JP3144247B2 - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JP3144247B2
JP3144247B2 JP30086294A JP30086294A JP3144247B2 JP 3144247 B2 JP3144247 B2 JP 3144247B2 JP 30086294 A JP30086294 A JP 30086294A JP 30086294 A JP30086294 A JP 30086294A JP 3144247 B2 JP3144247 B2 JP 3144247B2
Authority
JP
Japan
Prior art keywords
liquid phase
gap
epitaxial growth
phase epitaxial
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30086294A
Other languages
Japanese (ja)
Other versions
JPH08157300A (en
Inventor
宗久 柳澤
金吾 鈴木
均 池田
正久 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP30086294A priority Critical patent/JP3144247B2/en
Priority to TW084101065A priority patent/TW270215B/en
Priority to KR1019950029402A priority patent/KR0177007B1/en
Publication of JPH08157300A publication Critical patent/JPH08157300A/en
Application granted granted Critical
Publication of JP3144247B2 publication Critical patent/JP3144247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、GaP基板上に、液相
エピタキシャル成長法によってGaP赤色発光ダイオー
ド用のGaP層を成長する方法に関し、更に詳しくは酸
素をドープしたp型GaP層を成長する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a GaP layer for a GaP red light emitting diode on a GaP substrate by liquid phase epitaxial growth, and more particularly, to a method for growing a p-type GaP layer doped with oxygen. About.

【0002】[0002]

【発明の背景技術】GaP赤色発光ダイオードは、通
常、液相エピタキシャル成長法によって、n型GaP基
板上にn型及びp型GaP層を順次積層形成してなるG
aP赤色発光ダイオード用エピタキシャルウェーハを製
造し、これを素子化することにより得られる。
2. Description of the Related Art A GaP red light emitting diode is generally formed by sequentially forming an n-type and a p-type GaP layer on an n-type GaP substrate by liquid phase epitaxial growth.
It is obtained by manufacturing an epitaxial wafer for an aP red light emitting diode and converting it into an element.

【0003】GaPはpn接合を形成したままでは赤色
発光しないので、亜鉛(Zn)及び酸素(O)をp型G
aP層にドープし、然る後約500℃で熱処理すること
により、発光中心となるZn−O対をp型GaP層内に
形成させる。このGaP赤色発光ダイオードはピーク波
長700nm前後の赤色発光をする。
Since GaP does not emit red light when a pn junction is formed, zinc (Zn) and oxygen (O) are converted to p-type G
By doping the aP layer and then performing heat treatment at about 500 ° C., a Zn—O pair serving as a light emission center is formed in the p-type GaP layer. This GaP red light emitting diode emits red light having a peak wavelength of about 700 nm.

【0004】[0004]

【発明が解決しようとする課題】上記のように、GaP
赤色発光ダイオードのp型GaP層にはZnとOがドー
プされており、高輝度の発光ダイオードを得るにはZn
−O対の濃度を高くすればよいが、そのためには多量の
Oをドープする必要がある。通常、入手し易い或いは計
量し易いという理由で、粉末状のGa2 3 を用い、こ
の粉末状のGa23 をOドープ源として添加した液相
エピタキシャル成長用Ga溶液を用いてOドープp型G
aP層を成長していた。
As described above, GaP
The p-type GaP layer of the red light emitting diode is doped with Zn and O. To obtain a high-brightness light emitting diode, Zn is used.
Although the concentration of the -O pair may be increased, a large amount of O needs to be doped. Usually, because it is easily available or easy to measure, powdered Ga 2 O 3 is used, and O-doped p is added using a Ga solution for liquid phase epitaxial growth to which this powdered Ga 2 O 3 is added as an O-doping source. Type G
The aP layer was growing.

【0005】しかし、粉末状のGa2 3 はGa溶液と
の濡れ性が悪く、Ga溶液への溶解が極めて不安定であ
るため、斯かるGa2 3 を添加した液相エピタキシャ
ル成長用Ga溶液を用いて成長したOドープp型GaP
層においては、該p型GaP層中のO濃度が不安定とな
り、ひいては発光輝度が不安定或いは不均一となってし
まう。その上、高輝度化をはかるために、より多量の粉
末状のGa2 3 をGa溶液に添加すると、粉末状のG
2 3 はGa溶液に完全に溶解できずに粉末状のまま
残ってしまう。この粉末状の残溜Ga2 3 は、成長さ
れたp型GaP層表面にGa2 3 析出物として付着
し、面不良率が増加するという問題があった。
However, powdered Ga 2 O 3 has poor wettability with a Ga solution and is extremely unstable in dissolving in a Ga solution. Therefore, a Ga solution for liquid phase epitaxial growth to which such Ga 2 O 3 is added is used. -Doped p-type GaP grown by using
In the layer, the O concentration in the p-type GaP layer becomes unstable, and the emission luminance becomes unstable or non-uniform. In addition, when a larger amount of powdered Ga 2 O 3 is added to the Ga solution in order to increase the brightness, the powdered G
a 2 O 3 cannot be completely dissolved in the Ga solution and remains as a powder. This powdery residual Ga 2 O 3 adheres to the surface of the grown p-type GaP layer as a Ga 2 O 3 precipitate, which causes a problem that the surface defect rate increases.

【0006】そこで本発明は、多量の酸素がドープさ
れ、且つ酸化ガリウム(Ga2 3 )の析出物の極めて
少ないp型GaP層を成長させることができ、従って高
輝度のGaP赤色発光ダイオードを高収率で製造するこ
とを可能とした液相エピタキシャル成長法を提供するこ
とを目的とする。
Accordingly, the present invention is capable of growing a p-type GaP layer doped with a large amount of oxygen and having very few gallium oxide (Ga 2 O 3 ) precipitates. It is an object of the present invention to provide a liquid phase epitaxial growth method capable of producing a high yield.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、GaP赤色発光ダイオード用エピタキシ
ャルウェーハを製造するにあたり、酸化ガリウム(Ga
2 3 )を添加したGa溶液を用い液相エピタキシャル
成長法によって酸素をドープしたp型GaP層を積層す
る方法において、前記Ga2 3 として見かけ密度3.
0〜5.9g/cm3 (25℃)のGa2 3固結体を
用いることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method of manufacturing an epitaxial wafer for a GaP red light-emitting diode, which uses gallium oxide (Ga).
In a method of stacking a p-type GaP layer doped with oxygen by a liquid phase epitaxial growth method using a Ga solution to which 2 O 3 ) has been added, an apparent density of Ga 2 O 3 is 3.
It is characterized by using a Ga 2 O 3 compact of 0 to 5.9 g / cm 3 (25 ° C.).

【0008】該Ga2 3 固結体の大きさは、0.03
cm3 (25℃)以上のものが好適に用いられる。ま
た、該Ga2 3 固結体は焼結体であるのが好ましい。
さらに、該Ga2 3 固結体が、結合剤を用いた焼結体
であってもよい。該結合剤としては酸化珪素(Si
2 )又は酸化亜鉛(ZnO)を用いるのが好適であ
る。
The size of the Ga 2 O 3 compact is 0.03.
Those having cm 3 (25 ° C.) or more are preferably used. Further, the Ga 2 O 3 compact is preferably a sintered body.
Further, the Ga 2 O 3 compact may be a sintered body using a binder. Silicon oxide (Si
O 2 ) or zinc oxide (ZnO) is preferably used.

【0009】[0009]

【実施例】以下、本発明方法の対象となるGaP赤色発
光ダイオード用エピタキシャルウェーハについて図面を
参照して説明する。図1は、GaP赤色発光ダイオード
用エピタキシャルウェーハの一例を示す概略断面説明図
である。このGaP赤色発光ダイオード用エピタキシャ
ルウェーハ10は、n型GaP基板上1上に、n型Ga
P層2及びp型GaP層3が順次形成されている。n型
及びp型となるドーパントは、各々例えば硫黄(S)及
び亜鉛(Zn)である。また、p型GaP層3にはZn
とともに酸素がドープされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An epitaxial wafer for a GaP red light-emitting diode which is a subject of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional explanatory view showing an example of an epitaxial wafer for a GaP red light emitting diode. The epitaxial wafer 10 for a GaP red light emitting diode has an n-type GaP substrate 1 on an n-type GaP substrate.
A P layer 2 and a p-type GaP layer 3 are sequentially formed. The n-type and p-type dopants are, for example, sulfur (S) and zinc (Zn), respectively. The p-type GaP layer 3 has Zn
At the same time, oxygen is doped.

【0010】次に上記GaP赤色発光ダイオード用エピ
タキシャルウェーハ10の製造方法の一例を以下に示
す。まず、例えば液体封止チョクラルスキー法(LEC
法)により育成されたn型GaP単結晶をウェーハ加工
してn型GaP基板1を製造する。このn型GaP基板
1の上に、各GaP層2、3を液相エピタキシャル成長
法により形成させる。即ち、液相エピタキシャル成長法
でn型GaP層2を形成した後、該n型GaP層2上
に、図2に示す成長プログラムで、p型GaP層3を成
長させる。
Next, an example of a method of manufacturing the epitaxial wafer 10 for the GaP red light emitting diode will be described below. First, for example, the liquid-sealed Czochralski method (LEC
The n-type GaP substrate 1 is manufactured by processing the n-type GaP single crystal grown by the method (1) into a wafer. Each of the GaP layers 2 and 3 is formed on the n-type GaP substrate 1 by a liquid phase epitaxial growth method. That is, after the n-type GaP layer 2 is formed by the liquid phase epitaxial growth method, the p-type GaP layer 3 is grown on the n-type GaP layer 2 by a growth program shown in FIG.

【0011】図2において、まず、p型GaP層3の成
長開始となる温度(例えば1050℃)で、Zn、Ga
2 3 及びGaP多結晶を溶解したGa溶液(1050
℃におけるGaPの飽和Ga溶液)を、前記n型GaP
基板1上にn型GaP層2を形成してなる基板(以下、
「n型多層GaP基板」という。)上に配置する。
In FIG. 2, first, at a temperature (for example, 1050 ° C.) at which growth of the p-type GaP layer 3 starts, Zn, Ga
Ga solution (1050) dissolving 2 O 3 and GaP polycrystal
C.) with the n-type GaP.
A substrate having an n-type GaP layer 2 formed on a substrate 1 (hereinafter referred to as a
It is called "n-type multilayer GaP substrate". ) On top.

【0012】次に、温度を1050℃(成長開始温度、
図2におけるA)から980℃(成長終了温度、図2に
おけるB)まで降温し、前記Ga溶液中のGaPを前記
n型多層GaP基板のn型GaP層2上に析出させてp
型GaP層3を成長させた後、この温度において前記G
a溶液を基板から切り離す。この様にして、Zn及びO
がドープされたp型GaP層3が形成される。次いで、
50℃まで冷却して基板を取り出し、然る後、約500
℃で熱処理を施して発光中心となるZn−O対をp型G
aP層3内に形成させる。
Next, the temperature is raised to 1050 ° C. (growth starting temperature,
The temperature was lowered from A) in FIG. 2 to 980 ° C. (growth end temperature, B in FIG. 2), and GaP in the Ga solution was deposited on the n-type GaP layer 2 of the n-type multi-layer GaP substrate to form p.
After growing the GaP-type GaP layer 3, the G
a Separate the solution from the substrate. In this way, Zn and O
Is formed to form a p-type GaP layer 3 doped with. Then
After cooling to 50 ° C., the substrate is taken out, and then about 500
The Zn—O pair serving as the emission center is subjected to a heat treatment at
It is formed in the aP layer 3.

【0013】上記の様にして、n型GaP基板1上にn
型GaP層2及びp型GaP層3が順次積層形成された
GaP赤色発光ダイオード用エピタキシャルウェーハ1
0が製造される。このエピタキシャルウェーハ10のn
型GaP基板1の下面にn電極、p型GaP層3上にp
電極を形成し、ダイシング後、その半導体チップを支持
体に固着し、ワイヤボンディング後、樹脂封止すること
によりGaP赤色発光ダイオードが得られる。
As described above, n-type GaP substrate 1 has n
Wafer 1 for a GaP red light-emitting diode in which a p-type GaP layer 2 and a p-type GaP layer 3 are sequentially laminated.
0 is produced. N of the epitaxial wafer 10
Electrode on the lower surface of the p-type GaP substrate 1 and p-type electrode on the p-type GaP layer 3
After forming an electrode, dicing, fixing the semiconductor chip to a support, wire bonding, and sealing with a resin, a GaP red light emitting diode is obtained.

【0014】次に、実験例及び実施例により本発明を更
に具体的に説明する。 (実験例1)液相エピタキシャル成長用Ga溶液に添加
するGa2 3 を、粉末状のGa23 、その添加濃度
を0.1〜0.45重量%として、前記した成長法によ
りp型GaP層3を成長し、GaP赤色発光ダイオード
用エピタキシャルウェーハ10を製造した。
Next, the present invention will be described more specifically with reference to experimental examples and examples. (Experimental Example 1) Ga 2 O 3 to be added to a Ga solution for liquid phase epitaxial growth was powdered Ga 2 O 3 , and the addition concentration was 0.1 to 0.45% by weight. The GaP layer 3 was grown to produce a GaP red light emitting diode epitaxial wafer 10.

【0015】図3は、p型GaP層3の成長に用いたG
a溶液中のGa2 3 の濃度(重量%)と前記エピタキ
シャルウェーハ10から得たGaP赤色発光ダイオード
の輝度(相対輝度)の平均値との関係を示す。図から、
相対輝度が45以上の高輝度発光ダイオードを得るに
は、p型GaP層3の成長に用いるGa溶液中のGa2
3 濃度を0.35%以上とする必要があることが分
る。
FIG. 3 shows a graph of G used for growing the p-type GaP layer 3.
The relationship between the concentration (% by weight) of Ga 2 O 3 in the solution a and the average value of the luminance (relative luminance) of the GaP red light emitting diode obtained from the epitaxial wafer 10 is shown. From the figure,
In order to obtain a high-brightness light emitting diode having a relative luminance of 45 or more, Ga 2 in a Ga solution used for growing the p-type
It is understood that the O 3 concentration needs to be 0.35% or more.

【0016】しかし、高輝度のGaP赤色発光ダイオー
ドを得るために、Ga2 3 濃度を0.35重量%以上
にすると、p型GaP層3にGa2 3 析出物が多数発
生し、図4に示す様にGa2 3 析出物起因の面不良率
が45%以上になってしまう。また面不良率を10%以
下にするために、Ga2 3 濃度を0.2重量%以下に
すると、図3から明らかの様に高輝度化が達成できな
い。ここで、Ga2 3析出物起因の面不良率(%)
は、下記式(1)により算出した。
However, if the concentration of Ga 2 O 3 is set to 0.35% by weight or more in order to obtain a high-luminance GaP red light emitting diode, a large number of Ga 2 O 3 precipitates are generated in the p-type GaP layer 3. As shown in FIG. 4, the surface defect rate caused by the Ga 2 O 3 precipitate becomes 45% or more. Further, if the concentration of Ga 2 O 3 is set to 0.2% by weight or less in order to reduce the surface defect rate to 10% or less, high brightness cannot be achieved as is apparent from FIG. Here, the percentage of surface defects caused by Ga 2 O 3 precipitates (%)
Was calculated by the following equation (1).

【0017】[0017]

【数1】 (a/b)×100・・・・・・・・・・・・・・・・・・(1)(1) (a / b) × 100 (1)

【0018】上記式(1)中、aはGa2 3 析出物起
因の不良エピタキシャルウェーハの枚数、bはp型Ga
P層成長工程に投入のn型多層GaP基板の枚数であ
る。
In the above formula (1), a is the number of defective epitaxial wafers caused by Ga 2 O 3 precipitates, and b is p-type Ga
This is the number of n-type multilayer GaP substrates input to the P layer growth step.

【0019】また、Ga2 3 析出物起因の不良エピタ
キシャルウェーハとは、Ga2 3析出物の個数>10
個/cm2 であるエピタキシャルウェーハを云う。
[0019] In addition, the failure epitaxial wafer of Ga 2 O 3 precipitates due, the number of Ga 2 O 3 precipitates> 10
Pieces / cm 2 .

【0020】(実施例1)Ga2 3 として、見かけ密
度3.0、3.9、4.6、5.2及び5.9g/cm
3 (25℃)、大きさが、各々0.03、0.05、
0.08及び0.15cm3 (25℃)のGa2 3
形焼結体を用いた。該Ga2 3 焼結体を、0.40重
量%で、液相エピタキシャル成長用Ga溶液に添加し、
実験例1と同一の方法でp型GaP層3を成長してGa
P赤色発光ダイオード用エピタキシャルウェーハ10を
製造した。
Example 1 As Ga 2 O 3 , apparent densities of 3.0, 3.9, 4.6, 5.2 and 5.9 g / cm.
3 (25 ° C), the sizes are 0.03, 0.05,
The Ga 2 O 3 sintered compact of 0.08 and 0.15cm 3 (25 ℃) was used. The Ga 2 O 3 sintered body was added at 0.40% by weight to a Ga solution for liquid phase epitaxial growth,
The p-type GaP layer 3 was grown in the same manner as
An epitaxial wafer 10 for a P-red light emitting diode was manufactured.

【0021】図5に、上記した方法で得られたGaP赤
色発光ダイオード用エピタキシャルウェーハ10のうち
Ga2 3 焼結体の大きさが0.05cm3 における、
添加したGa2 3 焼結体の密度とGa2 3 析出物起
因の面不良率(実験例1と同一方法で算出)との関係、
及び添加したGa2 3 焼結体の密度と前記エピタキシ
ャルウェーハ10から得たGaP赤色発光ダイオードの
輝度(相対輝度)の平均値との関係を示す(●:面不良
率、○:相対輝度)。
FIG. 5 shows that the Ga 2 O 3 sintered body in the GaP red light emitting diode epitaxial wafer 10 obtained by the above-described method has a size of 0.05 cm 3 .
Relationship between the density of the added Ga 2 O 3 sintered body and the percentage of surface defects caused by Ga 2 O 3 precipitates (calculated by the same method as in Experimental Example 1),
And the relationship between the density of the added Ga 2 O 3 sintered body and the average value of the luminance (relative luminance) of the GaP red light emitting diode obtained from the epitaxial wafer 10 (●: surface defect rate, ○: relative luminance) .

【0022】Ga2 3 焼結体の見かけ密度が3.0g
/cm3 以上であれば、Ga2 3析出物起因の面不良
率は7%以下(見かけ密度4.5g/cm3 では不良率
ほぼゼロ%)と、粉末状Ga2 3 の場合の不良率約5
5%(図4参照)に対し大幅の改善が達成できるととも
に、発光輝度(相対輝度)の平均値も約45と高輝度で
あった。また、Ga2 3 成形焼結体の大きさが、0.
03、0.08、0.15cm3 の場合についても、前
記した0.05cm3 の場合と同一の効果が達成され
た。
The apparent density of the Ga 2 O 3 sintered body is 3.0 g.
If / cm 3 or more, Ga 2 O 3 precipitates due surfaces 7% or less failure rate (apparent density 4.5 g / cm 3 in the failure rate substantially zero%), in the case of powdered Ga 2 O 3 Defective rate about 5
A significant improvement over 5% (see FIG. 4) was achieved, and the average value of the emission luminance (relative luminance) was as high as about 45. Further, the size of the Ga 2 O 3 molded sintered body is set to 0.
If for also 03,0.08,0.15cm 3, the same effect as the 0.05 cm 3 described above have been achieved.

【0023】従って、p型GaP層3の成長に用いるG
a溶液に添加するGa23 として、見かけ密度3.0
〜5.9g/cm3 (25℃)のGa23焼結体であ
り、その大きさが0.03cm3 (25℃)以上のGa
23焼結体を用いることにより、Ga溶液中にGa2
3 を0.35重量%以上と多量に含有(高輝度化の必須
条件)させても、p型GaP層3に析出するGa23
析出物の極めて少ない、面状態の良好なGaP赤色発光
ダイオード用エピタキシャルウェーハを高収率で製造す
ることができることが確認できた。
Accordingly, the G used for growing the p-type GaP layer 3
a) As Ga 2 O 3 added to the solution a, an apparent density of 3.0
~5.9g / cm 3 is Ga 2 O 3 sintered body (25 ° C.), its magnitude 0.03cm 3 (25 ℃) more Ga
By using a 2 O 3 sintered body, Ga 2 O
3 is contained in a large amount of 0.35% by weight or more (indispensable condition for higher brightness), Ga 2 O 3
It was confirmed that an epitaxial wafer for a GaP red light-emitting diode with very few precipitates and a good surface condition could be produced in high yield.

【0024】上記実施例1においては、結合剤なしのG
23焼結体を用いた例を示したが、結合剤としてSi
2又はZnOを用いたGa2 3焼結体についても同様
の結果が得られることについても確認した。また、Ga
2 3焼結体の適用例を示したが、Ga2 3焼結体以外
のGa2 3固結体、例えば晶析体を用いても本発明の
作用効果が達成されることも確認してある。
In Example 1 above, G without binder was used.
Although the example using the a 2 O 3 sintered body was shown,
It was also confirmed that similar results were obtained for Ga 2 O 3 sintered bodies using O 2 or ZnO. Also, Ga
Although example of application 2 O 3 sintered body, Ga 2 O 3 sintered body other than the Ga 2 O 3 Katayuitai, for example crystal also is also achieved operation and effect of the present invention with reference to析体I have confirmed.

【0025】[0025]

【発明の効果】以上のべたごとく、本発明によれば、多
量の酸素がドープされ、且つ酸化ガリウム(Ga
2 3 )の析出物の極めて少ないp型GaP層を成長さ
せることができ、従って高輝度のGaP赤色発光ダイオ
ードを高収率で製造することができるという効果を奏す
る。
As described above, according to the present invention, a large amount of oxygen is doped and gallium oxide (Ga
It is possible to grow a p-type GaP layer having extremely few precipitates of 2 O 3 ), and thus to produce a high-luminance GaP red light-emitting diode in a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GaP赤色発光ダイオード用エピタキシャルウ
ェーハの一例を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an example of an epitaxial wafer for a GaP red light emitting diode.

【図2】GaP赤色発光ダイオード用エピタキシャルウ
ェーハ製造のための液相エピタキシャル成長プログラム
を示す図面である。
FIG. 2 is a view illustrating a liquid phase epitaxial growth program for manufacturing an epitaxial wafer for a GaP red light emitting diode.

【図3】p型GaP層の成長に用いたGa溶液中のGa
2 3 の濃度とGaP赤色発光ダイオード用エピタキシ
ャルウェーハから得たGaP赤色発光ダイオードの輝度
(相対輝度)の平均値との関係を示すグラフである。
FIG. 3 shows Ga in a Ga solution used for growing a p-type GaP layer.
4 is a graph showing the relationship between the concentration of 2 O 3 and the average value of the luminance (relative luminance) of a GaP red light emitting diode obtained from an epitaxial wafer for a GaP red light emitting diode.

【図4】p型GaP層の成長に用いたGa溶液中の粉末
状Ga2 3の濃度とGa2 3析出物起因の面不良率と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the concentration of powdered Ga 2 O 3 in a Ga solution used for growing a p-type GaP layer and the percentage of surface defects caused by Ga 2 O 3 precipitates.

【図5】実施例1において、焼結体の大きさが0.05
cm3における、添加したGa2 3 焼結体の密度とGa
2 3 析出物起因の面不良率との関係、及び添加したG
2 3 焼結体の密度とGaP赤色発光ダイオード用エ
ピタキシャルウェーハから得たGaP赤色発光ダイオー
ドの輝度(相対輝度)の平均値との関係を示すグラフで
ある。
FIG. 5 is a cross-sectional view of Example 1 in which the size of the sintered body is 0.05
cmThreeGa added inTwo OThreeDensity of sintered body and Ga
TwoOThreeRelationship with the percentage of surface defects due to precipitates and the added G
aTwoOThreeDensity of sintered body and energy for GaP red LED
GaP red light emitting diode obtained from a epitaxial wafer
Is a graph showing the relationship between the average luminance (relative luminance) and the average
is there.

【符号の説明】[Explanation of symbols]

1 n型GaP基板 2 n型GaP層 3 p型GaP層 10 エピタキシャルウェーハ Reference Signs List 1 n-type GaP substrate 2 n-type GaP layer 3 p-type GaP layer 10 epitaxial wafer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 正久 群馬県安中市磯部2丁目13番1号 信越 半導体株式会社 磯部工場内 (56)参考文献 特開 昭50−156873(JP,A) 特開 昭50−146268(JP,A) 特開 昭49−60680(JP,A) 特開 昭60−239397(JP,A) 特開 昭47−26311(JP,A) 特開 昭49−29098(JP,A) 特開 昭50−51080(JP,A) 特開 昭50−51081(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 H01L 21/208 H01L 33/00 CA(STN) JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masahisa Endo 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Isobe Plant (56) References Japanese Patent Laid-Open No. 50-156873 (JP, A) JP-A-50-146268 (JP, A) JP-A-49-60680 (JP, A) JP-A-60-239397 (JP, A) JP-A-47-26311 (JP, A) JP-A-49-29098 (JP, A) JP, A) JP-A-50-51080 (JP, A) JP-A-50-51081 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 H01L 21/208 H01L 33/00 CA (STN) JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 GaP赤色発光ダイオード用エピタキシ
ャルウェーハを製造するにあたり、酸化ガリウム(Ga
2 3 )を添加したGa溶液を用い液相エピタキシャル
成長法によって酸素をドープしたp型GaP層を積層す
る方法において、前記Ga2 3 として見かけ密度3.
0〜5.9g/cm3 (25℃)のGa2 3固結体を
用いることを特徴とする液相エピタキシャル成長法。
In manufacturing an epitaxial wafer for a GaP red light emitting diode, gallium oxide (Ga) is used.
In a method of stacking a p-type GaP layer doped with oxygen by a liquid phase epitaxial growth method using a Ga solution to which 2 O 3 ) has been added, an apparent density of Ga 2 O 3 is 3.
A liquid phase epitaxial growth method characterized by using a Ga 2 O 3 compact of 0 to 5.9 g / cm 3 (25 ° C.).
【請求項2】 前記Ga2 3 固結体の大きさが、0.
03cm3 (25℃)以上であることを特徴とする請求
項1に記載の液相エピタキシャル成長法。
2. The size of the Ga 2 O 3 compact is 0.
2. The liquid phase epitaxial growth method according to claim 1, wherein the temperature is not less than 03 cm 3 (25 ° C.).
【請求項3】 前記Ga2 3 固結体が、焼結体である
ことを特徴とする請求項1または請求項2に記載の液相
エピタキシャル成長法。
3. The liquid phase epitaxial growth method according to claim 1, wherein the Ga 2 O 3 compact is a sintered body.
【請求項4】 前記Ga2 3 固結体が、結合剤を用い
た焼結体であることを特徴とする請求項1または請求項
2に記載の液相エピタキシャル成長法。
4. The liquid phase epitaxial growth method according to claim 1, wherein the Ga 2 O 3 compact is a sintered body using a binder.
【請求項5】 前記結合剤が、酸化珪素(SiO2 )又
は酸化亜鉛(ZnO)であることを特徴とする請求項4
に記載の液相エピタキシャル成長法。
5. The binder according to claim 4, wherein the binder is silicon oxide (SiO 2 ) or zinc oxide (ZnO).
3. The liquid phase epitaxial growth method according to 1.
JP30086294A 1994-12-05 1994-12-05 Liquid phase epitaxial growth method Expired - Fee Related JP3144247B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30086294A JP3144247B2 (en) 1994-12-05 1994-12-05 Liquid phase epitaxial growth method
TW084101065A TW270215B (en) 1994-12-05 1995-02-08 Liquid phase extension growing process
KR1019950029402A KR0177007B1 (en) 1994-12-05 1995-09-07 Method for liquid phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30086294A JP3144247B2 (en) 1994-12-05 1994-12-05 Liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPH08157300A JPH08157300A (en) 1996-06-18
JP3144247B2 true JP3144247B2 (en) 2001-03-12

Family

ID=17890016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30086294A Expired - Fee Related JP3144247B2 (en) 1994-12-05 1994-12-05 Liquid phase epitaxial growth method

Country Status (3)

Country Link
JP (1) JP3144247B2 (en)
KR (1) KR0177007B1 (en)
TW (1) TW270215B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772752B1 (en) 2015-07-09 2017-08-29 김대희 Punching apparatus for busbar

Also Published As

Publication number Publication date
KR0177007B1 (en) 1999-03-20
KR960023268A (en) 1996-07-18
TW270215B (en) 1996-02-11
JPH08157300A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
US5239188A (en) Gallium nitride base semiconductor device
JP2809692B2 (en) Semiconductor light emitting device and method of manufacturing the same
CN100452456C (en) Nitride semiconductor light emitting device and fabricating method thereof
JPH04242985A (en) Gallium nitride group compound semiconductor laser diode
JPH098403A (en) Nitride semiconductor element and manufacture thereof
JPH03203388A (en) Semiconductor light emitting element and its manufacture
JP5805352B2 (en) Composite substrate, manufacturing method thereof, functional device, and seed crystal substrate
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
JP2005294794A (en) Gallium nitride semiconductor light emitting device
JP2007258529A (en) Group iii nitride semiconductor light emitting element, manufacturing method thereof, and lamp
JP3100644B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2965709B2 (en) Method for manufacturing semiconductor light emitting device
JP2012507875A (en) Gallium nitride based light emitting diode with thin p-type GaN and no AlGaN electron blocking layer
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP3144247B2 (en) Liquid phase epitaxial growth method
JP3182346B2 (en) Blue light emitting device and method of manufacturing the same
JP4313478B2 (en) AlGaInP light emitting diode
JP3146874B2 (en) Light emitting diode
JP3324102B2 (en) Manufacturing method of epitaxial wafer
JP2004096077A (en) Epitaxial wafer for compound semiconductor light-emitting element, method of manufacturing the same, and light-emitting element
JP2599088B2 (en) GaP red light emitting element substrate and method of manufacturing the same
JP2001077480A (en) Gallium nitride compound semiconductor light-emitting element and manufacture thereof
JPH06120561A (en) Gap series light emitting device substrate and manufacture thereof
KR100576850B1 (en) Manufacturing method of nitride based semiconductor light emitting device
JP3353703B2 (en) Epitaxial wafer and light emitting diode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees