JPS62172000A - Single crystal growth of ii-vi compound - Google Patents

Single crystal growth of ii-vi compound

Info

Publication number
JPS62172000A
JPS62172000A JP1423286A JP1423286A JPS62172000A JP S62172000 A JPS62172000 A JP S62172000A JP 1423286 A JP1423286 A JP 1423286A JP 1423286 A JP1423286 A JP 1423286A JP S62172000 A JPS62172000 A JP S62172000A
Authority
JP
Japan
Prior art keywords
temperature
zone
crystal
growth
ampoule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1423286A
Other languages
Japanese (ja)
Other versions
JPH0369880B2 (en
Inventor
Tomoji Yamagami
山上 智司
Yoshitaka Tomomura
好隆 友村
Masahiko Kitagawa
雅彦 北川
Shigeo Nakajima
中島 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1423286A priority Critical patent/JPS62172000A/en
Publication of JPS62172000A publication Critical patent/JPS62172000A/en
Publication of JPH0369880B2 publication Critical patent/JPH0369880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:In the production of II-VI compound single crystals by the halogen- carrying method or sublimation method, the temperature and the pulling-up rate of the ampoule for crystal growth are appropriately controlled to enable the growth of high-quality bulk single crystals with a well controlled shape. CONSTITUTION:The starting materials 7 and a seed crystal 9 are placed in a quartz ampoule 6 on the opposite ends, respectively and a carrier gas is also charged in, when the halogen-carrying method is applied. A temperature distribution 10 which is composed of the high-temperature zone (T2') 11, the low-temperature zone (T1') and the interim temperature-gradient zone 13 is realized in a upright heater, and the temperature at the interim zone 13 is set to the crystal-growth temperature so that the crystal grows in this zone. The ampoule 6 is inserted into the high-temperature zone and pulled up at a speed v in a range of 0.1-20mm/day. Thus, as the seed crystal 9 moves up through the temperature-gradient zone 13, bulk single crystals 8 of II-VI compound such as zinc sulfide or zinc selenide of arbitrary lengths grown on the seed crystal 9 in a certain plane 14 whose temperature can be regarded as to be kept constant substantially.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ハロゲンによる化学輸送法(ハロゲン輸送法
)あるいは昇華再結晶法(昇華法)を用いたII−VI
族化合物(ZnS、Zn5e等)のバルク単結晶成長法
に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the II-VI
This invention relates to a method for growing bulk single crystals of group compounds (ZnS, Zn5e, etc.).

(従来の技術〉 ZnS、Zn5e等のII−VI族化合物は、そのエネ
ルギーバンド・ギャップが紫外から青色領域に対応する
ため、可視短波長(緑色・青色)から紫外域での光電変
換材料として有用な半導体材料であり、SiC,GaN
等を含めてもいまだに十分に実用性のあるデバイス化が
実現していない青色発光ダイオード材料としても本質的
に高効率発光が可能である。可視発光ダイオードが家庭
電気、産業機器、情報機器等の産業上に占める重要性が
ますます増大する今日、これらの■−■族化合物の良質
結晶の成長とデバイス化の実現は極めて大きい産業上の
意味を持つ。
(Prior technology) II-VI group compounds such as ZnS and Zn5e are useful as photoelectric conversion materials in the visible short wavelength (green/blue) to ultraviolet range because their energy band gap corresponds to the ultraviolet to blue region. It is a semiconductor material such as SiC, GaN
It is essentially possible to emit light with high efficiency even as a blue light emitting diode material, which has not yet been realized as a sufficiently practical device. Today, as visible light-emitting diodes are becoming more and more important in industries such as home appliances, industrial equipment, and information equipment, the growth of high-quality crystals of these ■-■ group compounds and the realization of devices will be an extremely important industrial goal. have meaning.

第2図(イ)、(ロ)に図式的に示すように、ZnS。As schematically shown in FIGS. 2(a) and 2(b), ZnS.

Zn5e等の■−■族化合物のハロゲン輸送法あるいは
昇華法を用いたバルク単結晶の成長法では、従来、平坦
部とそれに続く緩やかに減少する自然温度勾配を持つ温
度分布(第2図(イ)の5)あるいは、低、高の二つの
温度T1.Ttが定められた温度分布(第2図(ロ)の
5)を有する加熱炉中で、石英製の結晶成長容器(アン
プル)1中に設置された原料部分2と種結晶部分4の温
度を設定して、単結晶3を種結晶4からまたはアンプル
の先端から成長させる。なお、第2図(イ)、(ロ)は
、それぞれ、縦型加熱炉と横型加熱炉を用いる場合を示
す。
In bulk single crystal growth methods using the halogen transport method or sublimation method for ■-■ group compounds such as Zn5e, conventionally, a temperature distribution with a flat area followed by a gradually decreasing natural temperature gradient (Fig. ) or 5) or two temperatures T1.), low and high. In a heating furnace having a temperature distribution with a determined Tt (5 in Figure 2 (b)), the temperature of the raw material part 2 and the seed crystal part 4 placed in a crystal growth container (ampule) 1 made of quartz is controlled. Set up, a single crystal 3 is grown from the seed crystal 4 or from the tip of the ampoule. Note that FIGS. 2(a) and 2(b) show cases in which a vertical heating furnace and a horizontal heating furnace are used, respectively.

(発明の解決しようとする問題点) ■−■族化合物のハロゲン輸送法あるいは昇華法による
単結晶成長技術の現在の水準では、成長する結晶のフロ
ントは一意的に定まらず、すなわち異なる温度の場所で
の成長が同時に進行することあるいは、異なる方位の面
」−での成長が同時に進行することがある。したがって
、成長する結晶の形状は、単結晶が得られる場合におい
ても、アンプルの形状のわずかな違いや仕込条件のわず
かな変化とそれらにより生ずるアンプル管内の対流の影
響を反映して、成長実行毎に任意の面が勝手な方向に発
達した制御されない形状を呈し、しかもこの結果として
、単結晶の寸法も最大でも10〜15mm程度に留まっ
ている。いいかえれば、デバイス製作用あるいは単結晶
成長基板用として用い得る水準の高品質かつ十分な寸法
の結晶を得る技術は確立されていない。例えば、エピタ
キシャル成長用基板としては、特殊な用途を除いては、
ZnS、Zn5e等にとっては、不純物として作用する
元素を含むため不利なGaAs 、GaP等を用いざる
を得ないのが現状である。このことは、ZnS、Zn5
e等の物性制御の上で重要な要因である高純度化、低欠
陥密度化を目指す現在のデバイス化を含めた研究開発に
おいて極めて重大な問題となっている。
(Problems to be Solved by the Invention) With the current level of single crystal growth technology using the halogen transport method or sublimation method for ■-■ group compounds, the front of the growing crystal is not uniquely determined, that is, locations at different temperatures. Growth may occur at the same time, or growth may occur at the same time in different oriented planes. Therefore, even when a single crystal is obtained, the shape of the growing crystal changes with each growth run, reflecting slight differences in the shape of the ampoule, slight changes in the preparation conditions, and the effects of convection within the ampoule tube. It exhibits an uncontrolled shape in which arbitrary planes develop in arbitrary directions, and as a result, the size of the single crystal remains at the maximum of about 10 to 15 mm. In other words, no technology has been established for obtaining crystals of high quality and sufficient size that can be used for device fabrication or single crystal growth substrates. For example, as a substrate for epitaxial growth, except for special uses,
Currently, it is necessary to use GaAs, GaP, etc., which are disadvantageous for ZnS, Zn5e, etc. because they contain elements that act as impurities. This means that ZnS, Zn5
This has become an extremely important problem in current research and development, including device development, which aims to achieve high purity and low defect density, which are important factors in controlling physical properties such as e.

本発明は、」二記の点に鑑みてなされたものであり、そ
の目的は、石英アンプル中でのII−VI族化合物のハ
ロゲン輸送法および昇華法による成長法において従来方
法が有する限界と欠点を除去し、高品質の十分な寸法を
持つ形状の制御されたバルク単結晶を成長させる方法を
提供することである。
The present invention has been made in view of the above two points, and its purpose is to overcome the limitations and drawbacks of conventional methods of growing II-VI group compounds in quartz ampoules by halogen transport and sublimation. It is an object of the present invention to provide a method for growing bulk single crystals of high quality, of sufficient size, and of controlled shape.

(問題点を解決するための手段) 本発明に係る■−■族化合物の単結晶は、ハロゲン輸送
法あるいは昇華法を用いた気相成長法において、結晶成
長フロントが位置するように温度を制御し、かつ所定の
温度勾配に制御した狭い結晶成長ゾーン中に、原料を一
端に配置した結晶成長用アンプルを所定の牽引速度に制
御して移動させることを特徴とする。
(Means for Solving the Problems) The single crystal of the ■-■ group compound according to the present invention is produced by controlling the temperature so that the crystal growth front is located in a vapor phase growth method using a halogen transport method or a sublimation method. The present invention is characterized in that a crystal growth ampoule with a raw material placed at one end is moved at a predetermined pulling speed into a narrow crystal growth zone controlled to a predetermined temperature gradient.

(作 用) 本発明の単結晶成長法の特徴は、ハロゲン輸送法および
昇華法を用いて■−■族化合物のバルク単結晶を成長さ
せる際、加熱炉内の温度分布において結晶成長化部分を
急勾配を有する温度傾斜とすることおよび結晶成長アン
プルを一定速度で牽引することである。さらに具体的に
は、石英アンプル中に設置したもしくは自然核発生によ
り生成した種結晶から成長する際に、小さな温度差でし
かも急勾配を持つ温度傾斜部を利用することにより、温
度分布(傾斜部)の一点即ちほぼ等温と見なせる一定の
平面内のみでの結晶の成長が可能であるようにした上で
、一定のあるいは段階的に変化させた速度でアンプルを
移動させることにより結晶成長フロントを上記の一定温
度の点を通過させて、温度分布あるいはアンプル形状等
に依存せず一定の形で定常的に単結晶化させることによ
って、はぼアンプルの断面状の切断面を持つ任意の長さ
のバルク単結晶を得る成長法を具現させたことにある。
(Function) A feature of the single crystal growth method of the present invention is that when growing a bulk single crystal of a ■-■ group compound using a halogen transport method and a sublimation method, the crystal growth portion is controlled in the temperature distribution in the heating furnace. The two methods are to provide a steep temperature gradient and to pull the crystal growth ampoule at a constant speed. More specifically, when growing from a seed crystal placed in a quartz ampoule or generated by natural nucleation, the temperature distribution (slope part ), that is, within a fixed plane that can be considered almost isothermal, and then by moving the ampoule at a fixed or stepwise speed, the crystal growth front can be grown as described above. By passing through a constant temperature point and steadily forming a single crystal in a constant shape regardless of temperature distribution or ampoule shape, we can create crystals of arbitrary length with a cross-sectional surface similar to that of the ampoule. The goal is to realize a growth method for obtaining bulk single crystals.

(実施例) 以下、本発明の実施例を第1図によって説明する。(Example) Embodiments of the present invention will be described below with reference to FIG.

石英製の結晶成長容器(アンプル)6内の両端に、原料
7および種結晶9を充填する(ハロゲン輸送法では、輸
送ガスも封入する。)。縦型加熱炉内に高温部(温度T
、″)11、低温部(温度T、°)および中間の温度傾
斜部I3からなる温度分布10を実現させる。温度傾斜
部13の温度は、結晶が成長する温度に設定する。いい
かえれば、温度傾斜部13は結晶成長ゾーンである。T
t’とT I’との温度差へTは小さくし、しかも、温
度傾斜部13では約り℃/cm以上の急勾配へT/ΔX
を持たせる。
A raw material 7 and a seed crystal 9 are filled at both ends of a crystal growth container (ampule) 6 made of quartz (in the halogen transport method, a transport gas is also enclosed). There is a high temperature section (temperature T
,'') 11, a temperature distribution 10 consisting of a low temperature part (temperature T, °) and an intermediate temperature gradient part I3 is realized.The temperature of the temperature gradient part 13 is set to a temperature at which crystals grow.In other words, the temperature The inclined portion 13 is a crystal growth zone.T
The temperature difference between t' and T I' is made small, and T/ΔX is made so that the temperature gradient part 13 has a steep slope of approximately ℃/cm or more.
to have.

そして、アンプル6を、高温部10に挿入する。Then, the ampoule 6 is inserted into the high temperature section 10.

次に、一定のあるいは段階的に変化させた0、1〜20
mm/dayの一定牽引速度■でアンプル6を上方向へ
牽引して移動させる。種結晶9が温度傾斜部13内を上
方に移動するにつれ、温度傾斜部13の一点14すなわ
ちほぼ等温とみなせる一定の平面内で結晶が成長してい
く。この点が結晶成長フロント8Aになる。換言すれば
、結晶成長フロント8Aが温度傾斜部13の一点14に
常時位置するように制御する。このようにして、アンプ
ル6を上方向に移動させていくと、はぼアンプル6の内
周面の外形を有し、任意の長さを有するバルク単結晶8
が成長していく。
Next, a constant or stepwise change of 0, 1 to 20
The ampoule 6 is pulled upward at a constant pulling speed of mm/day. As the seed crystal 9 moves upward within the temperature gradient section 13, the crystal grows at a point 14 of the temperature gradient section 13, that is, within a fixed plane that can be considered to be approximately isothermal. This point becomes the crystal growth front 8A. In other words, the crystal growth front 8A is controlled to be always located at one point 14 of the temperature gradient section 13. In this way, as the ampoule 6 is moved upward, a bulk single crystal 8 having the outer shape of the inner circumferential surface of the ampoule 6 and having an arbitrary length.
is growing.

本成長法においては、加熱炉が垂直配置の場合において
も、水平配置の場合においても、成長結晶の制御性にお
いて同等の効果と生産性を有する。
This growth method has the same effect and productivity in terms of controllability of grown crystals whether the heating furnace is vertically arranged or horizontally arranged.

また、アンプルと炉は相対的にいずれかを移動させる。Also, the ampoule and the furnace are moved relative to each other.

アンプル口径およびアンプル長を実用的に任意に選び、
充填原料を所望の量として温度勾配とアンプル牽引速度
に所定の値に設定することにより、一定の定常的成長条
件下で任意の口径と長さを有する高品位かつ均質なZn
S、Zn5e等の■−■族化合物バルク単結晶を高い生
産性をもって成長させることができる。
Select the ampoule diameter and ampoule length as desired for practical purposes.
By setting the temperature gradient and ampoule drawing speed to predetermined values with the desired amount of filling material, high-grade and homogeneous Zn with arbitrary diameter and length can be produced under constant steady growth conditions.
It is possible to grow bulk single crystals of ■-■ group compounds such as S and Zn5e with high productivity.

(発明の効果) 第1図 本発明により、II−VI族化合物のデバイス用結晶お
よびエピタキシャル基板用結晶を供給することが可能と
なる。
(Effects of the Invention) FIG. 1 The present invention makes it possible to supply device crystals and epitaxial substrate crystals of II-VI group compounds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のハロゲン輸送法あるいは昇華法によ
る成長法の概略図である。 第2図(イ)、(ロ)は、それぞれ、ハロゲン輸送法お
よび昇華法によI)結晶成長させる場合に従来用いられ
てきた成長法の概略図である。 6・・・結晶成長用アンプル、   7・・・原料、訃
・・成長結晶、9・・・種結晶、10・・・温度分布、
11・・・高温部、12・・・低温部、13・・・温度
傾斜部。
FIG. 1 is a schematic diagram of the growth method using the halogen transport method or sublimation method of the present invention. FIGS. 2(a) and 2(b) are schematic diagrams of the conventional growth methods used in I) crystal growth by halogen transport method and sublimation method, respectively. 6... Ampoule for crystal growth, 7... Raw material, Grain... Growing crystal, 9... Seed crystal, 10... Temperature distribution,
11...High temperature section, 12...Low temperature section, 13...Temperature gradient section.

Claims (1)

【特許請求の範囲】[Claims] (1)II−VI族化合物単結晶のハロゲン輸送法あるいは
昇華法を用いた気相成長法において、結晶成長フロント
が位置するように温度を制御し、かつ所定の温度勾配に
制御した狭い結晶成長ゾーン中に、原料を一端に配置し
た結晶成長用アンプルを所定の牽引速度に制御して移動
させることを特徴とするII−VI族化合物の単結晶成長法
(1) In a vapor phase growth method using a halogen transport method or a sublimation method for II-VI group compound single crystals, narrow crystal growth is performed by controlling the temperature so that the crystal growth front is located and controlling it to a predetermined temperature gradient. A method for growing a single crystal of a Group II-VI compound, which comprises moving a crystal growth ampoule with a raw material placed at one end in a zone while controlling it at a predetermined traction speed.
JP1423286A 1986-01-24 1986-01-24 Single crystal growth of ii-vi compound Granted JPS62172000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1423286A JPS62172000A (en) 1986-01-24 1986-01-24 Single crystal growth of ii-vi compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1423286A JPS62172000A (en) 1986-01-24 1986-01-24 Single crystal growth of ii-vi compound

Publications (2)

Publication Number Publication Date
JPS62172000A true JPS62172000A (en) 1987-07-28
JPH0369880B2 JPH0369880B2 (en) 1991-11-05

Family

ID=11855325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1423286A Granted JPS62172000A (en) 1986-01-24 1986-01-24 Single crystal growth of ii-vi compound

Country Status (1)

Country Link
JP (1) JPS62172000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922041A (en) * 2009-06-10 2010-12-22 硅电子股份公司 The drawing method of silicon single-crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129694A (en) * 1973-04-04 1974-12-12
JPS59164695A (en) * 1983-03-10 1984-09-17 Matsushita Electric Ind Co Ltd Preparation of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129694A (en) * 1973-04-04 1974-12-12
JPS59164695A (en) * 1983-03-10 1984-09-17 Matsushita Electric Ind Co Ltd Preparation of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922041A (en) * 2009-06-10 2010-12-22 硅电子股份公司 The drawing method of silicon single-crystal

Also Published As

Publication number Publication date
JPH0369880B2 (en) 1991-11-05

Similar Documents

Publication Publication Date Title
US4999082A (en) Process for producing monocrystalline group II-IV or group III-V compounds and products thereof
Isshiki et al. Wide-bandgap II-VI semiconductors: growth and properties
US4866007A (en) Method for preparing single-crystal ZnSe
JPS6037076B2 (en) Temperature liquid phase growth method for Group 3-6 compound semiconductors
CN109576777A (en) Crystal growth double crucible and crystal growth technique
JPS62172000A (en) Single crystal growth of ii-vi compound
KR101530349B1 (en) The insulation structure for a sapphire single crystal growth
CN209537670U (en) Crystal growth double crucible
JPS63156095A (en) Liquid phase epitaxy of sic single crystal
JP3231050B2 (en) Compound semiconductor crystal growth method
JPH05319998A (en) Production of single crystal silicon carbide
CN209194104U (en) A kind of oval heater for sapphire crystallization
JP2585629B2 (en) ZnSe single crystal preparation method
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
JPS6185822A (en) Liquid epitaxial growth process of sic single crystal
JPS62197388A (en) Method and device for producing semiconductor single crystal
JPS63271982A (en) Light emitting element and manufacture thereof
JPH0631192B2 (en) Method and apparatus for manufacturing semiconductor single crystal
JP2563781B2 (en) Method for manufacturing compound semiconductor thin film
JPS627693A (en) Device for growing compound semiconductor single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH09249479A (en) Method for growing compound semiconductor single crystal
JPH02239179A (en) Method for growing semiconductor crystal
JP2002241199A (en) METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL
JPH04348086A (en) Liquid phase epitaxy