JPS62172740A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPS62172740A
JPS62172740A JP1372786A JP1372786A JPS62172740A JP S62172740 A JPS62172740 A JP S62172740A JP 1372786 A JP1372786 A JP 1372786A JP 1372786 A JP1372786 A JP 1372786A JP S62172740 A JPS62172740 A JP S62172740A
Authority
JP
Japan
Prior art keywords
metal wiring
insulating film
film
layer metal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1372786A
Other languages
Japanese (ja)
Inventor
Hiroki Nakamura
浩樹 中村
Kimihisa Fushimi
伏見 公久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1372786A priority Critical patent/JPS62172740A/en
Publication of JPS62172740A publication Critical patent/JPS62172740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance insulating capability by a method wherein a first layer metal wiring is formed on an IC substrate, an insulating film is built by CVD and reactive ion etching to cover only the side walls of the first layer metal wiring, and an insulating film is formed by bias spattering to cover the entire surface. CONSTITUTION:A metal wiring 12 made of an Al-Si alloy is formed on an IC substrate 11 and, on the entire surface including the metal wiring 12, a PSG film 13 is formed by CVD. A process follows wherein reactive ion etching is performed for the etching of the PSG film 13, which continues against its entire surface until there is no PSG film 13 remaining on the horizontal surface of the IC substrate 11. After this process, some PSG film 13 is retained as side walls 13a on the sides of the metal wiring 12. Next, on the entire surface including the metal wiring 12 provided with the side walls 13a, an SiO2 film 14 is deposited by bias spattering. Another metal wiring is then formed on the SiO2 film 14. This method prevents the shoulders of the first metal wiring from exposure and improves the surface geometry of steps to be produced over the first metal wiring 12.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置における多層配線の形成方法に関
し、特に層間絶縁膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming multilayer wiring in a semiconductor device, and particularly to a method for forming an interlayer insulating film.

(従来の技術) 従来、半導体装置において、多層配線を形成する際の層
間絶縁膜形成方法には、バイアススフ4ツタリング法や
サイドウオールを形成した後にCVDを行う方法がある
(Prior Art) Conventionally, in a semiconductor device, methods for forming an interlayer insulating film when forming a multilayer wiring include a bias drop four-tuttering method and a method in which CVD is performed after forming a sidewall.

第2図にバイアススパッタリング法の工程を示す。まず
、IC基板1上に配線用金属(例えばM)をスフツタ法
などで蒸着し、続いてこれにホトリソ・エツチングを行
い第1層金属配線2を形成する(第2図(a))。次に
、適当な条件の下でバイアススパツタリング法により層
間絶縁膜3(例えば810、)を形成する(第2図(b
))。
FIG. 2 shows the steps of the bias sputtering method. First, a metal for wiring (for example, M) is vapor-deposited on the IC substrate 1 by a sifter method or the like, and then photolithography and etching are performed to form the first layer metal wiring 2 (FIG. 2(a)). Next, an interlayer insulating film 3 (for example, 810) is formed by bias sputtering under appropriate conditions (see FIG. 2(b)).
)).

第3図に、従来の他の方法である、サイドウオールを形
成した後にCVDを行う方法の工程を示す。まず、第2
図の方法と同様にしてIC基板1上に第1層金属配線2
を形成する(第3図(a))。
FIG. 3 shows the steps of another conventional method in which CVD is performed after forming a sidewall. First, the second
The first layer metal wiring 2 is placed on the IC board 1 in the same manner as in the method shown in the figure.
(Fig. 3(a)).

次に、CVDにより絶縁膜4(例えばPSG )を形成
しく第3図(b))、続いてIC基板1の水平面上の絶
縁膜4がなくなるまでリアクティブイオンエツチングに
よシ絶縁膜4をエツチングする。この時、リアクティブ
イオンエツチングの特性により・水平面上の絶縁膜4は
エツチングによってなくなるが、第1層金属配線2の側
面では多少膜厚が減少するものの側面に沿って絶縁膜4
がサイドウオール4aとして残る(第3図(c))。最
後に、もう一度、CVDにより絶縁膜5を形成する(第
3図(d))。
Next, an insulating film 4 (for example, PSG) is formed by CVD (FIG. 3(b)), and then the insulating film 4 is etched by reactive ion etching until the insulating film 4 on the horizontal surface of the IC substrate 1 is completely removed. do. At this time, due to the characteristics of reactive ion etching, the insulating film 4 on the horizontal plane is removed by etching, but the insulating film 4 is removed along the side surfaces of the first layer metal wiring 2, although the film thickness is slightly reduced.
remains as the sidewall 4a (FIG. 3(c)). Finally, the insulating film 5 is formed once again by CVD (FIG. 3(d)).

(発明が解決しようとする問題点) しかるに、第4図の円6内に示すように、バイアススパ
ッタリング法では、第1層金属配線2の肩の部分におけ
る層間絶縁膜3の厚さが不充分であり、あるいは同部分
が露出し、第1層金属配線2と第2層金属配線7がショ
ートするという欠点がある。
(Problems to be Solved by the Invention) However, as shown in circle 6 in FIG. Otherwise, there is a drawback that the same portion is exposed and the first layer metal wiring 2 and the second layer metal wiring 7 are short-circuited.

また、サイドウオールを形成した後にCVDを行う方法
では、第5図に示すように絶縁膜5(層間絶縁膜)に充
分な平担度が得られず、同図の円8内で示す絶縁膜5(
層間絶縁膜)の段差部で第2層金属配線7が断切れを起
こすという欠点がある。
In addition, in the method of performing CVD after forming the sidewall, as shown in FIG. 5, sufficient flatness cannot be obtained for the insulating film 5 (interlayer insulating film), and the insulating film shown in circle 8 in the figure 5(
There is a drawback that the second layer metal wiring 7 is broken at the stepped portion of the interlayer insulating film.

この発明は、以上述べたバイアススフ9ツタリング法に
おいて生じる眉間ショートと、サイドウオールを形成し
た後にCVDを行う方法において生じる第2層金属配線
の断線という欠点を除去し、絶縁性ならびに平担度の優
れた層間絶縁膜構造を有する多層配線の形成方法を提供
することを目的とする。
This invention eliminates the drawbacks of the short between the eyebrows that occurs in the bias 9-tuttering method described above and the disconnection of the second layer metal wiring that occurs in the method of performing CVD after forming the sidewall, and provides excellent insulation and flatness. An object of the present invention is to provide a method for forming a multilayer interconnection having an interlayer insulating film structure.

(問題点を解決するための手段) この発明では、IC基板上に第1層金属配線を形成した
後、CVDとリアクテイブイオンエツチングによって前
記第1層金属配線の側面にのみ絶縁膜のサイドウオール
を形成し、その後バイアススパッタリング法によシ全面
に絶縁膜を形成する。
(Means for Solving the Problems) In the present invention, after forming a first layer metal wiring on an IC substrate, a side wall of an insulating film is formed only on the side surface of the first layer metal wiring by CVD and reactive ion etching. After that, an insulating film is formed on the entire surface by bias sputtering method.

(作用) このような方法においては、絶縁膜のサイドウオールに
よシ、バイアススパッタリング法による眉間絶縁膜の欠
点であった第1層金属配線の肩の部分における絶縁膜不
足、または、同部分の露出が回避される。また、サイド
ウオール形成後、全面にバイアススパッタリング法によ
り絶縁膜を形成することによシ、表面段差が改善される
(Function) In this method, the sidewall of the insulating film is damaged, the insulating film is insufficient in the shoulder part of the first layer metal wiring, which was a drawback of the glabella insulating film by bias sputtering, or the insulating film in the same part is removed. Exposure is avoided. Further, after forming the sidewalls, an insulating film is formed on the entire surface by bias sputtering, thereby improving the surface level difference.

(実施例) 以下この発明の一′実施例を第1図を参照して説明する
(Embodiment) Hereinafter, a first embodiment of the present invention will be described with reference to FIG.

まず、IC基板11上に通常の方法によpht−81合
金の第1層金属配線12を6000λ程度の厚さで形成
する(第1図(a))。
First, a first layer metal wiring 12 made of PHT-81 alloy is formed to a thickness of about 6000λ on an IC substrate 11 by a conventional method (FIG. 1(a)).

続いて、その第1層金属配線12上を含む前記IC基板
11上の全面に、CVDにより、5000〜7000大
厚程度のPSG膜13を形成する(第1図(b))。
Subsequently, a PSG film 13 having a thickness of about 5000 to 7000 mm is formed on the entire surface of the IC substrate 11 including the first layer metal wiring 12 by CVD (FIG. 1(b)).

次に、リアクティブイオンエツチングによって、このP
SG膜13を、IC基板11水平面上のPSGI[13
がなくなるまで全面エツチングする(エツチング条件は
、C* F6/CHFI = 74/16 SCCM 
Next, by reactive ion etching, this P
The SG film 13 is attached to the PSGI [13
Etch the entire surface until it disappears (etching conditions are C* F6/CHFI = 74/16 SCCM
.

600mTorr 、 2KWで、レートは800A/
min程度)。
600mTorr, 2KW, rate 800A/
(about min).

この際、リアクティブイオンエツチングの特性により、
IC基板11水平面上のPSG膜13はエツチングによ
ってなくなるが、第1層金属配線12の側面では多少膜
厚が減少するものの側面に沿ってPSG膜13がサイド
ウオール13aとして残る(第1図(c))。
At this time, due to the characteristics of reactive ion etching,
The PSG film 13 on the horizontal surface of the IC substrate 11 is removed by etching, but the PSG film 13 remains as a sidewall 13a along the side surface of the first layer metal wiring 12, although the film thickness is somewhat reduced (see FIG. 1(c). )).

そして、このようにしてPSG膜(絶縁膜)のサイドウ
オール13at−形成したならば、次に、そのサイドウ
オール13aを有する第1層金属配線12上を含む前記
IC基板11上の全面に、再ス/IFツタ率が20〜4
0%になる条件下で・ぐイアススバッタリングを行って
、10000^厚程度のSing膜14(絶縁膜)を堆
積させる。ここで、再ス/センタ率が20〜40%にな
る条件とは、ここで用いた装置の場合、ソース側が直径
8インチの電極でソース電力IKW、  基板側が直径
10インチの電極で基板電圧が一200v〜−300V
 、雰囲気はArで0.4Paである。ただし、これら
のA?ラメータは装置構成に大きく依存する。
After the sidewall 13at- of the PSG film (insulating film) is formed in this way, the entire surface of the IC substrate 11 including the first layer metal wiring 12 having the sidewall 13a is re-formed. S/IF ivy rate is 20-4
A Sing film 14 (insulating film) having a thickness of about 10,000^ is deposited by performing bias scattering under the condition of 0%. Here, the conditions for the res/center ratio to be 20 to 40% are as follows: In the case of the device used here, the source side has an 8-inch diameter electrode and the source power is IKW, and the substrate side has a 10-inch diameter electrode and the substrate voltage is -200v~-300V
, the atmosphere was Ar and 0.4 Pa. However, these A? The parameters are highly dependent on the device configuration.

その後、図示しないがStO,膜14上に第2層金属配
線を形成する。
Thereafter, although not shown, a second layer metal wiring is formed on the StO film 14.

(発明の効果) 以上詳細に説明したように、この発明の方法によれば、
第1層金属配線の側面に絶縁膜のサイPウオールを形成
したことにより、バイアスス・Iツタリング法による層
間絶縁膜の欠点であった第1層金属配線の肩の部分にお
ける絶縁膜の不足、または、同部分の露出を回避でき、
絶縁性の向上が期待できる。したがって、層間ショート
をなくし得る。また、サイドウオールを形成した後にバ
イアススノ譬ツタリング法により全面に絶縁膜を形成し
たので、サイドウオール形成後にCVDを行う方法の欠
点であった表面段差も大幅に改善され、第2層金属配線
の断線を抑える効果が期待できる。
(Effect of the invention) As explained in detail above, according to the method of this invention,
By forming a P-wall of an insulating film on the side surface of the first layer metal wiring, the lack of insulation film at the shoulder part of the first layer metal wiring, which was a drawback of the interlayer insulation film using the Bias I Tsuttering method, or , exposure of the same area can be avoided,
It can be expected to improve insulation properties. Therefore, interlayer short circuits can be eliminated. In addition, since the insulating film was formed on the entire surface by the bias snow splattering method after forming the sidewall, the surface level difference, which was a drawback of the method of performing CVD after forming the sidewall, was greatly improved, and the disconnection of the second layer metal wiring was improved. It can be expected to have the effect of suppressing

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の多層配線の形成方法の一実施例を示
す工程断面図、第2図および第3図はそれぞれ従来の方
法を示す工程断面図、第4図および第5図はそれぞれ従
来の方法による欠点を説明するための断面図である。 11・・・IC基板、12・・・第1層金属配線、13
・・・PSG膜、13a・・・サイドウオール、14・
・・Sin。 膜O 第1図 $//フイ貞ヒ来ラテう云iフコニオ![’f@昏口第
2図 第3図
FIG. 1 is a process sectional view showing an embodiment of the method for forming a multilayer wiring according to the present invention, FIGS. 2 and 3 are process sectional views showing a conventional method, and FIGS. FIG. 3 is a sectional view for explaining the drawbacks of the method. 11... IC board, 12... First layer metal wiring, 13
...PSG film, 13a...side wall, 14.
...Sin. Membrane O Figure 1 $// It's a latte! ['f@Kakuchi Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (a)IC基板上に第1層金属配線を形成する工程と、 (b)その後、CVDとリアクテイブイオンエツチング
によつて前記第1層金属配線の側面にのみ絶縁膜のサイ
ドウォールを形成する工程と、 (c)その後、バイアススパツタリング法により、前記
第1層金属配線上を含む前記基板上の全面に絶縁膜を形
成する工程と、 (d)その絶縁膜上に第2層金属配線を形成する工程と
を具備することを特徴とする多層配線の形成方法。
[Scope of Claims] (a) A step of forming a first layer metal wiring on an IC substrate; (b) After that, an insulating film is formed only on the side surface of the first layer metal wiring by CVD and reactive ion etching. (c) Thereafter, a step of forming an insulating film on the entire surface of the substrate including on the first layer metal wiring by a bias sputtering method; (d) the insulating film. 1. A method for forming a multilayer wiring, comprising the step of forming a second layer metal wiring thereon.
JP1372786A 1986-01-27 1986-01-27 Formation of multilayer interconnection Pending JPS62172740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372786A JPS62172740A (en) 1986-01-27 1986-01-27 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372786A JPS62172740A (en) 1986-01-27 1986-01-27 Formation of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPS62172740A true JPS62172740A (en) 1987-07-29

Family

ID=11841274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372786A Pending JPS62172740A (en) 1986-01-27 1986-01-27 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS62172740A (en)

Similar Documents

Publication Publication Date Title
JPH0685074A (en) Manufacture of multilayer interconnection conductor pattern
JPH01130529A (en) Etching-back of tungsten on titanium/titanium nitride layer
JP2821623B2 (en) Method for manufacturing semiconductor device
JPS62172740A (en) Formation of multilayer interconnection
JP3371170B2 (en) Method for manufacturing semiconductor device
JP3033171B2 (en) Method for manufacturing semiconductor device
JPH05121378A (en) Method of manufacturing semiconductor device
JP2702010B2 (en) Method for manufacturing semiconductor device
JPH0536839A (en) Manufacture of semiconductor device
JPS61228655A (en) Forming method for multilayer interconnection
JPH04102331A (en) Manufacture of semiconductor device
JP2783898B2 (en) Method for manufacturing semiconductor device
JPS59214228A (en) Manufacture of semiconductor device
JPS5966125A (en) Manufacture of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPS5957456A (en) Manufacture of semiconductor device
JPH0235731A (en) Manufacture of semiconductor device
JPS62261153A (en) Manufacture of semiconductor device
JP3964903B2 (en) Semiconductor device and manufacturing method thereof
JPH07326668A (en) Manufacture of semiconductor device
JP2003264228A (en) Method of manufacturing semiconductor device
JPH09321141A (en) Manufacture of semiconductor device
JP2000133706A (en) Semiconductor device and its manufacture
JPH04102321A (en) Manufacture of semiconductor device
JPH07106325A (en) Manufacture of semiconductor device