JPS6185822A - Liquid epitaxial growth process of sic single crystal - Google Patents

Liquid epitaxial growth process of sic single crystal

Info

Publication number
JPS6185822A
JPS6185822A JP59208702A JP20870284A JPS6185822A JP S6185822 A JPS6185822 A JP S6185822A JP 59208702 A JP59208702 A JP 59208702A JP 20870284 A JP20870284 A JP 20870284A JP S6185822 A JPS6185822 A JP S6185822A
Authority
JP
Japan
Prior art keywords
melt
single crystal
substrate
type
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59208702A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59208702A priority Critical patent/JPS6185822A/en
Publication of JPS6185822A publication Critical patent/JPS6185822A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To grow red and blue color light emitting element by means of changing the temperature of Si melt containing Al and N as impurity or light emitting element. CONSTITUTION:A crucible 11 made of high purity graphite is filled with Si melt 13 to immerse a 6HSiC single crystal substrate 1 in the melt 13. Firstly an n type layer 2 is grown on the substrate 1 by means of immersing the substrate 1 in the Si melt 13 respectively doped with 3.5X10<-4>wt% of n and 0.074wt% of Al to be held at 1,450 deg.C-1,520 deg.C. Secondly a p type layer 3 is grown by means of immersing the substrate 1 with the n type layer 2 grown thereon in the Si melt 13 containing 2.54wt% of Al to be held at 1,450 deg.C-1,520 deg.C. Through these procedures, an SiC red color light emitting element is produced. Besides, blue color with light emitting peak at around 460mum may be emitted by means of raising the temperature of Si melt up to 1,600 deg.C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は8 io(シリコンカーバイド)単結晶の液相
エピタキシャル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for liquid phase epitaxial growth of 8 io (silicon carbide) single crystal.

(ロ)従来の技術 境在SiC単結晶は耐壌境性素子材判として研究が進め
られている。まft−Si(3は間接スα移型のIV−
IV化合物であり、檎々の結晶構造が存在しその禁止帯
幅は2.39〜3,33eVまで多岐にわたると共にP
−n接合形成が可能なことから赤色から青色まで全ての
可視光を発光可能な発光ダイオード材料として有望視さ
れている。
(b) Conventional technology SiC single crystal is being researched as a soil-resistant element material. Maft-Si (3 is indirect su α transfer type IV-
It is a IV compound, and has various crystal structures with a wide range of forbidden band widths from 2.39 to 3,33 eV.
Since it is possible to form -n junctions, it is seen as a promising light-emitting diode material that can emit all visible light from red to blue.

上述した如(Sioは種々の結晶構造を有しており、そ
の構造を大別するとα型とβ型とに分けられる。なかで
もα型の6n(ヘキサゴナール)タイプ及びβ型の3(
3(キュービック)タイプは再現性良(成長させること
ができる。
As mentioned above, Sio has various crystal structures, and the structures can be roughly divided into α type and β type. Among them, the α type 6n (hexagonal) type and the β type 3 (
Type 3 (cubic) has good reproducibility (can be grown).

例えば、N(窒素)及びムl(アルミニウム)を不純物
として含む6HタイプSi0単結晶は青色発光素子材料
に適し、まfcB(ホウ素)を不純物として含む6Hタ
イプSiC単結晶は赤色発光素子材料に適している( 
J、Electrochem。
For example, a 6H type Si0 single crystal containing N (nitrogen) and mulch (aluminum) as impurities is suitable for a blue light emitting element material, and a 6H type SiC single crystal containing fcB (boron) as an impurity is suitable for a red light emitting element material. ing(
J, Electrochem.

Sac、:80LID−8’l’ATE 8CIENC
E AND TE(iHNOLO(jY、Februa
ry  1977、P241〜P246ン。
Sac, :80LID-8'l'ATE 8CIENC
E AND TE(iHNOLO(jY, February
ry 1977, P241-P246.

(/i  発明が解決しようとする問題点然るにこのよ
うに青色発光素子材料と赤2S発元素子材料とで不純物
が異なると、例えば高純度グラフ1イトからなるるりは
中膠こSiCメルトを収納し、基板を斯るメルト中に浸
漬して上記基板上にSac単結晶を成長せしめる液相エ
ピタキシャル成長方法を用いて上記各素子を製造する場
合、各素子毎に不純物が異なるメルトを準備しなければ
ならないという問題があった。
(/i Problems to be Solved by the Invention However, if the impurities are different between the blue light-emitting element material and the red 2S light-emitting element material, for example, Ruri made of high-purity graphite contains medium glue and SiC melt. However, when manufacturing each of the above devices using a liquid phase epitaxial growth method in which a substrate is immersed in such a melt and a SAC single crystal is grown on the substrate, a melt containing different impurities must be prepared for each device. The problem was that it didn't.

に)問題点を解決するための手段 本発明は斯る点に鑑みてなされたもので、従来6■タイ
プSiCからなる青色発光素子の不純物として用いられ
ていfcN及びムlを不純物とした際赤色発光素子材料
として最適となるSiC単結晶の液相エピタキシャル成
長方法を提供せんとするもので、その構成的特徴は6R
タイプSi0単結晶基板を高純度グツファイト製るつぼ
中に収納場れたSiメルト中に浸漬することにより上記
基板上にSiC単結晶を成長せしめるに際して、上記8
Iメルトの成長温glを1450°C〜1520°Cと
したことにある。
B) Means for Solving the Problems The present invention has been made in view of the above-mentioned problems. Conventionally, when fcN and mul are used as impurities in a blue light-emitting element made of type 6 SiC, red light is emitted. The purpose of this project is to provide a liquid phase epitaxial growth method for SiC single crystals that is optimal as a light emitting device material, and its structural features are 6R.
When growing a SiC single crystal on a type Si0 single crystal substrate by immersing it in Si melt housed in a crucible made of high-purity gutsphite, the above 8.
The reason is that the growth temperature gl of the I-melt is set to 1450°C to 1520°C.

(ホ)作 用 このような成長方法では、6nsic単結晶基板上に3
CタイプSiC単結晶が成長する。また斯る6Cタイプ
SiC単結晶はN及びAlを夫々n型及びp型の不純物
とすると赤色発光素子の好適な材料となる。尚、Siメ
ルトの成長@農が1450°C以下となるとSiが析出
しSiC単結晶が成長せず、ま&1520°C以上とな
ると6HタイプSiC単結晶が成長する。
(e) Effect In this growth method, 3
A C type SiC single crystal is grown. Further, such a 6C type SiC single crystal becomes a suitable material for a red light emitting device when N and Al are used as n-type and p-type impurities, respectively. Note that when the growth temperature of the Si melt is below 1450°C, Si precipitates and no SiC single crystal grows, and when the temperature is above 1520°C, a 6H type SiC single crystal grows.

(へ)実施例 第1図は本発明を用いて製造されたSiC赤色発光素子
を示し、(1)F16 knタイプSiC単結晶からな
るn型基板、(2)は該基板上に積和された3Cタイプ
SiCからなるn型層であり、該層はドーパントとして
N及び発光中心としての微量のAlを含み、約5XIQ
/dのキャリア濃度を有する。(3)は上記n型h(2
)上に積層された30タイプSiCからなるP型層であ
り、該りはドーパントとしてAlを含み、約5X10 
 /dのキャリア濃度を有する。
(f) Example Figure 1 shows a SiC red light emitting device manufactured using the present invention, in which (1) an n-type substrate made of F16 kn type SiC single crystal; It is an n-type layer made of 3C type SiC, which contains N as a dopant and a trace amount of Al as a luminescent center, and has an approximately 5XIQ
It has a carrier concentration of /d. (3) is the n-type h(2
) is a P-type layer consisting of 30 type SiC laminated on top, which contains Al as a dopant and has a thickness of approximately 5×10
It has a carrier concentration of /d.

次に上記各層の成長方法について説明する。Next, a method for growing each of the above layers will be explained.

第2図は8 ic単結晶成長に用いる液相エピタキシャ
ル成長装置を示し、OLは高純度グラフ1イトからなる
るつは、■は!&(1)を一端に保持する基板保持具で
あり、上記るつは(1)i中に8鳳メルトa3を収納し
、斯るメルト似・中に上記基板(1)を浸漬することに
より基板上に8 iC単結晶が成長する。
Figure 2 shows a liquid phase epitaxial growth apparatus used for 8 IC single crystal growth, and the OL is made of high-purity graphite. & (1) is a substrate holder that holds the substrate (1) at one end. An 8 iC single crystal is grown on the substrate.

斯る装置を用いてn型層+21 g、基板(1)上に成
長せしめるためには、まず上記Siメル)(13・とじ
てNが3.5X10  Wt、%及びムlが0.074
wt 、%が夫々ドープされ、かつ1450°C〜15
20°Cに保持されたSiメルトを用い、斯るメルト中
(!3に基板(1)を浸漬することにより斯る基板(1
)上にn型層(2゛が成長する。
In order to grow an n-type layer +21 g on the substrate (1) using such an apparatus, first the above Si melt) (13.
wt,% respectively doped and 1450°C~15
Using a Si melt maintained at 20°C, the substrate (1) is immersed in the melt (!3).
) on which an n-type layer (2゛) is grown.

また、P型層4(3;の成長はS1メルト03としてA
lを2.54wt 、 96含有し、かつ1450°C
〜1520”Cに保持された8鳳メルトを片い、斯るメ
ルト中にn型層(2、か形成されfc基板(1;を浸漬
することにより行なう。
In addition, the growth of P-type layer 4 (3) is performed as S1 melt 03.
2.54wt, 96%, and 1450°C
This is carried out by separating the 8-hole melt held at ~1520''C and immersing the fc substrate (1) on which the n-type layer (2) is formed into the melt.

第6図はこのようにして得られたSiC赤色発光素子の
発光特性を示し、この図より明らかな如<61Qnm付
近番こ発光ピークを有する橙乃至赤色の発光が得られる
FIG. 6 shows the luminescence characteristics of the SiC red light emitting device thus obtained, and as is clear from this diagram, orange to red light emission having a luminescence peak around <61 Q nm is obtained.

尚、参考までに、上記n型に゛(2)及びP型層(3,
形成時のSiメル) Qaの温度を1600°Cとした
際のSiC発光素子の発光特性を第4図に示す。第4図
より明らかな如く、Siメルト温度を1600℃とする
と460nm付近に発光ピークを有する青色発光が得ら
れる。これはδ長じたn型層(2゜及びP!!1(31
の結晶型が6Hタイプとなるためである。
For reference, the above n-type layer (2) and P-type layer (3,
FIG. 4 shows the light emitting characteristics of the SiC light emitting element when the temperature of Si mel Qa at the time of formation was 1600°C. As is clear from FIG. 4, when the Si melt temperature is set to 1600° C., blue light emission having an emission peak around 460 nm is obtained. This is an n-type layer with δ length (2° and P!!1 (31
This is because the crystal type of is 6H type.

(ト)発明の効果 本発明によれば、Al及びNを不純物もしくは発光中心
として含むSiメルトの温度を変更するだけで赤色発光
接合に通した30タイプSiC及び青色発光接合に適し
た6HタイプSi0を任意に得ることが可能となるので
、同一メルトより赤色及び青色発光素子を成長できる。
(G) Effects of the Invention According to the present invention, 30 type SiC that can be passed through red light emitting junctions and 6H type Si0 suitable for blue light emitting junctions can be made by simply changing the temperature of the Si melt containing Al and N as impurities or luminescent centers. can be obtained arbitrarily, so red and blue light-emitting devices can be grown from the same melt.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiC#色発光素子を示す断面図、第2図は本
発明に用いた液相エピタキシャル成長装置を示すVr面
図、第6図及び第4LAFi発光特性図である。 (1;・・・・・・基板、お・・・・・・Siメルト。 第1図 第2図 第3図 老尤似度 #L殉崖 f:丸板−k(7L気)
FIG. 1 is a cross-sectional view showing a SiC# color light emitting device, FIG. 2 is a Vr view showing a liquid phase epitaxial growth apparatus used in the present invention, FIG. 6 and fourth LAFi light emission characteristic diagram. (1;...Substrate,...Si melt. Figure 1 Figure 2 Figure 3 Old likelihood #L martyrdom f: Round plate-k (7L)

Claims (1)

【特許請求の範囲】[Claims] (1)6HタイプSiC単結晶基板を高純度グラファイ
ト製るつぼ中に収納されたSiメルト中に浸漬すること
により上記基板上にSiC単結晶を成長せしめるに際し
て、上記Siメルトの成長温度を1450℃〜1520
℃としたことを特徴とするSiC単結晶の液相エピタキ
シャル成長方法。
(1) When growing a SiC single crystal on the substrate by immersing a 6H type SiC single crystal substrate in a Si melt housed in a crucible made of high-purity graphite, the growth temperature of the Si melt is set at 1450° C. 1520
A method for liquid phase epitaxial growth of SiC single crystal, characterized in that the temperature is .degree.
JP59208702A 1984-10-04 1984-10-04 Liquid epitaxial growth process of sic single crystal Pending JPS6185822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59208702A JPS6185822A (en) 1984-10-04 1984-10-04 Liquid epitaxial growth process of sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208702A JPS6185822A (en) 1984-10-04 1984-10-04 Liquid epitaxial growth process of sic single crystal

Publications (1)

Publication Number Publication Date
JPS6185822A true JPS6185822A (en) 1986-05-01

Family

ID=16560660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208702A Pending JPS6185822A (en) 1984-10-04 1984-10-04 Liquid epitaxial growth process of sic single crystal

Country Status (1)

Country Link
JP (1) JPS6185822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179516A (en) * 1987-01-20 1988-07-23 Sanyo Electric Co Ltd Manufacture of silicon carbide single crystal
JP2010228939A (en) * 2009-03-26 2010-10-14 Nagoya Univ METHOD FOR PRODUCING 3C-SiC SINGLE CRYSTAL
WO2014196437A1 (en) * 2013-06-08 2014-12-11 エルシード株式会社 METHOD FOR PRODUCING SiC MATERIAL AND SiC MATERIAL LAMINATE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179516A (en) * 1987-01-20 1988-07-23 Sanyo Electric Co Ltd Manufacture of silicon carbide single crystal
JPH0565067B2 (en) * 1987-01-20 1993-09-16 Sanyo Electric Co
JP2010228939A (en) * 2009-03-26 2010-10-14 Nagoya Univ METHOD FOR PRODUCING 3C-SiC SINGLE CRYSTAL
WO2014196437A1 (en) * 2013-06-08 2014-12-11 エルシード株式会社 METHOD FOR PRODUCING SiC MATERIAL AND SiC MATERIAL LAMINATE

Similar Documents

Publication Publication Date Title
JPS6115577B2 (en)
US3931631A (en) Gallium phosphide light-emitting diodes
JP3267983B2 (en) Semiconductor light emitting device and method of manufacturing the same
Epelbaum et al. Approaches to seeded PVT growth of AIN crystals
JPS581539B2 (en) epitaxial wafer
US4980730A (en) Light emitting element of cubic boron nitride
JPS6185822A (en) Liquid epitaxial growth process of sic single crystal
JPS5922374A (en) Manufacture of green light-emitting diode
US7534295B2 (en) III nitride single crystal manufacturing method
JP3254557B2 (en) Single crystal SiC and method for producing the same
v Münch Silicon carbide technology for blue-emitting diodes
US3773553A (en) Silicon carbide junction diode
JPS598383A (en) Znse green light emitting diode
JPS60260498A (en) Growth method of sic single crystal
JPH0536602A (en) Crystal growth method of hexagonal crystal semiconductor
JPH0397275A (en) Blue light-emitting diode element consisting of silicon carbide
JPH0380197A (en) Production of single crystal of semiconductor sic
KR19980072406A (en) Gallium nitride substrate for light emitting device and manufacturing method thereof
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JPH1065211A (en) Light-emitting diode
JPS63271982A (en) Light emitting element and manufacture thereof
JP3144247B2 (en) Liquid phase epitaxial growth method
JPS5864074A (en) Sic blue light emitting element
JPH05335621A (en) Gallium phosphide green light emitting diode
SU1633032A1 (en) Method of producing semiconductor hetero-structures