0材を使用し、冷間鍛
造後に焼入れ、焼戻しの熱処理を行なうことによって強
度を向上させてから実用に供されていた。
Therefore, as a material for forging aluminum alloys, zero material is used to reduce the deformation resistance during cold forging, and after cold forging, heat treatment of quenching and tempering is performed to improve the strength before it is put into practical use. It had been.

しかし、この場合には下記に示す問題点がある。However, this case has the following problems.

1)バーニング等の品質異常が発生し易い。1) Quality abnormalities such as burning are likely to occur.

2)薄物では焼入歪が発生し易い。2) Hardening distortion is likely to occur in thin products.

3)焼入設備が必要となる。3) Hardening equipment is required.

[発明が解決しようとする問題点1 本発明は上記に説明したような従来におけるアルミニウ
ム合金の冷間鍛造材の問題点に鑑みなされたもので、本
発明者は研究を重ねた結果、アルミニウム合金の鍛造用
素材として初めから焼入れした素材を使用し、かつ、焼
入れ後常温時効を遅滞させた素材と腰鍛造に際して冷間
鍛造後に焼戻しを行なってから実用に供すれば、このよ
うな問題はなくなることを見出した。
[Problem to be Solved by the Invention 1] The present invention was made in view of the problems of conventional cold forged aluminum alloys as explained above, and as a result of repeated research, the present inventor has If we use a material that has been quenched from the beginning as the forging material, and if we use a material whose aging at room temperature is delayed after quenching, we can temper it after cold forging when we use it for waist forging, and then put it into practical use, this problem will disappear. I discovered that.

本発明者はこのような知見に基き、常温において1〜6
箇月の遅時効硬化性を有し、さらに、冷間鍛造後の焼戻
しによりHv100以上の高硬度が得られるAI  M
g Si系遅遅時効硬化型鍛造用アルミニウム合金小径
鋳造棒製造法を開発したのである。
Based on this knowledge, the present inventor has determined that 1 to 6
AI M has slow age hardenability of several months, and can obtain high hardness of Hv100 or more by tempering after cold forging.
We developed a method for producing small-diameter cast rods of aluminum alloys for g-Si-based slow age-hardening forging.

E問題点を解決するための手段1 本発明に係るAI  Mg  Si系遅遅時効硬化型鍛
造用アルミニウム合金小径鋳造棒製造法の特徴とすると
ころは、 Mg0.3〜0.8Illt%、Si0.40〜1.5
Illt%、Sn 0.01〜1.Ou+t%、Cu 
0.05〜1.Ou+L%、Ti 0.,001〜0.
10wt%、B 0.0001〜0.01111L%を
含有し、かつ、Si含有量をMg含有量より多くし、さ
らに、 Mn 1,0IIlt%以下、Cr 0.30wL%以
下、Zr 0.30wt%以下 のうちから選んだ1種或いは2種以上 を含有し、残部Alおよび不可避不純物よりなるアルミ
ニウム合金を、鋳造持550°Cの温度から常温までの
冷却速度を100’C/分以上としたことにある。
Means for Solving Problem E 1 The characteristics of the AI Mg Si-based slow age hardening aluminum alloy small diameter cast rod manufacturing method for forging according to the present invention are as follows: Mg0.3-0.8llt%, Si0.40 ~1.5
Illt%, Sn 0.01-1. Ou+t%, Cu
0.05-1. Ou+L%, Ti 0. ,001~0.
10wt%, B 0.0001 to 0.01111L%, and the Si content is greater than the Mg content, and furthermore, Mn is 1,0IIlt% or less, Cr is 0.30wL% or less, and Zr is 0.30wt%. An aluminum alloy containing one or more selected from the following, with the remainder being Al and unavoidable impurities, with a cooling rate of 100'C/min or more from a casting temperature of 550°C to room temperature. It is in.

本発明に係るAI  Mg  Si系遅時効硬化型鍛造
用アルミニウム合金小径鋳造棒の製造法(以下単に本発
明に係る製造法ということがある。)について詳細に説
明する。
The method for manufacturing an AI Mg Si-based slow age hardening aluminum alloy small diameter cast rod for forging according to the present invention (hereinafter sometimes simply referred to as the manufacturing method according to the present invention) will be described in detail.

先ず、本発明に係る製造法において使用するアルミニウ
ム合金の含有成分および成分割合について説明する。
First, the components and component ratios of the aluminum alloy used in the manufacturing method according to the present invention will be explained.

N旬は硬化元素であり、SiとMg2Siを形成して強
度を向上させ、一方焼入感受性を鋭敏にする元素であり
、含有量が0.3wt%未満では強度向上の効果が少な
く、また、0.&ut%を越えて含有されると焼入感受
性、冷間鍛造性を阻害し、かつ、Snと結合して遅時効
硬化性を阻害する。よって、Mg含有量は0.3〜0.
8wt%とする。
Nitrogen is a hardening element that improves strength by forming Si and Mg2Si, while increasing quenching sensitivity. If the content is less than 0.3 wt%, the effect of improving strength is small; 0. If the content exceeds &ut%, it will inhibit quenching sensitivity and cold forgeability, and will also combine with Sn to inhibit slow age hardenability. Therefore, the Mg content is 0.3 to 0.
It is set to 8wt%.

SiはMgと同様に硬化元素であり、Mg25iを形成
して強度を向上させる元素であり、含有量が0.40u
+t%未満では強度向上の効果がなく、また、1.5w
t%を越えて含有されると冷間鍛造性を阻害する。よっ
て、Si含有量は0.40〜1.5…L%とする。
Si is a hardening element like Mg, and is an element that improves strength by forming Mg25i, and the content is 0.40u.
If it is less than +t%, there is no effect of improving strength, and 1.5w
If the content exceeds t%, cold forgeability will be inhibited. Therefore, the Si content is set to 0.40 to 1.5...L%.

Snは遅時効硬化性を付与するための重要な元素であり
、含有量が0.01…L%未満では遅時効硬化性が充分
ではなく、また、1.Ou+t%を越えて含有されると
靭性を害するようになって冷間鍛造性を阻害する。よっ
て、Sn含有量は0.01〜1,0wt%とする。
Sn is an important element for imparting slow age hardenability, and if the content is less than 0.01...L%, the slow age hardenability is insufficient. If the content exceeds O+t%, the toughness will be impaired and cold forgeability will be inhibited. Therefore, the Sn content is set to 0.01 to 1.0 wt%.

CLIは強度向上に役立つ元素であり、含有量が0.0
5wt%未満ではこのような効果はなく、1.Ou+L
%を越える含有量では冷間鍛造性を害する。よって、C
u含有量は0.05〜1.OLI+L%とする。
CLI is an element that helps improve strength, and the content is 0.0
There is no such effect when the amount is less than 5 wt%, and 1. Ou+L
If the content exceeds %, cold forgeability will be impaired. Therefore, C
The u content is 0.05 to 1. Let OLI+L%.

Ti、Bは鋳造組織を微細化し、冷間鍛造性を向上させ
るが、一方焼入感受性をやや悪くする元素であり、含有
量がTi 0.001wt%未満、B 000001w
t%未満では微細化効果がなく、また、Ti0.10w
t%、および、B 0.01wt%を越える含有量では
夫々Alと巨大な金属間化合物を生成して冷間鍛造性を
害する。よって、Ti含有量は0.001〜0,10w
L%、B含有量は0.0001−0.01u+t%以下
とする。 上記説明したMg含有量とSi含有量との関
係は、si>Mgとしなければ、遅時効硬化性が発揮で
きなくなる。よって、Si含有量をMg含有量より多く
する。
Ti and B refine the casting structure and improve cold forgeability, but on the other hand, they are elements that slightly worsen quenching sensitivity, and the content is less than 0.001wt% for Ti and 000001w for B.
If it is less than t%, there is no refining effect, and if Ti0.10w
If the B content exceeds 0.01 wt% or 0.01 wt%, a huge intermetallic compound is formed with Al, impairing cold forgeability. Therefore, the Ti content is 0.001~0.10w
L% and B content shall be 0.0001-0.01u+t% or less. Regarding the relationship between the Mg content and the Si content as explained above, unless si>Mg, slow age hardening properties cannot be exhibited. Therefore, the Si content is made larger than the Mg content.

Mnは強度を付与する元素であり、含有量が1.01l
lt%を越えると冷間鍛造性を害するようになる。よっ
て、Mn含有量は1.OwL%以下とする。
Mn is an element that imparts strength, and the content is 1.01L
If it exceeds lt%, cold forgeability will be impaired. Therefore, the Mn content is 1. OwL% or less.

Cr、Zrは共に強度を向上させる元素であり、含有量
が夫々0,30ut%を越えるとAlと巨大金属間化合
物を生成し、冷間鍛造性を阻害するようになる。よって
、Cr含有量、Zr含有量は0.30u+t%以下とす
る。
Both Cr and Zr are elements that improve strength, and if their content exceeds 0.30 ut%, they form a giant intermetallic compound with Al, which impairs cold forgeability. Therefore, the Cr content and Zr content are set to 0.30u+t% or less.

次に、本発明に係る製造法における550°Cの温度か
ら常温までの焼入速度について説明する。
Next, the quenching rate from a temperature of 550°C to room temperature in the manufacturing method according to the present invention will be explained.

焼入速度は速い程高い強度が得られるものであり、即ち
、100℃/分未満の焼入速度では冷間鍛造後の焼戻し
により高い強度が得られなくなる。
The faster the quenching rate, the higher the strength. That is, if the quenching rate is less than 100° C./min, high strength cannot be obtained due to tempering after cold forging.

よって、焼入速度は100℃/分以上とすることにより
目標を満足する強度が得られる。
Therefore, by setting the quenching rate to 100° C./min or more, a strength that satisfies the target can be obtained.

[実施例1 本発明に係るAI  Mg  Si系遅遅時効硬化型鍛
造用アルミニウム合金小径鋳造棒製造法の実施例を説明
し、併せて比較例を説明する。
[Example 1] An example of the method for manufacturing an AI Mg Si-based slow age hardening aluminum alloy small diameter cast rod for forging according to the present invention will be described, and a comparative example will also be described.

実施例 第1表に示す含有成分および成分割合のアルミニウム合
金を常法に従って溶解鋳造し、30φの小径連続鋳造棒
および255mmφ連続鋳造塊とした。次いで、30φ
小径連続鋳造捧については、厚さ2mmの皮むきをした
後、また、255φ連続鋳造塊については30φ小径連
続鋳造棒の場合の寸法を合せて切出後、硬度測定による
遅時効硬化性、50%冷間鍛造性および冷間鍛造後のT
8硬度を測定した。
EXAMPLES Aluminum alloys having the components and proportions shown in Table 1 were melted and cast according to a conventional method to form small diameter continuously cast rods of 30 φ and continuously cast ingots of 255 mm φ. Next, 30φ
For small-diameter continuously cast rods, after peeling to a thickness of 2 mm, and for 255φ continuous cast ingots, after cutting them according to the dimensions of a 30φ small-diameter continuously cast rod, slow aging hardenability by hardness measurement, 50 % cold forgeability and T after cold forging
8 hardness was measured.

その結果を第2表に示す。The results are shown in Table 2.

この第2表から、本発明に係る製造法によるアルミニウ
ム合金の30φ小径連続鋳造棒は遅時効硬化を有し、冷
開鍛造性も良好で、かつ、冷開鍛造後の焼戻し後の硬度
ら)(vloO以上あり、製品硬度として満足するもの
であり、比較例に比し優れていることがわかる。
From this Table 2, it can be seen that the 30φ small-diameter continuously cast bar of aluminum alloy produced by the manufacturing method according to the present invention has slow aging hardening, good cold-open forging properties, and hardness after tempering after cold-open forging. (It is clear that the product hardness is more than vloO, which is satisfactory as a product hardness, and is superior to the comparative example.

[発明の効果1 以上説明したように、本発明に係るAl−Mg−8i系
遅時効硬化型鍛造用アルミニウム合金小径鋳造棒の製造
法は上記の構成であるから、製造されたアルミニウム合
金は冷間鍛造素材としてソーキングおよび焼入を省略す
ることができるという効果を有している。
[Effect of the invention 1 As explained above, since the method for manufacturing the Al-Mg-8i-based slow-age hardening aluminum alloy small-diameter cast rod for forging according to the present invention has the above configuration, the manufactured aluminum alloy is cooled. It has the effect that soaking and quenching can be omitted as an intermediate forging material.

Claims (1)

【特許請求の範囲】 Mg0.3〜0.8wt%、Si0.40〜1.5wt
%、Sn0.01〜1.0wt%、Cu0.05〜1.
0wt%、Ti0.001〜0.10wt%、B0.0
001〜0.01wt%を含有し、かつ、Si含有量を
Mg含有量より多くし、さらに、 Mn1.0wt%以下、Cr0.30wt%以下、Zr
0.30wt%以下 のうちから選んだ1種或いは2種以上 を含有し、残部Alおよび不可避不純物よりなるアルミ
ニウム合金を、鋳造時550℃の温度から常温までの冷
却速度を100℃/分以上としたことを特徴とするAl
−Mg−Si系遅時効硬化型鍛造用アルミニウム合金小
径鋳造棒の製造法。
[Claims] Mg0.3-0.8wt%, Si0.40-1.5wt%
%, Sn0.01-1.0wt%, Cu0.05-1.
0wt%, Ti0.001-0.10wt%, B0.0
001 to 0.01 wt%, and the Si content is greater than the Mg content, and furthermore, Mn is 1.0 wt% or less, Cr is 0.30 wt% or less, Zr
An aluminum alloy containing one or more selected from 0.30wt% or less, with the remainder being Al and unavoidable impurities, is cooled at a cooling rate of 100°C/min or more from a temperature of 550°C during casting to room temperature. Al characterized by
- A method for producing a small-diameter cast aluminum alloy rod for slow aging hardening of Mg-Si type forging.
JP1330686A 1986-01-24 1986-01-24 Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging Pending JPS62174356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330686A JPS62174356A (en) 1986-01-24 1986-01-24 Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330686A JPS62174356A (en) 1986-01-24 1986-01-24 Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging

Publications (1)

Publication Number Publication Date
JPS62174356A true JPS62174356A (en) 1987-07-31

Family

ID=11829496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330686A Pending JPS62174356A (en) 1986-01-24 1986-01-24 Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging

Country Status (1)

Country Link
JP (1) JPS62174356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113850A (en) * 1993-03-22 2000-09-05 Aluminum Company Of America 2XXX series aluminum alloy
EP2489755A4 (en) * 2009-10-16 2015-11-11 Showa Denko Kk Process for producing brake piston

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113850A (en) * 1993-03-22 2000-09-05 Aluminum Company Of America 2XXX series aluminum alloy
EP2489755A4 (en) * 2009-10-16 2015-11-11 Showa Denko Kk Process for producing brake piston

Similar Documents

Publication Publication Date Title
US4816087A (en) Process for producing duplex mode recrystallized high strength aluminum-lithium alloy products with high fracture toughness and method of making the same
EP0546103B1 (en) Improved lithium aluminum alloy system
JPH0372147B2 (en)
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
US4427627A (en) Copper alloy having high electrical conductivity and high mechanical characteristics
US3297497A (en) Copper base alloy
EP0156995B1 (en) Aluminum-lithium alloy (3)
JPH057460B2 (en)
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPS6283445A (en) High strength aluminum alloy for casting
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS62174356A (en) Manufacture of small-diameter cast bar of al-mg-si delayed age-hardening aluminum alloy for forging
JPH0447019B2 (en)
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPS62133050A (en) Manufacture of high strength and high conductivity copper-base alloy
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPS6410584B2 (en)
JPH0711363A (en) High strength and high conductivity copper alloy member and its production
US4069072A (en) Aluminum alloy
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JPS63103046A (en) Aluminum alloy for cold forging
JPH0759731B2 (en) Casting Al (Cu) -Mg high-strength aluminum alloy and method for producing the same
JPS60174845A (en) Aluminum alloy for forging having superior strength and cold forgeability
JPS63169353A (en) Aluminum alloy for forming and its production
JPS60138039A (en) Al-mg-si type delayed age hardening aluminum alloy for forging