JPS61197498A - Production of single crystal of compound semiconductor - Google Patents

Production of single crystal of compound semiconductor

Info

Publication number
JPS61197498A
JPS61197498A JP3289185A JP3289185A JPS61197498A JP S61197498 A JPS61197498 A JP S61197498A JP 3289185 A JP3289185 A JP 3289185A JP 3289185 A JP3289185 A JP 3289185A JP S61197498 A JPS61197498 A JP S61197498A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
compound semiconductor
raw material
sealing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3289185A
Other languages
Japanese (ja)
Inventor
Hiroshi Morishita
森下 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3289185A priority Critical patent/JPS61197498A/en
Publication of JPS61197498A publication Critical patent/JPS61197498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:In producing single crystal of III-V group compound semiconductor by pulling it up from a melt solution of raw material by the use of B2O3 as a sealing agent, to produce the single crystal of compound semiconductor by a simple device, by heating the surface of B2O3 of the sealing agent at a specific temperature. CONSTITUTION:In producing single crystal of III-V group compound semiconductor such as GaAs, GaP, InP, etc., a polycrystal of the compound or raw material elements to give a given composition ratio are put in the rotatable crucible 3 in the high-pressure container 1. Then, B2O3 as a sealing agent is put in the crucible, the high-pressure container is filled with an inert gas such as Ar, etc., the crucible 3 is heated by the heater 2, to form the melt layer 7 of the compound and the B2O3 melt layer 8 of the sealing agent on it. The surface of the sealing agent of the B2O3 melt layer 8 is heated >=1,100 deg.C by the heater 9, scum in the melt raw material is vaporized, a given temperature distribution is restored, single crystal is grown on the seed crystal 6 at the tip of the rotary pulling shaft 5 and pulled up.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明hut−v族化合物半導体単結晶例えはGaAs
、 Gap、工nP等の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a hut-V group compound semiconductor single crystal, for example GaAs.
, Gap, Engineering nP, etc.

〔従来の技術〕[Conventional technology]

■−v族化合物半導体の製造方法として、液体封止剤で
覆わnた原料融液から単結晶を引上げる方法、いわゆる
高圧封止引上げ法が知らnている。この時、封止剤とし
て一般にB2O3が用いらnるが、B2O3の温度が低
く、その友め原料融解時及び結晶成長中に発生する原料
から生成する醗化物による固化物(スカム)が気化せず
結晶成長界面に付着あるいは接触し、ツイン・リネージ
の原因となつ几。こn’を解消する友めの従来の技術と
しては、例えば、特開昭58−172290号公報に示
さnているように2重るつぼt使うなどの方法がある。
As a method for manufacturing group (1)-V compound semiconductors, a method of pulling a single crystal from a raw material melt covered with a liquid sealant, the so-called high-pressure sealing pulling method, is known. At this time, B2O3 is generally used as a sealant, but the low temperature of B2O3 prevents the solidification (scum) from vaporizing from the raw materials generated during melting of the raw materials and crystal growth. The crystals adhere to or come into contact with the crystal growth interface, causing twin lineage. As a conventional technique for solving this problem, for example, there is a method of using a double crucible as shown in Japanese Patent Application Laid-Open No. 172290/1983.

こlf′Lは封止剤(BzOs等)で覆れ几原料融液が
、るつぼとその内部に設けらf’L7j下部に細孔を有
する内るつぼからなる二重るつぼを用いることにより、
成長用原料融液と供給用原料融液に二重さnるとともに
、成長用原料融液の化学当量比組成からのズレと供給用
原料融液の化学当量比組成からのズレとが互に異なるこ
とt−特徴とし、多結晶から生成するスカムが成長用原
料融液に混入しない利点を有する方法である・ 〔発明が解決しようとする問題点〕 しかしながら上記し友ような従来のこの種の方法は、装
置がかなり複雑になるという欠点がある。また、るつぼ
の形状が複雑な几め、特にるつぼとしてPBNなどを用
いた場合は、コストが非常に高い、などの問題点があつ
几。
By using a double crucible consisting of a crucible and an inner crucible with pores at the bottom, the raw material melt is covered with a sealant (BzOs etc.).
The growth raw material melt and the supply raw material melt are doubled, and the deviation from the chemical equivalence ratio composition of the growth raw material melt and the deviation from the chemical equivalence ratio composition of the supply raw material melt are mutually This method has the advantage that scum generated from polycrystals does not mix into the growth raw material melt. [Problem to be solved by the invention] However, the conventional method of this type as mentioned above The method has the disadvantage that the equipment is quite complex. In addition, there are problems with crucibles with complicated shapes, especially when PBN is used as the crucible, and the cost is extremely high.

本発明は斜上の難点を解消し、複雑な装置を用いること
なく、容易に■−■−■合物半導体単結晶を再現性良く
製造する方法を提供することを目的とする。
It is an object of the present invention to provide a method for easily producing a compound semiconductor single crystal with good reproducibility, without using complicated equipment, and without using any complicated equipment.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

本発明は、酸化ボロンを封止剤として原料融液から引き
上げることによりIII−V族化合物半導体結晶全製造
する方法において、高圧下の上記酸化ボロンの表面温度
t−1100℃以上とし、そAKより上記原料融液の表
面及び上記酸化ボロン中の固化物を気化した後に結晶成
長を行うこと全特徴とする■−v族化合物半導体単結晶
の製造方法である。
The present invention provides a method for producing a III-V group compound semiconductor crystal by pulling boron oxide from a raw material melt using boron oxide as a sealing agent, in which the surface temperature of the boron oxide is set to t-1100°C or higher under high pressure, and the AK 1) A method for producing a group V compound semiconductor single crystal, characterized in that crystal growth is performed after vaporizing the surface of the raw material melt and the solidified material in the boron oxide.

本発明全添付の図面に基いて説明すると、第1図は引き
上げ法による単結晶製造装置の一例を示し、1は高圧容
器であって、この高圧容器1内にはるつぼ5が設置さn
lこのるつぼは支持部材4により回転できるように支持
さnており、周囲に設けらnた加熱器2によフ所定の温
度に加熱される。るつぼ3の上部には先端に種結晶6を
備えた引き上げ軸5が設けらn、この引き上げ軸5は回
転すると共に上下動するように構成されている。ま几る
つぼ3の上部には副加熱器9が設けである。上記の装置
を用いて例えばGaAs単結晶を製造する場合、るつぼ
3の中にガリウム(Ga)と砒素(A8) t−所望の
組成比の単結晶となるような割合でそnぞn人詐る。
The present invention will be explained based on the accompanying drawings. FIG. 1 shows an example of a single crystal manufacturing apparatus by a pulling method, and 1 is a high-pressure vessel, and a crucible 5 is installed in this high-pressure vessel 1.
This crucible is rotatably supported by a support member 4, and heated to a predetermined temperature by a heater 2 provided around the crucible. A pulling shaft 5 having a seed crystal 6 at its tip is provided in the upper part of the crucible 3, and the pulling shaft 5 is configured to rotate and move up and down. A sub-heater 9 is provided on the upper part of the crucible 3. When producing, for example, a GaAs single crystal using the above-mentioned apparatus, gallium (Ga) and arsenic (A8) are placed in the crucible 3 at a ratio that will yield a single crystal with a desired composition ratio. Ru.

次いで封止剤としてBzOst−人nる。るつぼ3内に
所定量のGa、1B、 Boo@ f入nたら、るつぼ
3を高圧容器1内に設置し、アルゴン、窒素等の不活性
ガスを圧入して10〜50気圧の高圧とし、るつぼQG
aGaO2点(約1260℃)以上の温度で加熱する。
Then BzOst is used as a sealant. Once a predetermined amount of Ga, 1B, and Boo@f is injected into the crucible 3, the crucible 3 is placed in the high-pressure container 1, and an inert gas such as argon or nitrogen is injected to create a high pressure of 10 to 50 atm. QG
Heating is performed at a temperature higher than the GaO2 point (approximately 1260° C.).

すると、るつぼ3内では下部にGaAs溶融液層7が形
成し、上部に320m溶融液層8が形成し、このB、 
o、層が封止剤となってG!LAII溶融液の蒸発を防
止する。GaAeが溶融しt後、副加熱器9でB、0s
8i加熱し、封止剤の表面温度t−1100℃以上に上
げ、スカムを気化させ文後、所定の温度分布に戻し、単
結晶を引き上げる。
Then, in the crucible 3, a GaAs melt layer 7 is formed at the bottom, a 320 m melt layer 8 is formed at the top, and this B,
o, the layer acts as a sealant and G! Prevent evaporation of LAII melt. After GaAe is melted, B is 0s in the sub-heater 9.
The surface temperature of the sealant is raised to t-1100° C. or higher to vaporize the scum, and then the temperature is returned to a predetermined temperature distribution and the single crystal is pulled out.

〔作用〕[Effect]

本発明においては、るつは内の材料が完全に溶融し、G
aAl3溶融層7とB鵞03溶融層8′gt形成した後
に、副加熱器9でB2O3表面温度が1100℃以上に
なるように加熱する。
In the present invention, the material inside the melt is completely melted and the G
After forming the aAl3 molten layer 7 and the B 03 molten layer 8'gt, heating is performed using a sub-heater 9 so that the B2O3 surface temperature becomes 1100° C. or higher.

このようにB1Os k加熱することにより、FhOs
の粘性係数が小さくなり、ま7t、IhOs中にあるス
カムの温度も上昇する九め、スカムが気化し、B!03
層内を上昇し、不活性ガス内に飛散消滅する。し友がっ
てツイン・リネージ等の発生を防止できる。
By heating B1Osk in this way, FhOs
The viscosity coefficient of B! decreases, and the temperature of the scum in IhOs also increases.The scum vaporizes, and B! 03
It rises within the layer and disappears by scattering into the inert gas. This can prevent the occurrence of twin lineage, etc.

〔実施例〕〔Example〕

次に本発明の実施例を述べ、具体的に説明する。第1図
に示し几ような単結晶製造装置音用い、GaAe多結晶
体1000ft−パイロリテツク窒化ポロン製ルツボ(
PBNルツボ)に入n、その上に含水率150 ppm
のBsOs’t’ 180 を入nた後、高圧容器内に
設置し、容器内71X10−8トールの真9にし、その
後N、ガスを圧入して20気圧とし、ルツボ″t126
0℃に加熱して、GaAe多結晶体及びB鵞0st−溶
融させた。ルツボ内の材料が完全に溶融し九ら、副加熱
器でB!03を加熱し、B=O,表面温度t−1150
℃にし、溶融液表面とB、O,中のスカムを除去した。
Next, examples of the present invention will be described and explained in detail. A 1000ft GaAe polycrystalline crucible made of Pyrolithic poron nitride (
PBN crucible), and the water content is 150 ppm.
After charging 180 liters of BsOs't', place it in a high-pressure container and make the inside of the container 71 x 10-8 torr true 9, then pressurize N and gas to 20 atm, and place it in a crucible "t126".
It was heated to 0° C. to melt the GaAe polycrystalline body and the B layer. When the material in the crucible is completely melted, use the sub-heater and B! 03, B=O, surface temperature t-1150
℃, and the scum on the surface of the melt and in B, O, and the like was removed.

1時間後、副加熱器で加熱する事を止め、単結晶引き上
げt行つ九。ツイン・リネージは激減し、5本引き上げ
た全ての結晶は全長単結晶となつ九。なお、従来の方法
でな引き上げ結晶の50〜60チにツイン・リネージが
発生したことと比較すると本発明の方法の効果は顕著で
ある。
After 1 hour, the heating with the sub-heater was stopped and the single crystal was pulled.9. The number of twin lineages has decreased dramatically, and all the five crystals pulled out are full-length single crystals. It should be noted that the effect of the method of the present invention is remarkable when compared with the conventional method in which twin lineage occurred in 50 to 60 inches of the pulled crystal.

〔発明の効果〕〔Effect of the invention〕

以上説明し次ように本発明の方法は、複雑な装置、例え
ば2重るつぼ等を使用することなく、■−■族溶融溶融
液表面B、O1中のスカムを除去できることにより、■
−■族化合物半導体単結晶金容易に再現性良く得ること
ができる。又、100m以上の長尺の単結晶を製造する
場合にも有効である。
As explained above, the method of the present invention can remove the scum in the surface B and O1 of the group molten liquid without using complicated equipment such as a double crucible.
- Group compound semiconductor single crystal gold can be easily obtained with good reproducibility. It is also effective when producing a long single crystal of 100 m or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を説明する断面図である。 図中、1は高圧容器、2は加熱器、3はルツボ、4は支
持体、5は引上軸、6は種結晶、7は■−■族化合物半
導体原料溶融液、8はB2O3溶融液、9は副加熱器で
ある。
FIG. 1 is a sectional view illustrating one embodiment of the present invention. In the figure, 1 is a high-pressure container, 2 is a heater, 3 is a crucible, 4 is a support, 5 is a pulling shaft, 6 is a seed crystal, 7 is a ■-■ group compound semiconductor raw material melt, and 8 is a B2O3 melt , 9 is a sub-heater.

Claims (1)

【特許請求の範囲】 酸化ボロンを封止剤として原料融液から引き上げること
にIII−V族化合物半導体単結晶 を製造する方法において、高圧下の上記酸化ボロンの表
面温度を1100℃以上とし、それにより上記原料融液
の表面及び上記酸化ボロン中の固化物を気化した後に結
晶成長を行うことを特徴とするIII−V族化合物半導体
単結晶の製造方法。
[Claims] A method for producing a III-V compound semiconductor single crystal by pulling boron oxide from a raw material melt using boron oxide as a sealing agent, wherein the surface temperature of the boron oxide under high pressure is set to 1100°C or higher; A method for producing a III-V group compound semiconductor single crystal, characterized in that crystal growth is performed after the surface of the raw material melt and the solidified material in the boron oxide are vaporized.
JP3289185A 1985-02-22 1985-02-22 Production of single crystal of compound semiconductor Pending JPS61197498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289185A JPS61197498A (en) 1985-02-22 1985-02-22 Production of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3289185A JPS61197498A (en) 1985-02-22 1985-02-22 Production of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS61197498A true JPS61197498A (en) 1986-09-01

Family

ID=12371505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289185A Pending JPS61197498A (en) 1985-02-22 1985-02-22 Production of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS61197498A (en)

Similar Documents

Publication Publication Date Title
US4944925A (en) Apparatus for producing single crystals
JPS61197498A (en) Production of single crystal of compound semiconductor
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JPH06279174A (en) Production of oxide single crystal
JP2539841B2 (en) Crystal manufacturing method
JPS6114193A (en) Manufacture of compound semiconductor single crystal
KR800000280B1 (en) Method of making a single crystal intermetallic compound semiconductor
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS6051697A (en) Method and apparatus for manufacturing compound semiconductor
JPS62226888A (en) Production of compound semiconductor single crystal containing volatile element
JP2556159B2 (en) Method for manufacturing semiconductor crystal
JPH04124097A (en) Crystal growth process
JPS6379792A (en) Device for growing single crystal
JPS59203793A (en) Preparation of semiinsulative ga-as single crystal
JPH02233588A (en) Growth of single crystal
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JPS6389498A (en) Production of silicon-added gallium arsenide single crystal
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JPH0615439B2 (en) <III>-<V> Group compound semiconductor single crystal manufacturing method
JPS6168394A (en) Production of groups iii-v polycrystal body
JPS6136196A (en) Gaas single crystal and production thereof
JPS6027694A (en) Preparation of single crystal of semiconductor of compound by pulling method of liquid sealing
JPS63176397A (en) Production of iii-v compound semiconductor single crystal