JPS63179516A - Manufacture of silicon carbide single crystal - Google Patents

Manufacture of silicon carbide single crystal

Info

Publication number
JPS63179516A
JPS63179516A JP62011673A JP1167387A JPS63179516A JP S63179516 A JPS63179516 A JP S63179516A JP 62011673 A JP62011673 A JP 62011673A JP 1167387 A JP1167387 A JP 1167387A JP S63179516 A JPS63179516 A JP S63179516A
Authority
JP
Japan
Prior art keywords
plane
crystal
substrate
single crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62011673A
Other languages
Japanese (ja)
Other versions
JPH0565067B2 (en
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62011673A priority Critical patent/JPS63179516A/en
Publication of JPS63179516A publication Critical patent/JPS63179516A/en
Publication of JPH0565067B2 publication Critical patent/JPH0565067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide

Abstract

PURPOSE:To make it possible to suppress the occurrence of defects in laminated layers, by making the crystal growth face of a substrate be not in parallel with a plane (0001) and plane (0001'). CONSTITUTION:The crystal growth face of a substrate is made to be a face, which is neither in parallel with a plane (0001) nor a plane (0001'). For example, the plane (0001), which is the face of a 6H-SiC single-crystal substrate 3, is cut and polished in a slant direction. The face, which is not in parallel with the plane (0001) that is obtained by polishing and the like, is formed and made to be a crystal growth face. A 6H-SiC single-crystal is epitaxially grown on the substrate 3. When Si atoms and C atoms are bonded at a growth interface, strong actions are applied in two orthogonally intersection directions. Thus the arrangement pattern of the atoms in the growth layer 4 is hard to slip, and the occurrence of defects in laminated layers is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、六方晶炭化ケイ素単結晶基板上に六方晶炭
化ケイ素単結晶をエピタキシャル成長させる炭化ケイ素
単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a silicon carbide single crystal, which comprises epitaxially growing a hexagonal silicon carbide single crystal on a hexagonal silicon carbide single crystal substrate.

〔従来の技術〕[Conventional technology]

一般に、炭化ケイ素(SiC)は、耐熱性および機械的
強度に優れ、放射線に対して強いなどの物理的、化学的
性質から耐環境性半導体材料と゛して注目されてお9、
しかも8iC結晶は間接遷移型の■1−N化合物であり
、8iC結晶には同一の化学組成に対して立方、六方な
どの種々の結晶構造が存在し、その禁制帯幅は2.89
〜B、88eVと広範囲にわたるとともに、pn接合の
形成が可能であることから、赤色から青色までのすべて
の波長範囲の可視光を発する発光ダイオード材料として
有望視され、なかでも室温において約8eVの禁制帯幅
を有する六方晶の一種である6HタイプのSiC結晶は
、青色発光ダイオードの材料として用いられている。
In general, silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material due to its physical and chemical properties such as excellent heat resistance, mechanical strength, and resistance to radiation9.
Moreover, 8iC crystal is an indirect transition type 1-N compound, and 8iC crystal has various crystal structures such as cubic and hexagonal for the same chemical composition, and its forbidden band width is 2.89.
~B, 88 eV, which is a wide range, and it is possible to form a pn junction, so it is considered promising as a light-emitting diode material that emits visible light in the entire wavelength range from red to blue. 6H type SiC crystal, which is a type of hexagonal crystal with band width, is used as a material for blue light emitting diodes.

そして、青色発光ダイオードの製造は、通常液相エピタ
キシャル成長法(LPE法)あるいは気相化学反応堆積
法C0VD法)により行なわれており、前者のLpEm
による具体例として、ジャーナルオプ  アプライド 
 フィジクス50(12) 、ディセンパ1979 、
8215〜8225 (Journal of App
lie、dPhysics  50(12) 、 De
cember  1979 、8215〜8225)、
後者のCVD法による具体例として、ジャパニーズジャ
ーナル オプ アプライド フィジクス 19(7)、
シュライ 1980 、 La58〜L856 (JA
PANESEJOURNAL  OF  APPLIE
D  PHYSIc8 19(7) 。
The production of blue light emitting diodes is usually carried out by liquid phase epitaxial growth (LPE) or vapor phase chemical reaction deposition (C0VD).
As a specific example, Journal Op Applied
Physics 50 (12), Disenpa 1979,
8215-8225 (Journal of App
Lie, dPhysics 50(12), De
cember 1979, 8215-8225),
As a specific example of the latter CVD method, Japanese Journal Op Applied Physics 19(7),
Schlei 1980, La58~L856 (JA
PANESE JOURNAL OF APPLIE
D PHYSIc8 19(7).

JULY  1980 、 L358〜L856 )の
両輪文にそれぞれ報告されており、いずれの場合も、エ
ピタキシャル成長に使用する6Hタイプの8iC単結晶
基板の結晶成長面として、(0001)面を用いている
JULY 1980, L358-L856), and in both cases, the (0001) plane is used as the crystal growth plane of the 6H type 8iC single crystal substrate used for epitaxial growth.

ところで、前記したように、SiC結晶には立方晶系、
六方晶系、菱面体晶系に属する種々の結晶構造が存在し
、これらは結晶多形と呼ばれ、すべて最密構造を有し、
立方晶系の場合、 <111>方向に垂直な平面上にS
i原子が隙間なく並び、六方晶系の場合には<0001
>方向、菱面体晶系の場合には<111>方向にそれぞ
れ垂直な平面上にSi原子が隙間なく並び、これらのS
i原子の直上にC原子が結合してSiCの構成単位を形
成している。
By the way, as mentioned above, SiC crystal has cubic system,
There are various crystal structures belonging to the hexagonal system and the rhombohedral system, and these are called crystal polymorphs, and all have a close-packed structure.
In the case of cubic crystal system, S is on the plane perpendicular to the <111> direction.
If the i atoms are arranged without any gaps and the hexagonal system is <0001
In the case of the <111> direction and the rhombohedral crystal system, Si atoms are arranged without gaps on planes perpendicular to the <111> direction, and these S
A C atom is bonded directly above the i atom to form a constituent unit of SiC.

このとき、最密構造とは同じ大きさの球を最も密に積み
重ねた構造およびその球の中心を格子点とする結晶構造
をいい、たとえば第2図に示すように、同じ大きさの複
数個の球をその中心が図中の点Aに位置するように隙間
なく並べた場合、その上にさらに同じ大き°さの複数個
の球を隙間なく並べるとすると、その並べ方として、同
図中の点Bに中心が位置するように並べる並べ方と、同
図中の点Cに中心が位置するように並べる並べ方の2通
りがあり、第2層として点Bに中心が位置するように並
べると、次の第8層は点Cあるいは点Aに中心が位置し
、一方第2層として点Cに中心が位置するように並べる
と、次の第8層は点B6るいは点Aに中心が位置するこ
とになり、幾通りもの並べ方が可能となる。
In this case, a close-packed structure refers to a structure in which spheres of the same size are stacked most densely, and a crystal structure in which the centers of the spheres are the lattice points.For example, as shown in Figure 2, multiple spheres of the same size If we line up the balls without any gaps so that their centers are located at point A in the figure, and if we also line up multiple balls of the same size without gaps on top of them, we can arrange them as shown in the figure. There are two ways to arrange them so that their centers are located at point B and to arrange them so that their centers are located at point C in the figure.If you arrange them so that their centers are located at point B as the second layer, The center of the next 8th layer is located at point C or point A, and if the second layer is arranged so that its center is located at point C, the center of the next 8th layer is located at point B6 or point A. This makes it possible to arrange them in many ways.

そして、実際のSiC結晶は、前記した第2図の1つの
球にSi原子とC原子との1対の原子対が対応するもの
と考えられ、従ってSiCの原子対の並び方は幾通りも
存在することになり、これらが前記した結晶多形に相当
し、8iCの各結晶多形は禁制帯幅も異なり、代表的な
結晶多形の基本周期の8i0原子原子列配ターンとその
禁制帯幅を表1に示す。なお、表中の結晶多形の表示に
おける′3″”や°’15’”や6”の数字は1周期中
に含まれる層の数であり、”C”、H”、R”はそれぞ
れ立方晶、六方晶、菱面体晶を示し、英語の頭文字を用
いて表わしており、配列パターンの°′A” 。
In an actual SiC crystal, it is thought that one atomic pair of a Si atom and a C atom corresponds to one sphere in FIG. Therefore, these correspond to the crystal polymorphs mentioned above, and each crystal polymorph of 8iC has a different forbidden band width, and the 8i0 atomic array arrangement of the fundamental period of a typical crystal polymorph and its forbidden band width. are shown in Table 1. In addition, in the display of crystal polymorphism in the table, the numbers '3'', °'15''' and 6'' are the number of layers included in one period, and 'C', H' and R' are the numbers respectively. Cubic, hexagonal, and rhombohedral crystals are represented using English acronyms, and the arrangement pattern is °′A”.

表1 1T B 11 、11 (:”は前記した第2図の点
A、B、0にそれぞれ中心が位置するような最密構造に
おける配列パターンを示す。
Table 1 1T B 11 , 11 (:” indicates the arrangement pattern in a close-packed structure whose centers are respectively located at points A, B, and 0 in FIG. 2 described above.

したがって、6Hタイプの8iC単結晶基板の表面に直
交する断面における原子配列パターンを模式的に表わす
と、たとえば第3図に示すようになり、前記表のように
A−B−C−A−C−Bの繰り返しとなっている。
Therefore, if the atomic arrangement pattern in a cross section perpendicular to the surface of a 6H type 8iC single crystal substrate is schematically represented, it will be as shown in FIG. 3, and the A-B-C-A-C -B is repeated.

さらに、通常得られる6 H−SiC単結晶基板の表面
は(0001)面あるいは(0001)面であり、逆に
裏面は(0001)面あるいは(0001)面であり、
このとき表面にSi原子が並んでいれば(0001)面
となり、C原子が並んでいれば(0001)面となり、
表、裏面ともにSi原子あるいはC原子が並ぶことは結
晶構造上あり得す、このような6H−8iC単結晶と同
様のことが、8H,4H,2Hタイプなどの他の六方晶
の結晶多形でも当てはまる。
Furthermore, the front surface of the normally obtained 6H-SiC single crystal substrate is the (0001) plane or (0001) plane, and conversely, the back surface is the (0001) plane or (0001) plane,
At this time, if Si atoms are lined up on the surface, it will be a (0001) plane, and if C atoms are lined up, it will be a (0001) plane.
It is possible for Si atoms or C atoms to line up on both the front and back sides due to the crystal structure.The same thing with 6H-8iC single crystals is true for other hexagonal crystal polymorphs such as 8H, 4H, and 2H types. But it applies.

このように、通常6H−8iC単結晶基板の表面は(0
001)面あるいは(0001)面となり、6H−8i
C単結晶基板上に6H−8i0単結晶をエピタキシャル
成長させる場合、基板の結晶成長面として、前記した両
輪文に記載のように(0001)面、あるいはこれに平
行な(0001)面が従来用いられており、たとえば(
0001)面を結晶成長面とした場合、第4図に示すよ
うに、結晶の成長方向と平行な同図中の矢印方向への下
部のエピタキシャル層の相互作用を受けながら新たなエ
ピタキシャル層が成長していく。
In this way, the surface of the 6H-8iC single crystal substrate is usually (0
001) plane or (0001) plane, 6H-8i
When a 6H-8i0 single crystal is epitaxially grown on a C single-crystal substrate, the (0001) plane or the (0001) plane parallel to this has conventionally been used as the crystal growth plane of the substrate, as described in the above-mentioned Ryorinmon. For example, (
0001) as the crystal growth plane, as shown in Figure 4, a new epitaxial layer grows while receiving interaction with the lower epitaxial layer in the direction of the arrow in the figure, which is parallel to the crystal growth direction. I will do it.

ただし、第4図は6H−8i0単結晶基板(υと6H−
8iC単結晶のエピタキシャル成長層(2)との界面部
分の断面を示し°“A゛、B It 、 TI (:”
は前記した配列パターンであり、斜線部分が成長層(2
]である。
However, Fig. 4 shows 6H-8i0 single crystal substrates (υ and 6H-
A cross section of the interface with the epitaxial growth layer (2) of 8iC single crystal is shown.
is the above-mentioned arrangement pattern, and the shaded area is the growth layer (2
].

このとき、第4図に示すように、基板(1)の表面の鏡
面性がかな゛り良好であっても、微視的に見れば、原子
のオーダーの小さな突起A/ 、 B/ 、 c/が存
在し、エピタキシャル成長層(2)の成長初期、すなわ
ち第1層、第2層の成長段階では、前記突起A′。
At this time, as shown in FIG. 4, even if the surface of the substrate (1) has a very good specularity, when viewed microscopically, there are small protrusions A/ , B/ , c on the order of atoms. / is present, and in the initial growth stage of the epitaxial growth layer (2), that is, in the growth stage of the first layer and the second layer, the projection A'.

n/ 、 c/のため、同図中の矢印方向と直角方向へ
の相互作用も受けながら成長することになる。
Because of n/ and c/, it grows while receiving interaction in the direction perpendicular to the direction of the arrow in the figure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、第4図に示す6H−8iO単結晶基板(1)
上に正常に6H−8iC単結晶のエピタキシャル成長が
進行すれば、下部のエピタキシャ/I/層である基板(
υと同じA−B−C−A−C−Bの基本周期の配列パタ
ーンのエピタキシャル成長H(2]が形成でれるはずで
あるが、実際にはたとえばCパターンの層上にA、Cパ
ターンの層が順次成長すべきであるのに、第4図に示す
ように、Cパターンの層上に0.Aパターンの層が順次
成長し、成長層(2)のパターンが一部逆転した積層欠
陥と呼ばれる異常が発生し、エピタキシャル成長する6
H−8iC単結晶の結晶性の低下の原因となり、このよ
うな欠陥を有する6H7SiC単結晶を用いて青色発光
ダイオードを製造した場合、歩留まりが低下し、発光波
長の長波長化や低輝度化などの特性劣化につながるとい
う問題点があり、このような欠陥の発生要因として、下
部のエビタキンヤル層からの相互作用の強さく対し、当
該相互作用の方向に直角方向への相互作用が弱いため、
原子の配列パターンに一部前記直角方向へのスリップが
生じるものと考えられる。  − そこで、この発明では、積層欠陥の発生を抑制し、結晶
性の良好な6H−8iC単結晶が得られるようにするこ
とを技術的課題とする。
However, the 6H-8iO single crystal substrate (1) shown in FIG.
If the epitaxial growth of 6H-8iC single crystal progresses normally on the substrate (
It should be possible to form epitaxial growth H(2) with an arrangement pattern of A-B-C-A-C-B with the same fundamental period as υ, but in reality, for example, A and C patterns are grown on a C pattern layer. Although the layers should grow sequentially, as shown in Figure 4, the 0.A pattern layer grows sequentially on the C pattern layer, resulting in a stacking fault where the pattern of the grown layer (2) is partially reversed. An abnormality called `` occurs and epitaxial growth occurs 6
This causes a decrease in the crystallinity of the H-8iC single crystal, and if a blue light emitting diode is manufactured using a 6H7SiC single crystal with such defects, the yield will decrease and the emission wavelength will become longer and the brightness will decrease. The reason for the occurrence of such defects is that the interaction in the direction perpendicular to the direction of the interaction is weak compared to the strength of the interaction from the underlying Evita Kinyar layer.
It is considered that some slippage occurs in the atomic arrangement pattern in the perpendicular direction. - Therefore, the technical problem of the present invention is to suppress the occurrence of stacking faults and to obtain a 6H-8iC single crystal with good crystallinity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされたものであり、
六方晶炭化ケイ素単結晶基板上に六方高次化ケイ素単結
晶をエピタキシャル成長させる炭化ケイ素単結晶の製造
方法において、前記基板の結晶成長面を(0001)面
、 (oooT)面に平行でない面とすることを特徴と
する炭化ケイ素単結晶の製造方法である。
This invention was made with the above points in mind,
In a method for manufacturing a silicon carbide single crystal in which a hexagonal high-order silicon single crystal is epitaxially grown on a hexagonal silicon carbide single crystal substrate, the crystal growth plane of the substrate is a (0001) plane, a plane that is not parallel to the (oooT) plane. This is a method for producing a silicon carbide single crystal, which is characterized by the following.

〔作 用〕[For production]

したがって、この発明によると、六方晶法化ケイ素単結
晶基板の結晶成長面を(0001)面、 (0001)
面に平行でない面にすれば、基板上に成長するエビタキ
シャlし成長層に及ぶ基板の(0001’)面、 (0
001)面に平行方向への下層からの相互作用が、従来
に比べて強くなり、エピタキシャル成長層における原子
の配列パターンの前記平行方向へのスリップが抑えられ
、積層欠陥の発生が抑制される。
Therefore, according to the present invention, the crystal growth plane of the hexagonal formalized silicon single crystal substrate is the (0001) plane, the (0001)
If the plane is not parallel to the plane, the (0001') plane of the substrate, (0
001) The interaction from the lower layer in the direction parallel to the plane becomes stronger than in the past, and the slippage of the atomic arrangement pattern in the epitaxially grown layer in the parallel direction is suppressed, and the occurrence of stacking faults is suppressed.

〔実施例〕〔Example〕

つぎに、この発明を、そのl実施例を示した第1図とと
もに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIG. 1 showing an embodiment thereof.

いま、結晶成長の原理を説明すると、第1図に示すよう
に、たとえば6H−8iC単結晶基板(3)の表面であ
る(0001)面に対し斜めに切断、研磨し、研磨等に
より得られた(0001)面に平行でない面を形成して
結晶成長面とし、基板(3)上に6H−8i0単結晶を
エピタキシャル成長式せる。
Now, to explain the principle of crystal growth, as shown in Figure 1, for example, a 6H-8iC single crystal substrate (3) is cut obliquely to the (0001) plane, which is the surface, and is obtained by polishing. A plane that is not parallel to the (0001) plane is formed as a crystal growth plane, and a 6H-8i0 single crystal is epitaxially grown on the substrate (3).

このとき、研磨等により得られた(0001)面に平行
でない基板(3)の結晶成長面は、原子のオーダーで見
た場合、第1図に示すように階段状になっていると考え
られ、このような結晶成長面に、同図中に斜線を施こし
たエピタキシャル成長層(4)が成長する際、成長層(
4)は基板(3)の(0001)面に直角方向に成長し
ていき、前記した従来の場合と同様に、成長層(4)は
成長方向に平行な同図中の実線矢印方向への下層からの
相互作用を強く受けると同時に、基板(3)の結晶成長
面の段部により、前記実線矢印方向に直角な同図中の破
線矢印方向への相互作用も強く受けることになる。
At this time, the crystal growth plane of the substrate (3) that is not parallel to the (0001) plane obtained by polishing etc. is considered to be step-like when viewed on the atomic order, as shown in Figure 1. , when the epitaxial growth layer (4) shown with diagonal lines in the figure grows on such a crystal growth surface, the growth layer (
4) grows in a direction perpendicular to the (0001) plane of the substrate (3), and as in the conventional case described above, the growth layer (4) grows in the direction of the solid arrow in the figure parallel to the growth direction. At the same time as it receives strong interaction from the lower layer, it also receives strong interaction in the direction of the broken line arrow in the figure, which is perpendicular to the direction of the solid line arrow, due to the stepped portion of the crystal growth surface of the substrate (3).

すなわち、Si原子、C原子が成長界面に結合する際に
、前記した互いに直交する2方向から強い相互作用を受
けるため、成長層(4)における原子の配列パターンの
スリップが生じにくくなり、成長層(4)の基本周期の
配列パターンが基板(3)と同一になる。
In other words, when Si atoms and C atoms bond to the growth interface, they receive strong interactions from the two mutually orthogonal directions described above, which makes it difficult for the atomic arrangement pattern in the growth layer (4) to slip. The fundamental period arrangement pattern of (4) is the same as that of substrate (3).

そして、たとえば6H−8iC単結晶基板の(0001
)面に対し2°煩斜した面を切断、研磨にょ抄作成し、
この傾斜した作成面を結晶成長面として、LPE法によ
り発光層としての6H−8iO単結晶のp、n接合層を
積層してウェハを形成したところ、ウェハ内の青色発光
出現率は平均値で80%とな9、従来の如< (000
1)面を結晶成長面とした場合の青色発光出現率60%
に比べて大幅な向上が見られ、これは前記したメカニズ
ムにより積層欠陥の発生が抑制されたためと考えられ、
積層欠陥の抑制により、禁制帯幅の深い準位のトラップ
レベルの形成や非発光センターの形成に寄与する欠陥が
低減され、青色発光以外の低エネルギ、長波長発光や非
発光点の出現が従来に比べて大幅に減少することになる
For example, the (0001
) A surface inclined at 2 degrees to the surface was cut and polished to create a paper cutter.
When a wafer was formed by stacking p and n junction layers of 6H-8iO single crystal as a light-emitting layer using the LPE method using this inclined surface as a crystal growth surface, the appearance rate of blue light in the wafer was an average value. 80% 9, as before (000
1) Blue emission appearance rate 60% when the surface is the crystal growth surface
A significant improvement was seen compared to
By suppressing stacking faults, defects that contribute to the formation of trap levels with deep forbidden band levels and non-emissive centers are reduced, and the appearance of low-energy, long-wavelength emission and non-emissive points other than blue emission is reduced This will be significantly reduced compared to .

ここで、前記したウェハの形成条件として、ディップ法
を用い、エピタキシャル成長温度を約1700°Cとし
、n + piのドーパントとしてそれぞれ窒素、アル
ミニウムを用いた。
Here, as the conditions for forming the wafer described above, a dip method was used, the epitaxial growth temperature was about 1700° C., and nitrogen and aluminum were used as n + pi dopants, respectively.

なお、基板(3)の表面が(0001)面であっても、
(0001)面が(0001)面と平行であるため、前
記、実施例と同様の効果が得られ、6Hタイプ以外の8
I(,4H。
Note that even if the surface of the substrate (3) is a (0001) plane,
Since the (0001) plane is parallel to the (0001) plane, the same effect as in the above example can be obtained, and 8
I(,4H.

2H等の六方晶8i0単結晶基板を用いても、同様の効
果が得られる。
Similar effects can be obtained by using a hexagonal 8i0 single crystal substrate such as 2H.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の炭化ケイ素単結晶の製造方法
によると、六方晶炭化ケイ素単結晶基板の結晶成長面を
(0001)面、 (0001)面に平行でない面にす
ることにより、基板上に成長するエピタキシャル成長層
に及ぶ基板の(0001)面、 (0001)面に平行
方向への下層からの相互作用を従来に比べて強くでき、
エピタキシャル成長層における原子の配列パターンの前
記平行方向へのスリップを抑えることができ、積層欠陥
の発生を抑制することが可能となり、結晶性の良好な六
方晶炭化ケイ素単結晶を得ることができ、このような炭
化ケイ素単結晶を青色発光〆イオードの製造に用いた場
合、従来に比べて歩留りの向上を図れ、発光波長の長波
長化や低輝度化などの特性の劣化を抑制した高特性の青
色発光ダイオードを得ることが可能となる。
As described above, according to the method for manufacturing a silicon carbide single crystal of the present invention, by making the crystal growth plane of the hexagonal silicon carbide single crystal substrate a (0001) plane, a plane that is not parallel to the (0001) plane, The interaction from the lower layer in the direction parallel to the (0001) plane of the substrate and the (0001) plane, which extends to the epitaxial growth layer that grows on the substrate, can be strengthened compared to conventional methods.
It is possible to suppress the slip in the parallel direction of the atomic arrangement pattern in the epitaxial growth layer, and it is possible to suppress the occurrence of stacking faults, and it is possible to obtain a hexagonal silicon carbide single crystal with good crystallinity. When silicon carbide single crystals such as these are used to manufacture blue light-emitting diodes, it is possible to improve the yield compared to conventional methods, and to produce high-quality blue light that suppresses deterioration of characteristics such as longer emission wavelengths and lower brightness. It becomes possible to obtain a light emitting diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の炭化ケイ素単結晶の製造方法の1実
施例の原理説明図、第2図は結晶の最密構造の説明図、
第3図は一般の六方晶炭化ケイ素単結晶基板の断面にお
ける原子配列パターンの説明図、第4図は第3図に示す
基板上に六方晶法化ケイ素単結晶をエピタキシャル成長
させたときの成長界面付近の断面における原子配列パタ
ーンの説明図である。 (3)・・・基板、(4)・・・エピタキシャル成長層
FIG. 1 is an explanatory diagram of the principle of one embodiment of the method for producing a silicon carbide single crystal of the present invention, and FIG. 2 is an explanatory diagram of the close-packed structure of the crystal.
Figure 3 is an explanatory diagram of the atomic arrangement pattern in the cross section of a general hexagonal silicon carbide single crystal substrate, and Figure 4 is the growth interface when a hexagonal silicon carbide single crystal is epitaxially grown on the substrate shown in Figure 3. FIG. 3 is an explanatory diagram of an atomic arrangement pattern in a nearby cross section. (3)...substrate, (4)...epitaxial growth layer.

Claims (1)

【特許請求の範囲】[Claims] (1)六方晶炭化ケイ素単結晶基板上に六方晶炭化ケイ
素単結晶をエピタキシャル成長させる炭化ケイ素単結晶
の製造方法において、 前記基板の結晶成長面を(0001)面、(000@1
@)面に平行でない面とすることを特徴とする炭化ケイ
素単結晶の製造方法。
(1) In a method for manufacturing a silicon carbide single crystal in which a hexagonal silicon carbide single crystal is epitaxially grown on a hexagonal silicon carbide single crystal substrate, the crystal growth plane of the substrate is a (0001) plane and a (000@1) plane.
A method for producing a silicon carbide single crystal, characterized in that the plane is not parallel to the @) plane.
JP62011673A 1987-01-20 1987-01-20 Manufacture of silicon carbide single crystal Granted JPS63179516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62011673A JPS63179516A (en) 1987-01-20 1987-01-20 Manufacture of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62011673A JPS63179516A (en) 1987-01-20 1987-01-20 Manufacture of silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPS63179516A true JPS63179516A (en) 1988-07-23
JPH0565067B2 JPH0565067B2 (en) 1993-09-16

Family

ID=11784506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62011673A Granted JPS63179516A (en) 1987-01-20 1987-01-20 Manufacture of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPS63179516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425184A (en) * 1990-05-18 1992-01-28 Sharp Corp Manufacture of p-n junction light emitting diode of silicon carbide
WO1999010919A1 (en) * 1997-08-27 1999-03-04 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, process for producing the same, and semiconductor element containing silicon carbide substrate
JP2005106818A (en) * 2003-09-30 2005-04-21 Samsung Electronics Co Ltd Temperature sensor for sensing temperature to output digital data applicable to this temperature, and liquid crystal display driven integrated circuit equipped therewith

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185822A (en) * 1984-10-04 1986-05-01 Sanyo Electric Co Ltd Liquid epitaxial growth process of sic single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185822A (en) * 1984-10-04 1986-05-01 Sanyo Electric Co Ltd Liquid epitaxial growth process of sic single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425184A (en) * 1990-05-18 1992-01-28 Sharp Corp Manufacture of p-n junction light emitting diode of silicon carbide
WO1999010919A1 (en) * 1997-08-27 1999-03-04 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, process for producing the same, and semiconductor element containing silicon carbide substrate
US6270573B1 (en) 1997-08-27 2001-08-07 Matsushita Electric Industrial Co., Ltd. Silicon carbide substrate, and method for producing the substrate, and semiconductor device utilizing the substrate
JP2005106818A (en) * 2003-09-30 2005-04-21 Samsung Electronics Co Ltd Temperature sensor for sensing temperature to output digital data applicable to this temperature, and liquid crystal display driven integrated circuit equipped therewith

Also Published As

Publication number Publication date
JPH0565067B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
US8963166B2 (en) III nitride crystal substrate and light-emitting device
KR100499658B1 (en) Method for producing group iii nitride compound semiconductor and group iii nitride compound semiconductor device
CN102738321B (en) The method and system of the epitaxial process in bulk substrate of cutting sth. askew
US4178197A (en) Formation of epitaxial tunnels utilizing oriented growth techniques
KR20010031642A (en) GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP2002338395A (en) Compound crystal and method for producing the same
JPS6115577B2 (en)
WO2016143653A1 (en) Group iii nitride laminate and light emitting element comprising said laminate
WO2003027363A1 (en) Method for growing low-defect single crystal heteroepitaxial films
JPH03133182A (en) Semiconductor substrate and manufacture thereof
WO2015182520A1 (en) Method for producing group-iii nitride substrate
CN109075022A (en) Forming planar surfaces of III-nitride materials
US8823014B2 (en) Off-axis silicon carbide substrates
JPS63179516A (en) Manufacture of silicon carbide single crystal
JPS5922374A (en) Manufacture of green light-emitting diode
JP3142312B2 (en) Crystal growth method for hexagonal semiconductor
JP2017014106A (en) Manufacturing method of group iii nitride substrate
CN100365767C (en) Substrate processing method for improving gallium nitride base material epitaxial layer quality
JPH0430583A (en) Manufacture of silicon carbide light emitting diode
JP2002289538A (en) Method for fabricating semiconductor element and semiconductor element
JPS62154789A (en) Semiconductor light emitting element
JP2017024984A (en) Manufacturing method of group iii nitride substrate
WO2024006331A1 (en) Substrate-fusion technique
WO2024006329A1 (en) Heteroepitaxy technique
JP2014037325A (en) Method for producing silicon carbide substrate and seed substrate used for the method