JPS6217097A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS6217097A
JPS6217097A JP15234085A JP15234085A JPS6217097A JP S6217097 A JPS6217097 A JP S6217097A JP 15234085 A JP15234085 A JP 15234085A JP 15234085 A JP15234085 A JP 15234085A JP S6217097 A JPS6217097 A JP S6217097A
Authority
JP
Japan
Prior art keywords
solution
meltback
substrate
growth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15234085A
Other languages
Japanese (ja)
Other versions
JPH0566353B2 (en
Inventor
Tsunehiro Unno
恒弘 海野
Mineo Wajima
峰生 和島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15234085A priority Critical patent/JPS6217097A/en
Publication of JPS6217097A publication Critical patent/JPS6217097A/en
Publication of JPH0566353B2 publication Critical patent/JPH0566353B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make the meltback amount accurate only by specifying the temp. higher than the meltback temp. and to enable the formation of a specular surface-like epitaxial layer by distributing a saturated soln. for meltback wherein an excessive solute is removed in the meltback temp. to the inside of a soln. reservoir for the distribution. CONSTITUTION:A solvent and an excessive solute are introduced to the inside of a soln. reservoir 12 for meltback. Then after dissolving the solute in the solvent incorporated in the reservoir 12 up to the saturation at midway meltback temp T1 in the rise in temp. by rising the temp. of a furnace, a saturated soln. 17 for meltback wherein the excessive solute content is removed is distributed to the inside of a soln. reservoir 14 for the distribution. Then, it is risen in temp. up to the growth temp. T2 higher than the meltback temp. T1 to make the soln. 17 an unsaturated state and thereafter both the slow cooling and the temp. drop are started from the growth temp. T2 and the soln. 17 reached to a prescribed degree of saturation -DELTAT2 is brought into contact with a substrate 19 for the prescribed time T1 to subject the surface of the substrate to the meltback. Thereafter, a soln. 18 for the growth being in a supercooled state is brought into contact with the substrate 19 to grow an epitaxial layer on the substrate 19.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスライドボート法による液相エピタキシャル成
長法に係り、特にエピタキシャル成長前に先立って行な
われる基板表面のメルトバックの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid phase epitaxial growth method using a slide boat method, and particularly to improvement of meltback of a substrate surface performed prior to epitaxial growth.

[従来の技術] エピタキシャル成長させるための基板のなかで半絶縁性
基板や混晶基板は、そのまま基板表面にエピタキシャル
成長させることが難しい。
[Prior Art] Among the substrates for epitaxial growth, semi-insulating substrates and mixed crystal substrates are difficult to epitaxially grow directly on the substrate surface.

半絶縁性基板の場合には、エピタキシャル成長前に基板
が高温になるため、表面が熱劣化を起こして比抵抗が下
がってしまうからである。また、GaAfAsなどの酸
化性の強い混晶基板の場合には、空気に晒しただけで表
面が酸化するため、そのままエピタキシャル成長させた
のでは島状に成長したりして、きれいなエピタキシャル
表面が得られないからである。
This is because in the case of a semi-insulating substrate, the substrate becomes high temperature before epitaxial growth, causing thermal deterioration of the surface and lowering the specific resistance. In addition, in the case of a highly oxidizing mixed crystal substrate such as GaAfAs, the surface oxidizes just by exposing it to air, so if you continue to epitaxially grow it, it will grow into islands, making it difficult to obtain a clean epitaxial surface. That's because there isn't.

そこで、それらの欠点を解消するためにメルドパツク法
が考えられた。即ち、第4図に示すごとり、基板1をス
ライダ2ごとスライドさせて、溶液収容部3に形成した
メルトバック用溶液溜め4のメルトバック用溶液5を、
成長用溶液溜め6の成長用溶液7に先立って接触させる
ように構成したスライドボート装置を炉内に挿入して用
いる。
Therefore, the Meld Pack method was devised to eliminate these drawbacks. That is, as shown in FIG. 4, by sliding the substrate 1 together with the slider 2, the melt-back solution 5 in the melt-back solution reservoir 4 formed in the solution storage section 3 is poured.
A slide boat device configured to be brought into contact with the growth solution 7 in the growth solution reservoir 6 in advance is inserted into the furnace and used.

作業順序しては、先ず第4図の状態で炉内を成長温度ま
で昇温する。次に第5図に示すように、R間りで徐冷降
温を始め、時間1で基板1をスライドして溶質が溶媒に
充分溶けていない未飽和メルトバック用溶液5と時間j
まで接触させ、基板表面層を溶かして取り去る。メルト
バックを終了する時間jで再び基板1をスライドさせ成
長用溶液7の下に移動しエピタキシャル層の成長を開始
する。そして時間kになったら基板1をスライドさせて
成長を終了する。
In the order of operation, first, the temperature inside the furnace is raised to the growth temperature in the state shown in FIG. Next, as shown in FIG. 5, slow cooling is started between R and the substrate 1 is slid at time 1 to remove the unsaturated melt-back solution 5 in which the solute is not sufficiently dissolved in the solvent and time j.
The surface layer of the substrate is melted and removed. At time j when the meltback ends, the substrate 1 is again slid and moved under the growth solution 7 to start growing the epitaxial layer. Then, at time k, the substrate 1 is slid to end the growth.

基板表面層を溶かして取り去るための未飽和溶液を得る
ために、成長温度下で溶媒に対して飽和するのに不充分
な量となる溶質を厳格に秤量していた。
In order to obtain an unsaturated solution for dissolving and removing the substrate surface layer, the amount of solute was rigorously weighed to be insufficient to saturate the solvent at the growth temperature.

[発明が解決しようとする問題点] ところが、上述したメルトバック法における溶媒に対す
る溶質を厳格に秤量することは難しく、また温度制御に
も厳格さが要求されるため、未飽和度を精度良く制御す
ることができなかった。このため、メルトバック量に再
現性がないと共に、不均一なメルトバックが起るため鏡
面状のエピタキシャル層を再現性良く得ることが困難で
あった。
[Problems to be solved by the invention] However, it is difficult to strictly weigh the solute relative to the solvent in the above-mentioned melt-back method, and strict temperature control is also required, so it is difficult to accurately control the degree of unsaturation. I couldn't. For this reason, there is no reproducibility in the amount of meltback, and non-uniform meltback occurs, making it difficult to obtain a mirror-like epitaxial layer with good reproducibility.

[発明の目的] 本発明の目的は上記従来の問題点を解消して、エピタキ
シャル成長前に行なうメルトバックを制御性よく、且つ
容易に行なうことが可能な液相エピタキシャル成長法を
提供することである。
[Object of the Invention] An object of the present invention is to solve the above-mentioned conventional problems and to provide a liquid phase epitaxial growth method in which meltback performed before epitaxial growth can be easily performed with good controllability.

[発明の概要] 上記目的に沿う本発明は、分配方式を用いるスライドボ
ート法において、未飽和メルトバック用溶液を準備する
ために降温開始温度より低い温度でメルトバラ用溶液の
分配操作を行なうことに特徴がある。
[Summary of the Invention] The present invention, which achieves the above object, involves distributing a melt bulk solution at a temperature lower than the cooling start temperature in order to prepare an unsaturated melt bag solution in a slide boat method using a distribution method. It has characteristics.

これを実tM@に対応する第1図〜第2図に基づいて説
明する。
This will be explained based on FIGS. 1 and 2 corresponding to the actual tM@.

最初に、メルトバック用溶液溜め12内に溶媒と過剰気
味の溶質とを入れる。ここで過剰気味とは後述するメル
トバック温度でメルトバック用溶液17が飽和溶液にな
るために十分な曇という意味である。
First, a solvent and an excessive amount of solute are put into the melt-back solution reservoir 12. Here, "too much" means that the melt-back solution 17 becomes sufficiently cloudy to become a saturated solution at the melt-back temperature described later.

次に、炉の昇温を開始し、昇温途中のメルトバック温度
T1になるとこの温度を保持し、メルトバック用溶液溜
め12内の溶媒中に溶質を飽和するまで溶かしく第1図
(a))、その後、溶媒から遊離している過剰な溶質分
を除いた飽和メルトバック用溶液17を分配用溶液溜め
14内に分配する(第1図(b))。
Next, the temperature of the furnace is started to rise, and when it reaches the meltback temperature T1 in the middle of heating, this temperature is maintained and the solute is dissolved in the solvent in the meltback solution reservoir 12 until it is saturated. )) Thereafter, the saturated melt-back solution 17 from which the excess solute released from the solvent has been removed is distributed into the distribution solution reservoir 14 (FIG. 1(b)).

この分配後、メルトバック温度Tsよりも大きな成長温
度T2まで更に昇温してメルトバック用溶液17を未飽
和状態となしく第1図(C)。
After this distribution, the temperature is further increased to a growth temperature T2 higher than the meltback temperature Ts to bring the meltback solution 17 into an unsaturated state as shown in FIG. 1(C).

(d))、次いで成長温度T2より徐冷降温して行き、
メルトバック用溶液17が所定の未飽和度(−ΔT2 
)に達したらこれに所定時間tt、3%板19を接触し
て基板表面をメルトバックさせる。
(d)), then gradually cooled down from the growth temperature T2,
The melt-back solution 17 has a predetermined degree of unsaturation (-ΔT2
), the 3% plate 19 is brought into contact with this for a predetermined time tt to melt back the substrate surface.

しかる後に過冷却状態にある成長用溶液18と基板19
を接触させることにより、エピタキシャル層が基板19
上に成長する。
After that, the growth solution 18 and the substrate 19 are in a supercooled state.
By contacting the epitaxial layer with the substrate 19
grow up.

従って、メルトバック用溶液の未飽和度−ΔT2と接触
時間t1とを決めることにより、メルトバック最の制御
が可能となる。この場合において、本工程では、従来の
ように遊離した溶質がある限り温度が上昇してもメルト
バック用溶液が飽和状態を維持するものと異なり、メル
トバック用溶液溜め12から分配用溶液溜め14にメル
トバック温度Ti下で飽和したメルトバック用溶液17
を一旦移し換え、新たな溶質の供給を断つようにし、メ
ルトバック’IA a T tを超えるとメルトバック
用溶液17が未飽和状態となるようにしたことにより、
当初溶媒に対して過剰気味に溶質を入れておけばよいの
で、溶媒と溶質の母を高い精度で秤量する必要も、温度
の絶対値を正しく制御する必要もない。
Therefore, by determining the degree of unsaturation -ΔT2 of the melt-back solution and the contact time t1, it becomes possible to control the melt-back optimally. In this case, in this step, unlike the conventional method in which the melt-back solution maintains a saturated state even if the temperature rises as long as there is free solute, the melt-back solution is moved from the melt-back solution reservoir 12 to the distribution solution reservoir 14. Meltback solution 17 saturated under meltback temperature Ti
By once transferring the solution and cutting off the supply of new solute, the meltback solution 17 becomes unsaturated when the meltback 'IA a T t is exceeded.
Since it is sufficient to initially add solute in excess of the solvent, there is no need to weigh the solvent and solute with high precision, nor to accurately control the absolute value of temperature.

本発明は、半絶縁性基板やGaAβASなどの酸化性の
強い混晶基板などエピタキシャル成長前に基板表面をメ
ルトバックする必要のあるすべての液相エピタキシャル
成長に適用できる。
The present invention is applicable to all types of liquid phase epitaxial growth that require melting back of the substrate surface before epitaxial growth, such as semi-insulating substrates and strongly oxidized mixed crystal substrates such as GaAβAS.

[実施例] 本発明の実施例を第1図〜第3図に基づいて説明すれば
以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 to 3.

第1図は本発明を実施するためのスライドボート装@1
0の工程図を示す。同図において、11はメルトバック
用溶液溜め12及び成長用溶液溜め13を有する成長用
溶液ホルダであり、2つの分配用溶液溜め14.15を
有する分配用溶液ホルダ16上にスライド自在に設けら
れる。通常は、成長用溶液ホルダ11をスライドさせる
と分配用溶液溜め14.15への分配が一度にできるよ
うになっているが、メルトバック用溶液溜め12及び成
長用溶液溜め13内の各メルトバック用溶液17、成長
用溶液18を分配用溶液溜め14.15にスライド暦に
応じてそれぞれ別個に分配できるようになっている。
Figure 1 shows slide boat equipment @1 for carrying out the present invention.
0 process diagram is shown. In the figure, 11 is a growth solution holder having a meltback solution reservoir 12 and a growth solution reservoir 13, and is slidably provided on a distribution solution holder 16 having two distribution solution reservoirs 14 and 15. . Normally, by sliding the growth solution holder 11, distribution to the distribution solution reservoirs 14 and 15 can be performed at once, but each meltback in the meltback solution reservoir 12 and the growth solution reservoir 13 can be distributed at once. The growth solution 17 and the growth solution 18 can be separately distributed to distribution solution reservoirs 14 and 15 according to the slide calendar.

分配用溶液ホルダ15の下部には、基板1つを保持する
スライダ20が設けられ、そのスライダ20はボー1−
21上にスライド自在に設けられ、そのスライドにより
分配用溶液溜め14.15内の各メルトバック用溶液1
7.成長用溶液18と基板19を順次接触するようにス
ライドボート装置10は構成されている。
A slider 20 for holding one substrate is provided at the bottom of the dispensing solution holder 15, and the slider 20 is connected to the board 1-1.
21 so that each meltback solution 1 in the dispensing solution reservoir 14.
7. The slide boat device 10 is configured to sequentially bring the growth solution 18 into contact with the substrate 19.

さて、上記のような構成における作業順序について説明
する。ここでは、GaAS半絶縁性基板上へのGaAS
のエピタキシャル成長を例にとって述べる。
Now, the work order in the above configuration will be explained. Here, we introduce GaAS on a GaAS semi-insulating substrate.
This will be explained using epitaxial growth as an example.

最初に、スライダ20に基板19をセットし、メルトバ
ック用溶液溜め12と成長用溶液溜め13に、共に溶媒
となるQaと溶質となるQa As多結晶を入れる。Q
aに対するQa As多結晶の量は、後述する成長温度
において飽和溶液となるのに充分過剰な吊、即ち飽和量
以上の暦を用意する。飽和量以上であるから秤量には、
それ程精度を必要としない。そして、スライドボート装
置10は第1図(a )の状態で図示しない反応炉に挿
入する。
First, the substrate 19 is set on the slider 20, and Qa as a solvent and Qa As polycrystal as a solute are placed in both the melt-back solution reservoir 12 and the growth solution reservoir 13. Q
The amount of Qa As polycrystals relative to a should be sufficiently excessive to become a saturated solution at the growth temperature described below, that is, the amount should be greater than the saturated amount. Since it is more than the saturation amount, for weighing,
It doesn't require that much precision. Then, the slide boat device 10 is inserted into a reactor (not shown) in the state shown in FIG. 1(a).

次に、スライドボート装置10を挿入した炉を第2図に
示す如く、メルトバック温度T!まで昇温し、その温度
を時間aからbまで保持し、原料であるGa ASをQ
a溶液中に飽和するまで溶かす(第1図(a))。Qa
 ASを過剰気味に入れであるので非溶解の遊離GaA
Sが存在することになるが、この遊離Qa Asは生成
されたメルトバック用溶液17及び成長用溶液18の上
層に溜り、下層には遊離Qa Asは存在しない。
Next, as shown in FIG. 2, the furnace into which the slide boat device 10 was inserted is heated to a melt-back temperature T! The temperature was maintained from time a to b, and the raw material Ga AS was
Dissolve in solution a until saturated (Figure 1(a)). Qa
Since AS is added in excess, undissolved free GaA
Although S is present, this free Qa As accumulates in the upper layer of the generated melt-back solution 17 and growth solution 18, and no free Qa As exists in the lower layer.

Qa ASがQa溶液中に飽和するまで溶けたら、成長
用溶液ホルダ11をスライドしてメルトバック用溶液1
7を第1の分配用溶液溜め14に落として分配する(第
1図(b))。この第1の分配用溶液溜め14への分配
はメルトバック用溶液17の下層について行なわれるの
で、分配用溶液溜め14には遊離している過剰Qa A
S分が除かれた飽和溶液が入ることになる。
When the Qa AS is dissolved in the Qa solution until it is saturated, slide the growth solution holder 11 and add the meltback solution 1.
7 is dropped into the first distribution solution reservoir 14 and distributed (FIG. 1(b)). Since the distribution to the first distribution solution reservoir 14 is performed on the lower layer of the meltback solution 17, the free excess Qa A is transferred to the distribution solution reservoir 14.
A saturated solution from which the S content has been removed will be contained.

このようにして十分な量の飽和メルトバック用溶液17
が分配用溶液溜め14に入ったら、更に成長用溶液ホル
ダ11をスライドしてメルトバック用溶液溜め12と第
1の分配用溶液溜め12との連通を断つ一方、今度は成
長用溶液溜め13と第2の分配用溶液溜め15とを連通
して成長用溶液18を分配する(第1図(C))。
In this way, a sufficient amount of saturated melt-back solution 17
After entering the distribution solution reservoir 14, the growth solution holder 11 is further slid to cut off the communication between the meltback solution reservoir 12 and the first distribution solution reservoir 12, while the growth solution reservoir 13 and The growth solution 18 is distributed by communicating with the second distribution solution reservoir 15 (FIG. 1(C)).

この状態で炉の温度をメルトバック温度Tlから成長温
度下2まで昇温し、この成長温度を時間Cからdまで保
持する。成長温度T2に保持することにより、第2の分
配用溶液溜め15内の成長用溶液18はM離Ga As
のない飽和溶液となる。
In this state, the temperature of the furnace is raised from the meltback temperature Tl to the growth temperature 2, and this growth temperature is maintained from time C to d. By maintaining the growth temperature T2, the growth solution 18 in the second distribution solution reservoir 15 becomes M-GaAs
This results in a saturated solution with no .

また、このとき第1の分配用溶液溜め14内に閉じ込め
られたメルトバック用溶液17は新たに溶解すべきQa
 Asの供給が断たれているため、T2−Ttの温度だ
け未飽和状態となる。ここで成長用溶液ホルダ11を更
にスライドしてメルトバック用溶液17と成長用溶液1
8の分配操作を終了する(第1図(d))。
Moreover, at this time, the melt-back solution 17 trapped in the first distribution solution reservoir 14 is added to the Qa to be newly dissolved.
Since the supply of As is cut off, the temperature becomes unsaturated at T2-Tt. At this point, slide the growth solution holder 11 further to remove the melt-back solution 17 and the growth solution 1.
The distribution operation of step 8 is completed (FIG. 1(d)).

そして、これらの分配操作終了後の時間dで成長温度T
2を徐冷降温する。この徐冷降温は所定の緩い温度勾配
で行なう。成長温度T2より低くくメルトバック温度T
1より高い所定温度下3となる時間eで、スライダ20
をスライドさせメルドパツク用溶液17と基板1つを接
触させる。このとき、メルトバック用溶液17は一ΔT
2 =Tr−T3だけ確実に未飽和状態となっている。
Then, at time d after the completion of these distribution operations, the growth temperature T
2 is gradually cooled down. This gradual cooling is performed with a predetermined gentle temperature gradient. Meltback temperature T lower than growth temperature T2
At a time e when the temperature reaches a predetermined temperature higher than 1, the slider 20
slide to bring the melt pack solution 17 into contact with one substrate. At this time, the melt-back solution 17 is - ΔT
2 = Tr - T3 is definitely in the unsaturated state.

時間t1の間メルトバックして基板の表面変成層を取り
除くと共に、第2の分配用溶液溜め15内の成長用溶液
18が△T1だけ過冷却状態となる時間fで、スライダ
20を再びスライドさせ、表面の変成層を取り除いたい
た基板19を成長用溶液18と接触させる。時間fから
gのt2時間の間、この接触を保ってエピタキシセル層
を基板1つ上に成長させる。
The slider 20 is slid again at a time f when the growth solution 18 in the second distribution solution reservoir 15 is supercooled by ΔT1 while the surface metamorphic layer of the substrate is removed by melting back for a time t1. Then, the substrate 19 from which the metamorphic layer on the surface has been removed is brought into contact with the growth solution 18. This contact is maintained for a time t2 from time f to g to grow an epitaxy cell layer on one substrate.

ここで、メルトバック量は、メルトバック用溶液の未飽
和度−ΔT2と、接触時間[Lとにより決まるが、その
精度は±10%まで制御可能である。
Here, the meltback amount is determined by the degree of unsaturation -ΔT2 of the meltback solution and the contact time [L, and its accuracy can be controlled to ±10%.

降温開始温度800℃又はその付近という条件下で、鏡
面状態にメルトバックを行なうためには、−ΔT2は2
〜15℃以内が適しており、一方、メルトバック時間t
1は変成層の厚さにもよるが、1〜30秒程度程度面を
得るのに適している。メルトバック量を精度良く制御で
きるから、変成層を取り除くのにメルトバック用溶液が
最低限の量で済む。
In order to perform meltback to a mirror state under the condition that the cooling start temperature is 800°C or around 800°C, -ΔT2 must be 2.
~15℃ or less is suitable, while the meltback time t
1 is suitable for obtaining a surface for about 1 to 30 seconds, although it depends on the thickness of the metamorphic layer. Since the amount of meltback can be precisely controlled, the minimum amount of meltback solution is required to remove the metamorphic layer.

第3図は第1図の実施例の変形例を示すもので、第1図
と異なる点は、成長用溶液ホルダ11aにはメルトバッ
ク用溶液溜め12aしか設けず、分配用溶液ホルダ16
の第1の分配用溶液溜め14にメルトバック用溶液17
を分配操作するけれども第2の分配用溶液溜め15には
当初から成長用溶液18が入るようになって分配操作を
行なわないようにした点で、このようにしても基板表面
のメルトバックは均一に行なわれる。
FIG. 3 shows a modification of the embodiment shown in FIG. 1. The difference from FIG. 1 is that the growth solution holder 11a is only provided with a melt-back solution reservoir 12a, and the distribution solution holder 16
The melt-back solution 17 is placed in the first distribution solution reservoir 14 of
Although the second distribution solution reservoir 15 is filled with the growth solution 18 from the beginning and the distribution operation is not performed, even with this method, the meltback on the substrate surface is uniform. It will be held in

なお、上記実施例ではメルトバック後1層成長させる場
合について述べたが、メルトバック後多層成長させるこ
とも可能である。また、Qa As半絶縁性基板ではな
く、GaAρAsなどの混晶基板をメルトバックさせる
場合には、メルトバック用溶液としてGaとQa AS
多結晶の他に、Aβを加えてもよい。
In the above embodiment, the case where one layer is grown after meltback is described, but it is also possible to grow multiple layers after meltback. In addition, when melting back a mixed crystal substrate such as GaAρAs instead of a QaAs semi-insulating substrate, Ga and QaAS are used as a meltback solution.
In addition to polycrystals, Aβ may be added.

[発明の効果1 以上図するに本発明によれば次のような優れた効果を発
揮する。
[Effects of the Invention 1 As described above, the present invention exhibits the following excellent effects.

(1)  メルトバック温度下で過剰溶質を除去した飽
和メルトバック用溶液を分配用溶液溜め内に分配するこ
とにより、メルトバック温度に対するこれよりも高い温
度を特定(所定温度)するだけで、基板と接触させるメ
ルトバック用溶液の未飽和度を精度良く制御できるので
、メルトバック用溶液の未飽和度と接触時間とから決ま
るメルトバック量を正確なものとすることができる。し
たがって、メルトバック■の再現性がきわめて良好とな
ると共に、基板表面を均一にメルトバックすることがで
き、鏡面状のエピタキシャル層を再現性よく得ることが
できる。
(1) By distributing the saturated melt-back solution from which excess solute has been removed under the melt-back temperature into the distribution solution reservoir, the substrate Since the degree of unsaturation of the melt-back solution brought into contact with the melt-back solution can be controlled with high accuracy, the amount of melt-back determined from the degree of unsaturation of the melt-back solution and the contact time can be made accurate. Therefore, the reproducibility of meltback (3) is extremely good, the substrate surface can be uniformly melted back, and a mirror-like epitaxial layer can be obtained with good reproducibility.

(2)  溶質に対して過剰気味の溶質を入れるだけで
良いので、従来のような溶媒、溶質の高精度の秤量を必
要としなくなり、作業がきわめて容易となる。
(2) Since it is only necessary to add a slightly excessive amount of solute to the solute, there is no need for highly accurate weighing of the solvent and solute as in the past, making the work extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程図、第2図は第1図の
工程における温度プログラムを示す線図、第3図は第1
図の変形例を示す一工程図、第4図は従来の液相エピタ
キシャル成長装置の断面図、第5図は第4図の装置によ
る工程を実施する温度プログラムである。 図中、12はメルトバック用溶液溜め、14は分配用溶
液溜め、17はメルトバック用溶液、18は成長用溶液
、19は基板、T1はメルトバック温度、T2は成長温
度、=ΔT2は所定の未飽和度、tlは所定時間である
。 特許出願人    日立電線株式会社 代理人弁理士   絹  谷  信  雄図面の浄招−
(内容に変更なし) 12:ノルトノ昏−7用)に々fめ    T1:メル
Fハ゛・77(シ支14:令配帛遵袴錨)     T
21対i践度17:メルトj〜7弔蒜    −ΔT2
ニア’r6Lq滲皮旧:バ長用叙       tド亡
震I群間19:幕1− 第1図 第3図 第5図 手続ネ…正書く方式) %式% 1、事件の表示   特願昭60−152340号2、
発明の名称   液相エピタキシャル成長法3、補正を
する者 事件との関係  特許出願人 (512)日立電線株式会社 4、代理人 郵便番号 105 東京都港区愛宕1丁目6番7号 愛宕山弁護士ビル 5、補正命令の日付 昭和60年10月29日 (発送日) 6、補正の対象 図  面 7、補正の内容 (1)  別紙のごとりlI墨を用いて作成した図面を
提出する。 (但し、内容を変更せず) 8、添付書類の目録
Fig. 1 is a process diagram of one embodiment of the present invention, Fig. 2 is a diagram showing a temperature program in the process of Fig. 1, and Fig. 3 is a diagram showing the temperature program in the process of Fig. 1.
4 is a sectional view of a conventional liquid phase epitaxial growth apparatus, and FIG. 5 is a temperature program for carrying out the process using the apparatus of FIG. 4. In the figure, 12 is a melt-back solution reservoir, 14 is a distribution solution reservoir, 17 is a melt-back solution, 18 is a growth solution, 19 is a substrate, T1 is a melt-back temperature, T2 is a growth temperature, and ΔT2 is a predetermined value. The degree of unsaturation, tl, is a predetermined time. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinuya Drawing Invitation
(No change in content) 12: Nortonoko-7) Nininfme T1: Mel F High 77 (Shishi 14: Reisai Jun Hakama Anchor) T
21 versus i practice level 17: Melt j ~ 7 condolence -ΔT2
Nia 'r6Lq old skin: Bacho's story t de ghost I group interval 19: Act 1 - Figure 1 Figure 3 Figure 5 Procedure ne...correct writing method) % expression % 1, Incident display Tokugansho 60-152340 No. 2,
Title of the invention: Liquid phase epitaxial growth method 3, relationship with the person making the amendment Patent applicant (512) Hitachi Cable Co., Ltd. 4, agent postal code: 105 Atagoyama Lawyer Building 5, 1-6-7 Atago, Minato-ku, Tokyo , Date of amendment order: October 29, 1985 (shipment date) 6. Drawings subject to amendment 7. Contents of amendment (1) Submit drawings prepared using II ink as shown in the attached sheet. (However, the contents remain unchanged) 8. List of attached documents

Claims (1)

【特許請求の範囲】[Claims] 基板表面をメルトバックしてからエピタキシャル層を基
板上に成長させるスライドボート法による液相エピタキ
シャル成長法において、メルトバック用溶液溜め内に溶
媒と、過剰気味の溶質とを入れ、昇温途中のメルトバッ
ク温度下で溶媒中に溶質を飽和するまで溶かした後、溶
媒から遊離している過剰溶質分を除いた飽和メルトバッ
ク用溶液を分配用溶液溜め内に分配し、次いでメルトバ
ック温度よりも大きな成長温度まで昇温してメルトバッ
ク用溶液を未飽和状態となし、その後成長温度より徐冷
降温を開始し、所定の未飽和度に達したメルトバック用
溶液に所定時間基板を接触して基板表面をメルトバック
させ、しかる後に過冷却の成長用溶液と基板を接触させ
ることによりエピタキシャル層を基板上に成長させるこ
とを特徴とする液相エピタキシャル成長法。
In the liquid-phase epitaxial growth method using the slide boat method, in which the epitaxial layer is grown on the substrate after melting back the substrate surface, a solvent and an excessive amount of solute are placed in the melt-back solution reservoir, and the melt-back process is performed during heating. After dissolving the solute in the solvent to saturation at a temperature, the saturated melt-back solution, excluding the excess solute free from the solvent, is distributed into a distribution reservoir, and then the growth rate is greater than the melt-back temperature. The temperature is raised to a certain temperature to make the meltback solution unsaturated, and then the temperature is gradually cooled down from the growth temperature, and the substrate is brought into contact with the meltback solution for a predetermined period of time after reaching a predetermined degree of unsaturation. A liquid phase epitaxial growth method characterized by growing an epitaxial layer on a substrate by melting back the substrate and then bringing the substrate into contact with a supercooled growth solution.
JP15234085A 1985-07-12 1985-07-12 Liquid phase epitaxial growth method Granted JPS6217097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15234085A JPS6217097A (en) 1985-07-12 1985-07-12 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15234085A JPS6217097A (en) 1985-07-12 1985-07-12 Liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS6217097A true JPS6217097A (en) 1987-01-26
JPH0566353B2 JPH0566353B2 (en) 1993-09-21

Family

ID=15538396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15234085A Granted JPS6217097A (en) 1985-07-12 1985-07-12 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS6217097A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154398A (en) * 1979-05-16 1980-12-01 Fujitsu Ltd Growing method and apparatus for liquid phase multi- layered membrane of semiconductor
JPS56114897A (en) * 1980-02-07 1981-09-09 Mitsubishi Electric Corp Method for liquid-phase epitaxial growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154398A (en) * 1979-05-16 1980-12-01 Fujitsu Ltd Growing method and apparatus for liquid phase multi- layered membrane of semiconductor
JPS56114897A (en) * 1980-02-07 1981-09-09 Mitsubishi Electric Corp Method for liquid-phase epitaxial growth

Also Published As

Publication number Publication date
JPH0566353B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JPS6217097A (en) Liquid phase epitaxial growth method
Greene Growth of GaAs ingots with high free electron concentrations
JPS56104796A (en) Method of uniform doping of impurity by liquid capsule method and device therefor
JPS627697A (en) Liquid phase epitaxial growth method
JPS6357398B2 (en)
JPS60145608A (en) Liquid phase epitaxial growth method
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS6064440A (en) Liquid phase epitaxial growth method
Doi et al. Multiple-layer liquid phase epitaxy of GaAs by controlled supercooling of Ga solutions
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JPS5669821A (en) Manufacture of semiconducting crystal
JPS6418992A (en) Production of lithium niobate single crystal thin film
JPH01230498A (en) Method for forming garnet membrane
JPS562639A (en) Liquid phase growth of multiple element semiconductor crystal
JPS5827239B2 (en) Semiconductor crystal manufacturing equipment
JPS56129697A (en) Liquid-phase epitaxially-growing method and apparatus
JPS60149124A (en) Method for liquid-phase epitaxial growth
JP2005008457A (en) Production method for magnetic garnet single crystal membrane
JPS61280613A (en) Liquid epitaxial growing process
JPH0687697A (en) Production of thin film of lithium niobate single crystal
JPS63159290A (en) Liquid phase epitaxial growth and device therefor
JPH0481550B2 (en)
JPH0532495A (en) Method for growing single crystal of potassium niobate
JPH0437687A (en) Crystal growing device
JPS61197498A (en) Production of single crystal of compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees