JPS62197388A - Method and device for producing semiconductor single crystal - Google Patents

Method and device for producing semiconductor single crystal

Info

Publication number
JPS62197388A
JPS62197388A JP3971486A JP3971486A JPS62197388A JP S62197388 A JPS62197388 A JP S62197388A JP 3971486 A JP3971486 A JP 3971486A JP 3971486 A JP3971486 A JP 3971486A JP S62197388 A JPS62197388 A JP S62197388A
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
growth chamber
semiconductor single
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3971486A
Other languages
Japanese (ja)
Other versions
JPH0747519B2 (en
Inventor
Takeshi Miyazaki
健史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61039714A priority Critical patent/JPH0747519B2/en
Publication of JPS62197388A publication Critical patent/JPS62197388A/en
Publication of JPH0747519B2 publication Critical patent/JPH0747519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the title single crystal without any variance and having an excellent stoichiometrical property by controlling the temp. distribution in a single crystal growth chamber and the vapor pressures of specified plural high-vapor pressure components. CONSTITUTION:A grounded closed reaction tube 20 is separated by a vertical partition wall 21 and a horizontal partition wall into a growth chamber 22 and two high-pressure component storage chambers 24 and 25. The growth chamber 22 is independently communicated with the storage chambers 24 and 25 through capillaries 26a and 26b. The reaction tube is inserted into a furnace provided with temp-controllable heaters H1-H5 to form the raw material melt or raw material solid zone T0 or T'0, a crystal growth zone T1, a crystal zone T2, a zone T3 for heating the first high-vapor pressure component A, and a zone T4 for heating the second high-vapor pressure component B. A polycrystal material A.B is charged in a quartz boat 27 in the growth chamber 22, the high-vapor pressure components A and B are respectively stored in the storage chambers 24 and 25, and the reaction tube is inserted into the furnace wherein the temp. in the single crystal melting zone is controlled by the heaters H1-H5 to a temp. higher than the b.p. and moved to grow a single crystal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体単結晶あるいは混晶の製造方法並
びに装置に関する。更に詳しくいえば、自然凝固法を改
良し、高精度で蒸気圧を制御し、厳密な化学量論的組成
の制御を行うことによって、バラツキのない、均一な化
合物半導体の単結晶または混晶を生産性よく形成する方
法並びにそのための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for manufacturing compound semiconductor single crystals or mixed crystals. More specifically, by improving the natural solidification method, controlling the vapor pressure with high precision, and strictly controlling the stoichiometric composition, it is possible to produce uniform single crystals or mixed crystals of compound semiconductors with no variation. The present invention relates to a highly productive method of formation and an apparatus therefor.

従来の技術 従来汎用されてきたSi半導体デバイスでは、Siの諸
物性の限界から、最近のニーズには対応できないように
なってきた。例えば、ダイオードなどにおいて寸法を固
定した場合には、禁止帯中が大きく、しかも移動度が大
きい程高い遮断周波数が得られるが、Siでは限界であ
り、化合物半導体の使用によってこの点が克服された(
例えば超高周波用ダイオード)。また、間接遷移型のS
i半導体のバンド構造の限界から、高効率の発光デバイ
スを作製することも困難であった。これも直接遷移型で
ある化合物半導体の使用によって解決された。
2. Description of the Related Art Si semiconductor devices, which have been widely used in the past, have become unable to meet recent needs due to limitations in the physical properties of Si. For example, when the dimensions of a diode are fixed, the larger the forbidden band and the greater the mobility, the higher the cutoff frequency can be obtained, but this is a limit with Si, and this point has been overcome by using compound semiconductors. (
For example, ultra-high frequency diodes). In addition, indirect transition type S
Due to the limitations of the band structure of i-semiconductors, it has also been difficult to produce highly efficient light emitting devices. This was also solved by the use of compound semiconductors, which are direct transition types.

このように、エレクトロニクス技術においては高速動作
性並びに高周波動作性などのより高性能の半導体素子、
デバイスが要求されるようになってきており、それに伴
ってSiと比して移動度が高く、禁制帯幅の大きな化合
物半導体が注目されている。
In this way, in electronics technology, semiconductor elements with higher performance such as high-speed operation and high-frequency operation,
With the increasing demand for devices, compound semiconductors, which have higher mobility and a wider forbidden band width than Si, are attracting attention.

この化合物半導体は、更にダイヤモンド型共有結晶順似
の閃亜鉛横型結晶構造を有しており、Si等の■模型元
素半導体では得ることのできない機能デバイスを得るこ
とを可能とする。また、1つの元素を共通とする2種の
2元化合物半導体を組み合わせることにより、その組成
に応じて格子定数が連続的に単調に変化する3元系混晶
が得られ、その結果具なる半導体結晶間で格子整合を確
保できるペテロ接合を得ることができ、これは4元以上
の多元系混晶についても同様である。このように組成を
変えることにより、上記格子定数をはじめとする半導体
物性の制御が可能となる。
This compound semiconductor further has a zinc blend lateral crystal structure similar to a diamond-type covalent crystal, making it possible to obtain a functional device that cannot be obtained with a model element semiconductor such as Si. In addition, by combining two types of binary compound semiconductors that share one element in common, a ternary mixed crystal whose lattice constant continuously and monotonically changes depending on the composition can be obtained, resulting in the formation of a semiconductor. A Peter junction that can ensure lattice matching between crystals can be obtained, and the same is true for multi-component mixed crystals of quaternary or higher elements. By changing the composition in this way, it becomes possible to control the physical properties of the semiconductor, including the lattice constant.

ところで、上記のような各種化合物半導体デバイスの作
製プロセスにおいては、まず第1に高純度の単結晶ある
いは混晶の形成が不可欠である。
By the way, in the manufacturing process of various compound semiconductor devices as described above, first of all, it is essential to form a highly pure single crystal or mixed crystal.

しかしながら、これらは従来のSiとは異った各種特性
を有しているためにその結晶成長技術もまったく異り、
Slなどについてはチョクラルスキー法(CZ法)、フ
ローティングゾーン法(FZ法)等が広く利用されてい
るが、例えばGaAsを例にすると組成(Ga:Asの
比率)の厳密な制御が必要とされ、また高温における臨
界剪断応力が小さく、熱歪で転位がはいり易いなどの微
妙な技術上の問題がある。
However, since these have various properties different from conventional Si, their crystal growth techniques are also completely different.
The Czochralski method (CZ method), floating zone method (FZ method), etc. are widely used for Sl, etc. However, for example, when using GaAs as an example, strict control of the composition (Ga:As ratio) is required. Furthermore, there are subtle technical problems such as the fact that the critical shear stress at high temperatures is small, and dislocations are likely to occur due to thermal strain.

化合物半導体の結晶成長はバルク結晶の成長と、エピタ
キシーに大別され、バルク結晶からいわゆるウェハと呼
ばれる板状結晶が切出され、これは直接以下の加工プロ
セスに送られるか、あるいはエピタキシー用の基板とし
て使用されることになる。一方、後者のエピタキシーに
よる成長結晶は薄く、そのため機械強度の点で不十分で
あることから、そのままでは使用できず、基板の使用が
必要とされる。
Crystal growth of compound semiconductors can be broadly divided into bulk crystal growth and epitaxy. A plate-shaped crystal called a wafer is cut from the bulk crystal, and this is either directly sent to the following processing process or used as a substrate for epitaxy. It will be used as. On the other hand, the latter crystal grown by epitaxy is thin and therefore has insufficient mechanical strength, so it cannot be used as is and requires the use of a substrate.

上記化合物半導体のバルク結晶の成長方法としては、古
くからブリッジマン法(垂直ブリッジマン法、水平ブリ
ッジマン法)、引上げ法(LEC法)、FZ法等が利用
されており、その原理は、例えば垂直ブリッジマン法で
は、第2図に示すように、ヒータ1.2により設定され
た高温度と低温部とからなる所定の温度勾配(第2図左
側に示した)が設けられた加熱炉内で原料融液3の入っ
た石英容器4などを移動させることにより結晶5を成長
させることからなっている。また、無秩序な結晶核の生
成が起こらないように、融液の同化開始部で容器の径が
絞ってあり、この部分では核の生成が少なく、その中で
他の部分よりも早く成長する方位をもつものが種結晶の
役割りを果す。
The Bridgman method (vertical Bridgman method, horizontal Bridgman method), pulling method (LEC method), FZ method, etc. have been used for a long time as methods for growing bulk crystals of the above-mentioned compound semiconductors, and the principles thereof are, for example, In the vertical Bridgman method, as shown in Fig. 2, a heating furnace is provided with a predetermined temperature gradient (shown on the left side of Fig. 2) consisting of a high temperature section and a low temperature section set by a heater 1.2. A crystal 5 is grown by moving a quartz container 4 containing a raw material melt 3. In addition, in order to prevent the formation of disordered crystal nuclei, the diameter of the container is narrowed at the start of assimilation of the melt.In this area, fewer nuclei are generated, and within this area, the orientation in which they grow faster than in other areas is avoided. The one with this functions as a seed crystal.

尚、現在のブリッジマン法の主流は原料融液を、ボート
を用いて水平方向に移動させる水平ブリッジマン法であ
り、GaAsなどの単結晶の量産法として利用され、三
温度法(三温度HB法)、二温度法(二温度HB法)な
どが知られている。しかしながら、後者の二温度法では
成長する、例えばGaAsの電子密度などの特性の再現
性が不十分であり、また固化したGaAsのうちで単結
晶となる割合が低いなどの固有の問題点を有しており、
主として前者の三温度法が採用されていた。
The current mainstream Bridgman method is the horizontal Bridgman method, in which the raw material melt is moved horizontally using a boat.It is used as a mass production method for single crystals such as GaAs, and is called the three-temperature method (three-temperature HB). method), two-temperature method (two-temperature HB method), etc. However, the latter two-temperature method has inherent problems such as insufficient reproducibility of the characteristics of GaAs grown, such as electron density, and a low proportion of solidified GaAs that becomes a single crystal. and
The former three-temperature method was mainly used.

従来の三温度法を添付第3図に基き更に詳しく説明する
と、図から明らかな如くこの方法では温度分布に3つの
プラト一部分を有している。各温度T、 、T2および
T3はTI >T2 >T3なる関係となるように一定
値に調節されている。これらの温度は石英管などででき
た反応管10の外周上に設けられた複数のヒータ(図示
せず)によって制御される。反応管10は例えば気体の
拡散を防止するためのキャピラリー11を備えた隔壁1
2で2分されており、反応管10の左側の成長室内には
石英ボート13が封入されている。一方、右側の隔室1
2には単結晶形成原料(A−B)のうちの高解離圧成分
(例えばB)の固体が収納されていて、蒸気圧を制御す
ることにより結晶成長原料融液の解離、ひいては得られ
る結晶組成のストイキオメトリ−を制御し得るようにな
っている。石英ボート13には原料融液(AB)Lが収
納されていて、該ボート13を低温側(T2)に移動さ
せることにより単結晶(AB)。が成長する。
The conventional three-temperature method will be explained in more detail with reference to the attached FIG. 3. As is clear from the figure, this method has three plateau portions in the temperature distribution. Each temperature T, , T2, and T3 is adjusted to a constant value so that the relationship TI > T2 > T3 is established. These temperatures are controlled by a plurality of heaters (not shown) provided on the outer periphery of the reaction tube 10 made of a quartz tube or the like. The reaction tube 10 has a partition wall 1 equipped with a capillary 11 for preventing gas diffusion, for example.
2, and a quartz boat 13 is sealed in the growth chamber on the left side of the reaction tube 10. On the other hand, compartment 1 on the right
2 contains a solid of a high dissociation pressure component (for example, B) of the single crystal forming raw materials (A-B), and by controlling the vapor pressure, the crystal growth raw material melt is dissociated, and the resulting crystal is The stoichiometry of the composition can be controlled. A raw material melt (AB) L is stored in the quartz boat 13, and by moving the boat 13 to the low temperature side (T2), a single crystal (AB) is produced. grows.

実際の三温度HB法では棚付きボートと呼ばれる石英ボ
ートが使用されている。本図では固−液界面はほぼT、
からT2への変位部分の中央に位置する融点(m、p、
)の部分にある。
In the actual three-temperature HB method, a quartz boat called a shelf boat is used. In this figure, the solid-liquid interface is approximately T,
The melting point (m, p,
) part.

上記のような化合物半導体のバルク結晶の製法は成長す
べき結晶の物性、その種類等に応じて適当に使い分けさ
れている。
The methods for manufacturing bulk crystals of compound semiconductors as described above are used appropriately depending on the physical properties of the crystal to be grown, its type, etc.

最近、特にデバイスの特性改善上の要求から、低欠陥の
半導体材料が必要とされており、例えばI[[−V族の
GaAsなどにみられるInドープや磁場印加等による
手法を利用した引上げ法では既に転位密度100/Cd
以下という高い無転位化が達成されている。一方、II
−VI族化合物半導体においても、Zn5e、 CdT
e等の開発・研究が活発に進められつつあり、例えばC
dTeにおいてもZnを高濃度でドープして混晶化する
ことにより低欠陥化が可能となることが知られている。
Recently, there has been a need for semiconductor materials with low defects, especially in view of the need to improve device characteristics. Then, the dislocation density is already 100/Cd.
The following high dislocation-free properties have been achieved. On the other hand, II
- Also in group VI compound semiconductors, Zn5e, CdT
The development and research of C
It is known that it is possible to reduce defects in dTe by doping Zn at a high concentration to form a mixed crystal.

しかしながら、上記の如きバルク結晶の低欠陥化の目的
で、例えばIn、 Zn等の第三の添加元素を用いた場
合には、特に偏析係数が1より大きくずれた物質では結
晶内に濃度分布が生じることが知られている。
However, when a third additive element such as In or Zn is used for the purpose of reducing defects in the bulk crystal as described above, the concentration distribution within the crystal may change, especially for substances whose segregation coefficient deviates by a large amount. known to occur.

このように、本来低欠陥化の目的でドーパントを使用し
たにも拘らず、得られる結晶内にはその成長方向に沿っ
た濃度分布が生じ所定の組成の、かつストイキオメトリ
−の十分に制御された均質な製品を得ることができない
。更に、上記濃度分布発生の問題を解決する目的で高い
温度勾配を設けて結晶成長を行う試みもなされたが、逆
に欠陥密度が上昇する結果に終った。
In this way, even though dopants were originally used for the purpose of reducing defects, the resulting crystal has a concentration distribution along its growth direction, making it difficult to maintain a predetermined composition and sufficiently control the stoichiometry. It is not possible to obtain a homogeneous product. Furthermore, attempts have been made to grow crystals by providing a high temperature gradient in order to solve the problem of concentration distribution, but this resulted in an increase in defect density.

また、上記問題は第3図に示したような三温度HB法に
よって解決できるように思えるが、解離圧の高い成分を
2以上含む混晶を作製したり、解離圧の高い成分を含む
三元素に解離圧の高いドーパントを高濃度で添加しよう
とする場合には無効であり、欠陥の少ない十分なストイ
キオメトリ−の、目的とするバルク結晶を得ることはで
きない。
It seems that the above problem can be solved by the three-temperature HB method as shown in Figure 3, but it is also possible to create a mixed crystal containing two or more components with high dissociation pressure, or to create a mixed crystal containing three or more components with high dissociation pressure. This is ineffective when attempting to add a high concentration of a dopant with a high dissociation pressure to the crystal, and it is impossible to obtain the desired bulk crystal with few defects and sufficient stoichiometry.

発明が解決しようとする問題点 以上述べてきたように、半導体の分野においてはますま
す高性能化、高機能化が要求されてきており、従来のS
i等の単元素半導体のみではこれらの要求を満たすこと
が困難になってきている。そこで、高速動作化、高周波
化が可能な、高い移動度、飽和ドリフト速度等を有する
化合物半導体が注目され、今後その重要性はますます高
くなるものと予想される。
Problems to be Solved by the Invention As mentioned above, in the field of semiconductors, there is an increasing demand for higher performance and higher functionality, and the conventional S
It is becoming difficult to meet these requirements using only single-element semiconductors such as i. Therefore, compound semiconductors that can operate at high speeds and operate at high frequencies, have high mobility, saturation drift speed, etc. are attracting attention, and are expected to become even more important in the future.

このような化合物半導体を用いた各種デバイスを作製す
るには、高純度かつ低欠陥の化合物半導体結晶もしくは
混晶を得る必要があるが、これらはSi等とは異り、単
結晶成長の際注意を要する技術上のいくつかの問題を有
している。中でも特に厳密な蒸気圧制御を行い、化学量
論的組成を有し、かつ均一な特性のバルク単結晶並びに
混晶を安定して得ることが重要な課題である。
In order to fabricate various devices using such compound semiconductors, it is necessary to obtain compound semiconductor crystals or mixed crystals with high purity and low defects, but unlike Si, etc., these require special care when growing single crystals. There are some technical issues that require this. Among these, it is especially important to perform strict vapor pressure control to stably obtain bulk single crystals and mixed crystals with stoichiometric composition and uniform characteristics.

この点、上記従来法は、特に第3の添加元素を用いる場
合等においてその偏析係数が1から大巾にずれているよ
うな元素を使用する場合、あるいは解離圧の高い成分を
2以上含むような混晶の作製に対しては全く無効であり
、新しいバルク結晶製造技術の開発が切に望まれている
。尚、特に偏析係数に関する欠点を解消するために、高
い温度勾配を設けた成長法も提案されているが、逆に欠
陥密度が上昇するという負の成果しか得られていない。
In this regard, the conventional method described above is particularly useful when using an element whose segregation coefficient deviates widely from 1, such as when using a third additive element, or when using an element whose segregation coefficient deviates widely from 1, or when using an element that contains two or more components with a high dissociation pressure. This method is completely ineffective for producing mixed crystals, and the development of new bulk crystal manufacturing techniques is strongly desired. Incidentally, in order to overcome the drawbacks particularly related to the segregation coefficient, a growth method in which a high temperature gradient is provided has been proposed, but the only negative result has been that the defect density increases.

そこで、本発明の目的は自然凝固法(normalFr
eezing method)あるいは帯溶融法を改良
し、成長方向の高解離圧成分の濃度を所定の均一な値に
維持し、ストイキオメトリ−に優れ、特性の揃った多元
素化合物半導体のバルク単結晶を作製する方法を提供す
ることにある。
Therefore, the purpose of the present invention is to use the natural coagulation method (normalFr).
eezing method) or zone melting method, maintain the concentration of high dissociation pressure components in the growth direction at a predetermined uniform value, and produce bulk single crystals of multi-element compound semiconductors with excellent stoichiometry and uniform properties. The object of the present invention is to provide a manufacturing method.

また、本発明は上記方法を実施するためのバルク単結晶
の製造装置を提供することをも目的とするものである。
Another object of the present invention is to provide a bulk single crystal manufacturing apparatus for carrying out the above method.

問題点を 央するための手段 本発明者は、多元素化合物半導体、特に高い解離圧を有
する元素を成分として含有する多元素化合物半導体のバ
ルク単結晶の製造方法並びに製造装置の上記の如き現状
に鑑みて、上記従来法の呈する諸欠点を解決する新しい
技術を開発すべく種々検討・研究した結果、少なくとも
2種の高解離平衡蒸気圧成分の蒸気圧をそれぞれ独立に
制御することが有効であることを見出し、かかる知見に
基き本発明を完成した。
Means for Centralizing the Problems The present inventor has addressed the above-mentioned current state of the manufacturing method and manufacturing apparatus for bulk single crystals of multi-element compound semiconductors, particularly multi-element compound semiconductors containing elements having high dissociation pressure as components. In view of this, as a result of various studies and research aimed at developing new techniques to solve the drawbacks of the conventional methods described above, it has been found that it is effective to independently control the vapor pressures of at least two high dissociated equilibrium vapor pressure components. The present invention was completed based on this finding.

即ち、本発明は、まず半導体単結晶(以下混晶、ドーパ
ントを含むものを包含するものとして“単結晶”なる用
語を使用する)の製造方法に係り、この方法は反応管内
の原料を、所定の温度勾配に保たれた炉内で移動させる
ことにより単結晶の成長を行う多元素化合物半導体単結
晶の製造方法であって、単結晶の溶融領域の温度を、そ
の融点よりも高い温度に維持し、一方、高解離平衡蒸気
圧成分毎にその蒸気圧制御を行うことによって全圧を制
御することを特徴とする。
That is, the present invention first relates to a method for manufacturing a semiconductor single crystal (hereinafter, the term "single crystal" is used to include mixed crystals and dopants), and this method involves controlling raw materials in a reaction tube in a predetermined manner. A method for producing a multi-element compound semiconductor single crystal in which the single crystal is grown by moving the single crystal in a furnace maintained at a temperature gradient of , the temperature of the melting region of the single crystal being maintained at a temperature higher than its melting point. On the other hand, it is characterized in that the total pressure is controlled by controlling the vapor pressure of each high dissociation equilibrium vapor pressure component.

本発明は、また上記方法を実施するための装置にも係り
、該装置は成長室と、該成長室とその中心軸に対して垂
直方向の隔壁により分離され、かつ該中心軸に平行な隔
壁により2分された2つの高蒸気圧成分収納室と、該垂
直隔壁に設けられ、各収納室と成長室とを夫々独立に連
通ずる手段とを備えた反応管と、所定の温度分布を設定
するための加熱手段を備えた炉とで構成されることを特
徴とする。
The present invention also relates to an apparatus for carrying out the above method, the apparatus comprising a growth chamber separated by a partition wall perpendicular to the central axis of the growth chamber and parallel to the central axis. A reaction tube equipped with two high vapor pressure component storage chambers divided into two by the vertical partition wall and means for independently communicating each storage chamber with the growth chamber, and a predetermined temperature distribution set. It is characterized by comprising a furnace equipped with heating means for heating.

本発明の多元素化合物半導体単結晶の製造方法並びに装
置は帯溶融法または水平ブリッジマン法などの自然凝固
法の改良に係るものであり、特に多元素化合物半導体で
あって、2種以上の高蒸気圧(または解離圧)成分を含
むもの、偏析係数が1から大巾にずれるようなものにつ
き有利に適用できるが、勿論これらのみ制限されず、2
元素あるいはそのドーパントを含むもの等にも同様に応
用できる。
The method and apparatus for producing multi-element compound semiconductor single crystals of the present invention relate to improvements in natural solidification methods such as zone melting method or horizontal Bridgman method. It can be advantageously applied to those containing a vapor pressure (or dissociation pressure) component, and those whose segregation coefficient deviates widely from 1, but are of course not limited to these.
It can also be applied to elements containing elements or their dopants.

本発明の方法を帯溶融法として応用する場合には、成長
室の温度制御は以下のようにして行う。
When the method of the present invention is applied as a zone melting method, the temperature of the growth chamber is controlled as follows.

即ち、単結晶成長領域(結晶溶融帯域)以外の領域の温
度が結晶の融点直下となるようにする。一方、水平ブリ
ッジマン法として応用する場合には、単結晶成長領域に
至るまでの成長室部分を融点直上の温度とすることによ
り実施できる。
That is, the temperature of the region other than the single crystal growth region (crystal melting zone) is made to be just below the melting point of the crystal. On the other hand, when applied as a horizontal Bridgman method, it can be carried out by setting the temperature of the growth chamber up to the single crystal growth region just above the melting point.

従って、本発明は例えば、CdTeとZnTeとの混合
系、CdTeにSeをドーピングした系、■−■族化合
物半導体またはI−V族化合物半導体の混晶、■−II
I−VI型化合物半導体、II−rV−V型化合物半導
体単結晶等の製造のために有利に適用することができる
Therefore, the present invention is applicable to, for example, a mixed system of CdTe and ZnTe, a system in which CdTe is doped with Se, a mixed crystal of a ■-■ group compound semiconductor or an IV group compound semiconductor, and a ■-II group compound semiconductor.
It can be advantageously applied to the production of I-VI type compound semiconductors, II-rV-V type compound semiconductor single crystals, etc.

第1図は本発明の装置を概略的に断面図で示した図であ
り、以下この図に基き本発明の装置を更に詳しく説明す
る。即ち、本発明の装置は夫々T。
FIG. 1 is a schematic cross-sectional view of the apparatus of the present invention, and the apparatus of the present invention will be explained in more detail below based on this figure. That is, the device of the present invention has T.

(またはT’、>  (原料融液ゾーンまたは原料固体
ゾーン)、TI(結晶成長ゾーン)、T(結晶ゾーン)
、T3(第1の高蒸気圧成分、例えばへの加熱ゾーン)
およびT、(第2の高蒸気圧成分、例えばBの加熱ゾー
ン)を夫々形成するように、別々にかつ独立に温度調節
し辱るヒータ(H,〜H5)を−備えた炉内に、密封さ
れた反応管20、例えば石英ガラス管、パイレックス、
バイコール管等が接地される。この反応管20は垂直方
向の隔壁21によって分離された成長室22と、更に水
平方向の隔壁23によって2分された2つの高蒸気圧成
分収納室24.25と、成長室22と各収納室24.2
5を夫々独立に連通させる手段例えばキャピラU−26
aおよび26bとで構成される。
(or T', > (raw material melt zone or raw material solid zone), TI (crystal growth zone), T (crystal zone)
, T3 (heating zone to the first high vapor pressure component, e.g.)
and T, (heating zone of the second high vapor pressure component, e.g. B), respectively, in a furnace equipped with heaters (H, ~H5) whose temperature is controlled separately and independently. A sealed reaction tube 20, such as a quartz glass tube, Pyrex,
Vycor pipe etc. are grounded. This reaction tube 20 has a growth chamber 22 separated by a vertical partition 21, two high vapor pressure component storage chambers 24 and 25 further divided into two by a horizontal partition 23, and a growth chamber 22 and each storage chamber. 24.2
For example, Capilla U-26
a and 26b.

反応管20を上記のように構成し、各キャピラリーによ
り反応室22と夫々独立に連通された収納室の各成分を
独立に温度制御することにより、反応室22内の対応す
る高蒸気圧成分の蒸気圧は十分に調整され、ストイキオ
メトリ−に優れた所定の組成の均一な単結晶を得ること
ができる。
By configuring the reaction tube 20 as described above and independently controlling the temperature of each component in the storage chamber, which is independently communicated with the reaction chamber 22 by each capillary, the corresponding high vapor pressure component in the reaction chamber 22 can be controlled. The vapor pressure can be sufficiently adjusted, and a uniform single crystal with a predetermined composition and excellent stoichiometry can be obtained.

ここで、原料融液−結晶界面あるいは原料−溶融帯、結
晶−溶融帯での温度勾配の設定・調節はH,−H,で行
われ、−刃高蒸気圧成分A、Bの制御は夫々H1および
H5により行われ、これらは収納室24および25に接
続された熱電対TC,およびTe2と結合され、該熱電
対からの情報に基き高精度の温度制御が行える。
Here, the setting and adjustment of the temperature gradient at the raw material melt-crystal interface, raw material-molten zone, and crystal-molten zone is performed by H, -H, and the control of the blade high vapor pressure components A and B, respectively. This is performed by H1 and H5, which are coupled with thermocouples TC and Te2 connected to storage chambers 24 and 25, and highly accurate temperature control can be performed based on information from the thermocouples.

また、本発明の装置において加熱形式は特に制限されず
、従来公知の任意の手段、例えば抵抗加熱、誘導加熱、
輻射加熱(ランプ、アーク、レーザ等)がいずれも利用
できる。更に、直接加熱が問題となるような場合には均
熱管、ライナー管などによる熱遮蔽を行うことも可能で
ある。
Further, in the apparatus of the present invention, the heating format is not particularly limited, and any conventionally known means may be used, such as resistance heating, induction heating,
Radiant heating (lamp, arc, laser, etc.) can all be used. Furthermore, in cases where direct heating poses a problem, it is also possible to provide heat shielding using a soaking tube, a liner tube, or the like.

本発明の装置の構成は勿論縦型の反応管に対して適用す
ることもでき、この場合高蒸気圧成分収納室には成分保
持容器を収納室側壁に固定する。
The configuration of the apparatus of the present invention can of course be applied to a vertical reaction tube, and in this case, a component holding container is fixed to the side wall of the high vapor pressure component storage chamber.

また、収納室を上部および下部のいずれに設けることも
可能であるが、特に下部に設ける場合には成長室を上部
が解放され連通している二重筒状構造とし、下方に円筒
間の間隙と各収納室との連通用のキャピラリーを設ける
などの工夫が必要となる。勿論、反応管または炉の移動
は上方・下方のいずれの態様も可能であり、これは各ヒ
ータの制御温度を適宜変更することにより実施される。
It is also possible to provide the storage chamber at either the top or the bottom, but especially when it is installed at the bottom, the growth chamber should have a double cylindrical structure with the top open and communicating, and the space between the cylinders at the bottom. It is necessary to devise measures such as providing a capillary for communication between the storage chamber and each storage chamber. Of course, the reaction tube or the furnace can be moved either upwardly or downwardly, and this is accomplished by appropriately changing the control temperature of each heater.

罫J 以上述べたように、多元素系の化合物半導体単結晶ある
いは混晶、ドーパントを高濃度で含有する単結晶等を作
製する場合、殆どの場合において高い解離平衡蒸気圧を
有する成分を含むために、通常の水平・垂直ブリッジマ
ン法、帯溶融法では蒸気圧制御が不十分となり、ストイ
キオメトリ−性に優れた高品位の単結晶あるいは混晶を
得ることは難しかった。例えば、垂直ブリッジマン法で
は第2図に示したように、空間部分6に高蒸気圧成分が
抜は出てしまい化学量論的組成からの大きなずれを生ず
る場合が多かった。これは水平ブリフジマン法において
も同様であり、蒸気圧制御用の成分元素収納室が1つし
か設けられていないものでは2元素系化合物半導体まで
が限度であり、3元素系以上、あるいはドーパントを添
加する場合などでは問題であった。更に、偏析係数が1
以上のものにあっては単結晶の成長方向に沿った特定成
分の不均一な濃度分布を生じてしまい、特性の揃った単
結晶(あるいはウェハ)を得ることができなかった。
Rule J As mentioned above, when producing multi-element compound semiconductor single crystals or mixed crystals, single crystals containing high concentrations of dopants, etc., in most cases they contain components with a high dissociation equilibrium vapor pressure. In addition, vapor pressure control is insufficient in the conventional horizontal/vertical Bridgman method and zone melting method, making it difficult to obtain high-quality single crystals or mixed crystals with excellent stoichiometry. For example, in the vertical Bridgman method, as shown in FIG. 2, high vapor pressure components are often extracted from the space 6, resulting in a large deviation from the stoichiometric composition. This is the same in the horizontal Brifziman method, and in systems with only one component element storage chamber for vapor pressure control, the limit is two-element compound semiconductors, and three or more element-based or dopant-added semiconductors. This was a problem in some cases. Furthermore, the segregation coefficient is 1
In the above methods, a non-uniform concentration distribution of specific components occurs along the growth direction of the single crystal, making it impossible to obtain a single crystal (or wafer) with uniform properties.

しかしながら、本発明の方法並びに装置によれば、第1
図のヒータH4で決まる物質Aの温度を熱電対TC,で
独立に制御し、一方ヒータH5で定まる物質Bの温度を
熱電対TC2により独立に制御し、成長室内の全圧力P
1を制御することにより充分な精度で生成単結晶の化学
量論的組成の制御を実施できる。尚、4元素以上の場合
については構成元素の解離蒸気圧を比較考慮し、分圧制
御すべき元素を多元系の合金とすることによって同様な
効果を達成することができる。
However, according to the method and apparatus of the present invention, the first
The temperature of substance A determined by heater H4 in the figure is independently controlled by thermocouple TC, while the temperature of substance B determined by heater H5 is independently controlled by thermocouple TC2, and the total pressure inside the growth chamber P
By controlling 1, the stoichiometric composition of the produced single crystal can be controlled with sufficient accuracy. In the case of four or more elements, the same effect can be achieved by comparing and considering the dissociation vapor pressures of the constituent elements and using a multi-element alloy as the element whose partial pressure is to be controlled.

上記のように、成長単結晶の化学量論組成の制御は全圧
P丁で制御するが、固相への分配係数を制御する目的で
、成長位置毎に分圧を変化させることも可能であり、こ
の場合には予め予備実験を行い最適の温度プロファイル
を決定しておき、これに従ってT3およびT、を変動さ
せることによって実施できる。更に、このような温度プ
ロファイルを自動的に設定するためにコンビニ−′夕な
どと組合せることも可能である。このような温度(ある
いは分圧)制御は固−液界面での偏析係数が1から大巾
にずれるような物質に対して特に有効である。
As mentioned above, the stoichiometric composition of the grown single crystal is controlled by the total pressure, but it is also possible to change the partial pressure at each growth position in order to control the distribution coefficient to the solid phase. In this case, a preliminary experiment is conducted to determine the optimum temperature profile, and T3 and T can be varied accordingly. Furthermore, it is also possible to combine it with a convenience store, etc. to automatically set such a temperature profile. Such temperature (or partial pressure) control is particularly effective for substances whose segregation coefficient at the solid-liquid interface deviates widely from 1.

本発明の例えば第1図に示すような横型の反応管(ある
いは成長炉)により帯溶融法で単結晶成長を行う場合に
は、反応管20の成長室22内の石英ボーH7に多結晶
原料を投入し、一方収納室に高蒸気圧成分A、Bを夫々
収納し、ヒータHl−Hsを夫々作動させ、所定の温度
分布例えば第1図に併記したような分布を設定した炉内
に上記反応管20を挿入し、十分に温度平衡に達した後
、所定の速度で反応管もしくは炉を移動させ帯溶融ゾー
ンを移動させることにより単結晶を形成する。この際高
蒸気圧成分(A、B)の分圧が上記のように制御されて
おり、成分元素の濃度勾配のない、ストイキオメ) I
J−性の優れた製品を有利に成長させることができる。
In the case of growing a single crystal by the zone melting method using a horizontal reaction tube (or growth furnace) as shown in FIG. On the other hand, high vapor pressure components A and B are respectively stored in the storage chamber, heaters Hl-Hs are activated, and the above-mentioned components are placed in a furnace in which a predetermined temperature distribution is set, for example, as shown in Fig. 1. After the reaction tube 20 is inserted and temperature equilibrium is sufficiently reached, a single crystal is formed by moving the reaction tube or furnace at a predetermined speed to move the melting zone. At this time, the partial pressures of the high vapor pressure components (A, B) are controlled as described above, and there is no concentration gradient of the component elements.
Products with excellent J-characteristics can be advantageously grown.

尚、縦型とした場合にも同様に操作でき、同様に優れた
結果が期待できる。
It should be noted that the same operation can be performed in the case of a vertical type, and similarly excellent results can be expected.

かくして、本発明によれば、高品位の化合物半導体単結
晶、特に多元素系化合物半導体の単結晶インゴットを量
産性良く得ることができ、従ってこれから得られるウェ
ハも、特性の揃ったものを歩留り良く量産でき、経済性
においても有利となる。
Thus, according to the present invention, high-quality compound semiconductor single crystals, particularly single crystal ingots of multi-element compound semiconductors, can be obtained with good mass production, and the wafers obtained from these can also be produced with uniform characteristics at a high yield. It can be mass-produced and is economically advantageous.

実施例 以下、実施例により本発明を更に詳しく説明するが、本
発明はこれにより回答制限されない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 添付第1図に示した本発明の装置を用いて、Cd+−、
Zn、Te (x =0.05 )単結晶を作製した。
Example 1 Using the apparatus of the present invention shown in the attached FIG.
A Zn, Te (x = 0.05) single crystal was produced.

高純度石英ボート27にベンゼン、エタノール等の熱分
解によりカーボンコートを施し、これに6ナインのCd
、 Zn、 Teを秤量して夫々所定量投入し、一方A
物質としてCdを、またB物質としてZnを各収納室2
4.25に装入し、石英反応管20中に封入した。
A high-purity quartz boat 27 is coated with carbon by thermal decomposition of benzene, ethanol, etc.
, Zn, and Te were weighed and added in predetermined amounts, while A
Each storage chamber 2 contains Cd as a substance and Zn as a B substance.
4.25 and sealed in a quartz reaction tube 20.

ボートの長さは20cm、幅は2cmで、溶融帯の幅が
10mmとなるようにヒータH1、H2およびH3を調
整した(夫々1050℃、1180℃および1030℃
)。
The length of the boat was 20 cm, the width was 2 cm, and heaters H1, H2, and H3 were adjusted so that the width of the melting zone was 10 mm (1050 °C, 1180 °C, and 1030 °C, respectively).
).

一方、Hlを820℃としくCd分圧: 1.8atm
)、H3を650℃としくZn分圧: 0.05atm
)、総圧力を1.85atmに制御した。
On the other hand, when Hl is set to 820°C, Cd partial pressure: 1.8 atm
), H3 is set to 650°C, Zn partial pressure: 0.05 atm
), the total pressure was controlled at 1.85 atm.

このような条件の下で、石英管20を3 mm 7時の
速度で低温側に移動させ、ボート中の溶融帯を徐々に移
動させて目的とするCd+−xZnJe単結晶インゴッ
トを得た。かくして得た単結晶のフォトルミネッセンス
によるスペクトル測定を行った。一方、同様に第2図に
示した従来法で成長させた同じ単結晶についても上記の
ようなスペクトル測定を行った。得られた結果を夫々第
4図および第5図に示す。
Under these conditions, the quartz tube 20 was moved to the low temperature side at a speed of 3 mm 7:00 to gradually move the molten zone in the boat to obtain the desired Cd+-xZnJe single crystal ingot. The spectrum of the thus obtained single crystal was measured by photoluminescence. On the other hand, the above-mentioned spectrum measurement was also performed on the same single crystal grown by the conventional method shown in FIG. The results obtained are shown in FIGS. 4 and 5, respectively.

第4図および第5図の比較から明らかな如く、従来法で
作製した結晶では約1.42eV近傍にブロードなピー
クがみられ、エツジエミッション(1,6eV付近)も
弱いのに対して、本発明に従って得た単結晶では高いエ
ツジエミッションを示し、一方1、42eVのピークは
殆ど観測されないことがわかる。
As is clear from the comparison between Figures 4 and 5, the crystal produced by the conventional method has a broad peak around 1.42 eV and the edge emission (around 1.6 eV) is weak, whereas this It can be seen that the single crystal obtained according to the invention shows high edge emission, while the peak at 1.42 eV is hardly observed.

この結果から、化学量論的組成制御の不完全性によるC
d5Znサイトの空孔等の欠陥が大巾に減少しているも
のと考えられる。
This result shows that C due to incomplete control of stoichiometric composition.
It is considered that defects such as vacancies at the d5Zn site are greatly reduced.

また、上記2種の結晶につき二結晶法によるX線ロッキ
ングカーブの半値幅を求めたが、その結果によれば、本
発明による結晶は65arc secと極めてシャープ
であるのに対して、従来法のものは約200arc s
ecとブロードであり、格子の完全性の点でも大きな差
があることが確認された。
Furthermore, the half width of the X-ray rocking curve was determined using the two-crystal method for the above two types of crystals, and the results showed that the crystal according to the present invention is extremely sharp at 65 arc sec, whereas that of the conventional method. The thing is about 200 arcs
ec and broad, and it was confirmed that there was a large difference in the completeness of the lattice.

発明の効果 以上詳しく説明したように、本発明の多元素系化合物半
導体の単結晶の製造方法並びに装置によれば、複数の高
蒸気圧成分の蒸気圧制御を夫々独立に実施し、全体の圧
力P工を制御できることから、複数の高蒸気圧成分を含
有する多元素系単結晶、混晶あるいはドーパントを含む
系などのストイキオメトリ−性に優れた単結晶インゴッ
ト等を有利に量産できると共に、偏析係数が1から大巾
にずれた物質についても結晶の成長方向に沿った濃度分
布のない組成の揃った製品が得られる。
Effects of the Invention As explained in detail above, according to the method and apparatus for producing a single crystal of a multi-element compound semiconductor of the present invention, the vapor pressure of a plurality of high vapor pressure components is independently controlled, and the overall pressure is Since the P process can be controlled, it is possible to advantageously mass-produce single crystal ingots with excellent stoichiometry, such as multi-element single crystals containing multiple high vapor pressure components, mixed crystals, or systems containing dopants. Even for substances whose segregation coefficient deviates widely from 1, a product with a uniform composition without concentration distribution along the crystal growth direction can be obtained.

従って、本発明によれば、特性の揃った、高信頼度のウ
ェハを歩留り良く成長単結晶インゴットから切出すこと
ができ、生産性、経済性の点で著しく有利である。
Therefore, according to the present invention, highly reliable wafers with uniform characteristics can be cut from a grown single crystal ingot with a high yield, which is extremely advantageous in terms of productivity and economy.

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図は本発明の多元素系化合物半導体単結晶の製
造装置の好ましい一例を示す概略的な断面図であり、併
せて該装置の温度分布を示したものであり、 第2図および第3図は、夫々従来の垂直並びに水平ブリ
ッジマン法を説明するための模式的な断面図゛であって
、同様に温度分布を併記したものであり、 第4図および第5図は夫々本発明および従来法により得
た単結晶のフォトルミネッセンススペクトル測定の結果
をプロットしたグラフである。 (主な参照番号) ■、2・・ヒータ、  3・・原料融液、4・・石英容
器、   5・・成長結晶、6・・空間、     1
0.20・・石英管、11・・キャピラリー、 12・
・隔壁、13・・石英ボート、 21・・垂直隔壁、   22・・成長室、23・・平
行隔壁、   24.25・・収納室、26a、26b
・・キャピラリー、
Attached FIG. 1 is a schematic cross-sectional view showing a preferred example of the apparatus for producing a multi-element compound semiconductor single crystal of the present invention, and also shows the temperature distribution of the apparatus. Figure 3 is a schematic cross-sectional view for explaining the conventional vertical and horizontal Bridgman methods, and also shows the temperature distribution. 1 is a graph plotting the results of photoluminescence spectrum measurement of a single crystal obtained by a conventional method. (Main reference numbers) ■, 2... Heater, 3... Raw material melt, 4... Quartz container, 5... Growing crystal, 6... Space, 1
0.20...Quartz tube, 11...Capillary, 12.
・Partition wall, 13..Quartz boat, 21..Vertical partition wall, 22..Growth chamber, 23..Parallel partition wall, 24.25..Storage chamber, 26a, 26b
・Capillary,

Claims (11)

【特許請求の範囲】[Claims] (1)反応管内に収納された原料を、所定の温度勾配の
設定された炉内で移動させることにより単結晶の成長を
行う多元素化合物半導体単結晶の製造方法であって、 該単結晶の成長室内の温度分布を、単結晶の溶融領域の
温度がその融点よりも高い温度となるように制御し、か
つ高解離平衡蒸気圧成分毎に独立に各蒸気圧を制御する
ことによって全圧を調整することを特徴とする上記多元
素化合物半導体単結晶の製造方法。
(1) A method for producing a multi-element compound semiconductor single crystal in which a single crystal is grown by moving raw materials stored in a reaction tube in a furnace with a predetermined temperature gradient, the method comprising: The total pressure is controlled by controlling the temperature distribution in the growth chamber so that the temperature in the melting region of the single crystal is higher than its melting point, and by controlling the vapor pressure of each high dissociation equilibrium vapor pressure component independently. The method for producing the above multi-element compound semiconductor single crystal, which comprises adjusting the multi-element compound semiconductor single crystal.
(2)上記反応管が横型であることを特徴とする特許請
求の範囲第1項記載の多元素化合物半導体単結晶の製造
方法。
(2) The method for producing a multi-element compound semiconductor single crystal according to claim 1, wherein the reaction tube is horizontal.
(3)上記方法が帯溶融法であり、上記成長室の原料固
体側の温度が単結晶融点の直下となるように制御される
ことを特徴とする特許請求の範囲第2項記載の多元素化
合物半導体単結晶の製造方法。
(3) The multi-element method according to claim 2, wherein the method is a zone melting method, and the temperature on the raw material solid side of the growth chamber is controlled to be just below the melting point of the single crystal. A method for manufacturing compound semiconductor single crystals.
(4)上記方法が水平ブリッジマン法であり、上記成長
室の原料融液温度が単結晶融点の直上となるように制御
されることを特徴とする特許請求の範囲第2項記載の多
元素化合物半導体単結晶の製造方法。
(4) The multi-element method according to claim 2, wherein the method is a horizontal Bridgman method, and the temperature of the raw material melt in the growth chamber is controlled to be just above the single crystal melting point. A method for manufacturing compound semiconductor single crystals.
(5)上記反応管が縦型であることを特徴とする特許請
求の範囲第1項記載の多元素化合物半導体単結晶の製造
方法。
(5) The method for producing a multi-element compound semiconductor single crystal according to claim 1, wherein the reaction tube is of a vertical type.
(6)上記方法が帯溶融法であり、上記成長室の原料固
体側の温度が単結晶融点の直下となるように制御される
ことを特徴とする特許請求の範囲第5項記載の多元素化
合物半導体単結晶の製造方法。
(6) The multi-element method according to claim 5, wherein the method is a zone melting method, and the temperature on the raw material solid side of the growth chamber is controlled to be just below the melting point of the single crystal. A method for manufacturing compound semiconductor single crystals.
(7)上記方法が水平ブリッジマン法であり、上記成長
室の原料融液温度が単結晶融点の直上となるように制御
されることを特徴とする特許請求の範囲第5項記載の多
元素化合物半導体単結晶の製造方法。
(7) The multi-element method according to claim 5 is characterized in that the method is a horizontal Bridgman method, and the temperature of the raw material melt in the growth chamber is controlled to be just above the single crystal melting point. A method for manufacturing compound semiconductor single crystals.
(8)成長室と、該成長室とその中心軸に対し垂直な隔
壁により分離され、かつ該中心軸に平行な隔壁により2
分された2つの高蒸気圧成分元素の収納室と、上記垂直
隔壁に設けられ、上記各収納室と成長室とを夫々独立に
連通する手段とを備えた反応管と、該反応管の軸に沿っ
て所定の温度分布を設定するための加熱手段を備えた炉
とで構成されることを特徴とする多元素化合物半導体単
結晶の製造装置。
(8) a growth chamber separated by a partition wall perpendicular to the growth chamber and its central axis, and separated by a partition wall parallel to the central axis;
A reaction tube comprising two separate storage chambers for high vapor pressure component elements, a means provided on the vertical partition wall for independently communicating the storage chambers and the growth chamber, and an axis of the reaction tube. 1. An apparatus for producing a multi-element compound semiconductor single crystal, comprising: a furnace equipped with a heating means for setting a predetermined temperature distribution along the .
(9)上記連通手段がキャピラリーであることを特徴と
する特許請求の範囲第8項記載の多元素化合物半導体単
結晶の製造装置。
(9) The apparatus for manufacturing a multi-element compound semiconductor single crystal according to claim 8, wherein the communication means is a capillary.
(10)上記各収納室の側壁に高蒸気圧成分支持容器を
取付けたことを特徴とする特許請求の範囲第8項または
第9項記載の多元素化合物半導体単結晶の製造装置。
(10) The apparatus for producing a multi-element compound semiconductor single crystal according to claim 8 or 9, characterized in that a high vapor pressure component support container is attached to the side wall of each of the storage chambers.
(11)上記成長室が上部で連通した2重円筒構造を有
し、下部に該円筒間の間隙と上記各収納室とを連通する
キャピラリーを備えていることを特徴とする特許請求の
範囲第8項記載の多元素化合物半導体単結晶の製造装置
(11) The above-mentioned growth chamber has a double cylindrical structure communicating at the upper part, and is equipped with a capillary at the lower part communicating the gap between the cylinders and each of the above-mentioned storage chambers. 9. The apparatus for producing a multi-element compound semiconductor single crystal according to item 8.
JP61039714A 1986-02-25 1986-02-25 Method for producing semiconductor single crystal and apparatus therefor Expired - Lifetime JPH0747519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039714A JPH0747519B2 (en) 1986-02-25 1986-02-25 Method for producing semiconductor single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039714A JPH0747519B2 (en) 1986-02-25 1986-02-25 Method for producing semiconductor single crystal and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS62197388A true JPS62197388A (en) 1987-09-01
JPH0747519B2 JPH0747519B2 (en) 1995-05-24

Family

ID=12560654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039714A Expired - Lifetime JPH0747519B2 (en) 1986-02-25 1986-02-25 Method for producing semiconductor single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0747519B2 (en)

Also Published As

Publication number Publication date
JPH0747519B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
Isshiki et al. Wide-bandgap II-VI semiconductors: growth and properties
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
US5612014A (en) Compound semiconductor crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
US6878202B2 (en) Method for growing single crystal of compound semiconductor and substrate cut out therefrom
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPS62197388A (en) Method and device for producing semiconductor single crystal
JPS62158187A (en) Method and device for producing single crystal of semiconductor
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
JPH08109094A (en) Production of compound semiconductor single crystal
CN111647946A (en) Method for preparing high-quality crystal by rotating magnetic field
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JP2001072488A (en) Method for producing solid solution single crystal
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
JP3633212B2 (en) Single crystal growth method
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPS62197387A (en) Device for producing high-quality seed crystal
JP2004244232A (en) Vessel for manufacturing compound semiconductor single crystal, compound semiconductor single crystal manufactured by using the same, and compound semiconductor wafer
JPS62158186A (en) Production of single crystal of compound semiconductor
JPH0193497A (en) Production of znse single crystal
JPH08301686A (en) Production of mixed crystal semiconductor single crystal