JPS6379792A - Device for growing single crystal - Google Patents

Device for growing single crystal

Info

Publication number
JPS6379792A
JPS6379792A JP22513086A JP22513086A JPS6379792A JP S6379792 A JPS6379792 A JP S6379792A JP 22513086 A JP22513086 A JP 22513086A JP 22513086 A JP22513086 A JP 22513086A JP S6379792 A JPS6379792 A JP S6379792A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
melt
crystal growth
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22513086A
Other languages
Japanese (ja)
Inventor
Hideo Nakanishi
秀男 中西
Keigo Hoshikawa
圭吾 干川
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22513086A priority Critical patent/JPS6379792A/en
Publication of JPS6379792A publication Critical patent/JPS6379792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the generation of crystal nuclei from the wall surface of a crucible by forming ruggedness on the inner wall of the crucible to cover the greater part of a melt with a liq. sealant at the time of growing a single crystal by a liq. sealing and vertical temp. gradient solidification method. CONSTITUTION:A crucible 11 is arranged in a high-pressure vessel 1, a heating element 8 is arranged around the crucible 11, the raw material 6 is melted in the crucible 11 while the surface is sealed by the liq. sealant 7, and the obtained melt is solidified to grow a single crystal in the form corresponding to the form of the crucible 11. In this case, ruggedness consisting of grooves 12 and protrusions 13 is previously formed on the inner wall of the crucible 11. As a result, the liq. sealant 7 can be easily infiltrated along the grooves 12 on the inner wall of the crucible 11 by capillarity, the greater part of the melt is covered with the sealant, hence the generation of crystal nuclei from the wall surface of the crucible 11 is prevented, the formation of a polycrystal is also prevented, and the yield of a single crystal can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は単結晶成長装δの改良に関し、特に超高速集積
回路、光電子集積回路等の基板として不可欠な高品質化
合物半導体単結晶を高歩留りで得るのに使用されるもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of a single crystal growth system δ, and in particular to the improvement of a single crystal growth system δ, particularly for producing high-quality compound semiconductor single crystals, which are indispensable as substrates for ultra-high-speed integrated circuits, optoelectronic integrated circuits, etc., at a high yield. It is used to obtain.

[従来の技術] 従来、■−v族化合物半導体のバルク単結晶は、主とし
て引上法とボート法により製造されている。
[Prior Art] Conventionally, bulk single crystals of ■-v group compound semiconductors have been mainly produced by the pulling method and the boat method.

このうち、引上法は結晶の大直径化に適しており、円形
の(100)ウェハが得られるという長所を有する。反
面、大きな温度勾配の下で結晶成長が行われるため、引
上法により製造された単結晶中には高密度に転位が存在
するという問題がある。
Among these methods, the pulling method is suitable for increasing the diameter of the crystal, and has the advantage that circular (100) wafers can be obtained. On the other hand, since crystal growth is performed under a large temperature gradient, there is a problem in that dislocations exist at a high density in single crystals produced by the pulling method.

一方、ボート法では小さい温度勾配の下で結晶成長が行
われるため、引上法に比して単結晶中の転位が減少する
。しかし、単結晶の形状がボート形状によって決定され
、しかも<100>成長が困難で、あるため円形の<1
00)ウェハが得られないという問題がある。
On the other hand, in the boat method, crystal growth is performed under a small temperature gradient, so dislocations in the single crystal are reduced compared to the pulling method. However, the shape of the single crystal is determined by the boat shape, and it is difficult to grow <100>.
00) There is a problem that wafers cannot be obtained.

これらの技術に対して、円形の(100)ウェハが得ら
れ、かつ低温度勾配での結晶成長が容易なことから結晶
欠陥を低減できる可能性のある結晶成長法として、古く
から液体封止・垂直温度勾配凝固法が提案されている(
S、 E、 Slum etal、、E、C,S、、V
ol、120.Na3. p、588)。しかしながら
、この結晶成長法は未だ実用段階に至っていない。その
主たる原因は単結晶の歩留りが悪い点にある。
In contrast to these techniques, liquid sealing has long been used as a crystal growth method that has the potential to reduce crystal defects because it allows circular (100) wafers to be obtained and crystal growth is easy at low temperature gradients. A vertical temperature gradient solidification method has been proposed (
S, E, Slum etal, , E, C, S, , V
ol, 120. Na3. p. 588). However, this crystal growth method has not yet reached a practical stage. The main reason for this is the poor yield of single crystals.

以下、液体封止・垂直温度勾配凝固法によりGaAS単
結晶を成長させる場合について、第4図〜第6図を参照
して説明する。
Hereinafter, the case of growing a GaAS single crystal by the liquid confinement/vertical temperature gradient solidification method will be described with reference to FIGS. 4 to 6.

第4図において、高圧容器1の底部中央にはペディスタ
ル2が設置され、その上にサセプタ3がtiされ、この
サセプタ3内部に例えば窒化ボロンからなるるつぼ4が
収容される。このるつぼ4は底部の種子結晶を収容する
ための小径部と、その上部の円錐部と、その上部の直胴
部とからなっている。このるつぼ4内には底部から順次
種子結晶5、GaAS多結晶6及び液体封止剤となるB
2037が充填される。更に、前記サセプタ3の周囲に
は発熱体8が配設され、この発熱体8の周囲には保温f
f、 9が配設される。
In FIG. 4, a pedestal 2 is installed at the center of the bottom of a high-pressure vessel 1, a susceptor 3 is placed on top of the pedestal 2, and a crucible 4 made of boron nitride, for example, is housed inside the susceptor 3. This crucible 4 consists of a small diameter part at the bottom for accommodating the seed crystal, a conical part at the top, and a straight body part at the top. Inside this crucible 4, from the bottom, a seed crystal 5, a GaAS polycrystal 6, and a liquid sealant B
2037 is filled. Further, a heating element 8 is arranged around the susceptor 3, and a heat insulating f is arranged around the heating element 8.
f, 9 are arranged.

この装置を用いて、以下のようにしてGaAS単結晶の
結晶成長が行なわれる。まず、炉内を真空引きした後、
不活性ガスを数〜数十気圧の圧力で加圧密封する。その
後、発熱体8によりるつぼ4を加熱して82037及び
GaAS多結晶6を順次融解させる。この際、GaAS
多結晶6の上部から下部に向かって融解が行なわれるよ
うに、るつは4の下部よりも上部が高温となるような炉
内温度分布が実現されている。
Using this apparatus, crystal growth of a GaAS single crystal is performed in the following manner. First, after evacuating the inside of the furnace,
Pressurize and seal inert gas at a pressure of several to several tens of atmospheres. Thereafter, the crucible 4 is heated by the heating element 8 to sequentially melt the 82037 and the GaAS polycrystal 6. At this time, GaAS
The temperature distribution in the furnace is such that the upper part of the melt 4 is higher than the lower part so that the polycrystal 6 is melted from the upper part to the lower part.

そして、GaAs融液と種子結晶5とを十分になじませ
た後、第5図に示すように、炉内温度を曲線(a)から
曲線(b)のように徐々に下げる。
After the GaAs melt and the seed crystal 5 are thoroughly blended, the temperature inside the furnace is gradually lowered from curve (a) to curve (b), as shown in FIG.

なお、第5図中TIはGaAsの融点である。この操作
により、第5図の曲線(a)に対応する第6図(a)に
示すようにGaAS融液6′の種子結晶5上端との界面
位[Loから同化が始まり、GaAs融液6−の下部か
ら上部に向かって徐々に同化が進み、第5図の曲1m 
(b)に対応する第6図(b)ではLlの位置まで固化
する。こうして最終的にはるつぼ形状に対応した形状の
結晶が得られる。この際、第6図(a>及び(b)に示
すように、液体封止剤であるB2O3融液7′はGaA
s@液6′の表面を被覆し、蒸気圧の高いASが散逸す
るのを防止する作用を有する。
Note that TI in FIG. 5 is the melting point of GaAs. By this operation, assimilation starts from the interface position [Lo] of the GaAs melt 6' with the upper end of the seed crystal 5, as shown in FIG. 6(a) corresponding to the curve (a) in FIG. - Assimilation gradually progresses from the bottom to the top, and the song 1m in Figure 5
In FIG. 6(b), which corresponds to FIG. 6(b), it is solidified to the position Ll. In this way, a crystal having a shape corresponding to the shape of the crucible is finally obtained. At this time, as shown in FIGS. 6(a> and (b)), the B2O3 melt 7', which is the liquid sealant, is made of GaA
It has the effect of coating the surface of the s@ liquid 6' and preventing AS having a high vapor pressure from dissipating.

[発明が解決しようとする問題点] 本発明者らは、従来、液体封止・垂直温度勾配凝固法で
は単結晶の歩留りが悪かったのは以下のような原因によ
ることを見出した。すなわち、従来は、第6図(a)及
び(b)に示すようにGaAs融液6′は通常表面及び
その近傍が8203融液7′で被覆されているだけであ
る。
[Problems to be Solved by the Invention] The present inventors have discovered that the conventional liquid seal/vertical temperature gradient solidification method has had a poor yield of single crystals due to the following reasons. That is, conventionally, as shown in FIGS. 6(a) and 6(b), the surface of the GaAs melt 6' and its vicinity are usually only covered with the 8203 melt 7'.

このため、融液固化時、特に成長開始直後に、しばしば
るつぼ4の壁面から、種子結晶5の結晶方位とは異なる
方位を有する結晶核が発生する。このようにるつぼ4の
壁面から発生した結晶核は、融液固化の進行とともに大
きく成長して成長結晶中にサブグレインを形成し、多結
晶化を招く。この結果、単結晶化が妨げられ、単結晶の
歩留りが悪くなっていた。こうしたことは、超高速集積
回路や光電子回路等の基板への適用を前提として、高品
質かつ大直径・長尺の単結晶が強く要望されている現状
では特に大きな問題となる。
For this reason, when the melt solidifies, especially immediately after the start of growth, crystal nuclei having a crystal orientation different from that of the seed crystal 5 are often generated from the wall surface of the crucible 4. The crystal nuclei thus generated from the wall surface of the crucible 4 grow larger as the melt solidifies, forming subgrains in the growing crystal, leading to polycrystalization. As a result, single crystallization was hindered and the yield of single crystals was poor. This is a particularly serious problem in the current situation where high-quality, large-diameter, and long single crystals are strongly desired for application to substrates for ultra-high-speed integrated circuits, optoelectronic circuits, and the like.

本発明は上記問題点を解決するためになされたものであ
り、液体封止・垂直温度勾配凝固法による結晶成長開始
時に融液の大部分が液体封止剤で覆われるようにし、る
つぼ壁面からの結晶核の発生を防止して単結晶の歩留り
を向上することができる単結晶成長装置を提供すること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and most of the melt is covered with a liquid sealant at the start of crystal growth by the liquid seal/vertical temperature gradient solidification method, so that the liquid sealant is removed from the crucible wall surface. An object of the present invention is to provide a single crystal growth apparatus that can prevent the generation of crystal nuclei and improve the yield of single crystals.

[問題点を解決するための手段] 本発明の単結晶成長装置は、高圧容器と、この高圧容器
内に配置されたるつぼと、このるつぼの周囲に配置され
た発熱体とを有し、前記るつぼ内で表面を液体封止剤に
より封止した状態で原料を溶融し、この融液を固化させ
ることにより前記るつぼ形状に対応した形状の単結晶を
成長させる装置において、前記るつぼの内壁に凹凸を形
成したことを特徴とするものである。
[Means for Solving the Problems] The single crystal growth apparatus of the present invention includes a high-pressure container, a crucible placed in the high-pressure container, and a heating element placed around the crucible, In an apparatus for growing a single crystal in a shape corresponding to the shape of the crucible by melting a raw material in a crucible with its surface sealed with a liquid sealant and solidifying the melt, the inner wall of the crucible has irregularities. It is characterized by the formation of

本発明においては、るつぼの内壁に結晶成長方向に沿う
溝を形成することにより凹凸を形成することが望ましい
In the present invention, it is desirable to form irregularities by forming grooves along the crystal growth direction on the inner wall of the crucible.

[作用] 従来の単結晶成長装置では、融液の表面及びその近傍だ
けが液体封止剤で覆われていたのは、るつぼの内壁が単
純な曲面であったためである。これに対して、上述した
本発明の単結晶成長装置によれば、るつぼの内壁に凹凸
が形成されているので、毛管現象により液体封止剤がる
つぼ内壁の凹部に沿って浸入しやすくなり、融液の大部
分が液体封止剤で覆われる。このため、るつぼ壁面から
の結晶核の発生を防止することができ、多結晶化を防止
して単結晶の歩留りを向上することができる。なお、毛
管現象を利用して融液の大部分を液体封止剤で覆うため
には、るつぼの内壁に結晶成長方向に沿う溝を形成する
ことが有効である。
[Operation] In the conventional single crystal growth apparatus, only the surface of the melt and its vicinity were covered with the liquid sealant because the inner wall of the crucible was a simple curved surface. On the other hand, according to the above-described single crystal growth apparatus of the present invention, since the inner wall of the crucible has irregularities, the liquid sealant easily infiltrates along the recesses of the inner wall of the crucible due to capillary action. Most of the melt is covered with liquid sealant. Therefore, generation of crystal nuclei from the crucible wall surface can be prevented, polycrystallization can be prevented, and the yield of single crystals can be improved. Note that in order to cover most of the melt with the liquid sealant using capillarity, it is effective to form grooves along the crystal growth direction on the inner wall of the crucible.

[実施例] 以下、本発明の実施例を第1図〜第3図を参照して説明
する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明に係る単結晶成長装置に用いられるるつ
ぼの斜視図である。第1図において、るつぼ11は窒化
ボロンからなり、その外観は従来の単結晶成長装置に用
いられていたるつぼと同様であり、底部の種子結晶を収
容するための小径部と、その上部の円錐部(傾斜30度
)と、その上部の直胴部とからなっている。このるつぼ
11の内壁には、単結晶の成長方向(沿直方向)に沿っ
て、角形の溝12が形成され、それに対応して角形の凸
部13が形成されている。本実施例では、直胴部におい
て内径(凸部13表面を結ぶ円)30M1溝ピツチ4m
、溝深さ3 am 1溝幅2Mとした。このるつぼ11
の直胴部の横断面図(第1図の■a−[a−線に沿う断
面)は第2図(a)に示すようなものであるのに対し、
円錐部の横断面図(第1図のmb−mb′線に沿う断面
)は第2図(b)に示すようなものであり、内径が小さ
くなるのに比例して溝ピッチ等の数値も小さくなってい
る。
FIG. 1 is a perspective view of a crucible used in a single crystal growth apparatus according to the present invention. In FIG. 1, a crucible 11 is made of boron nitride, and its appearance is similar to a crucible used in a conventional single crystal growth apparatus, with a small diameter part at the bottom for accommodating the seed crystal, and a conical part at the top. It consists of a section (30 degree inclination) and a straight body section above it. A rectangular groove 12 is formed on the inner wall of the crucible 11 along the growth direction (vertical direction) of the single crystal, and a rectangular convex portion 13 is formed corresponding thereto. In this example, the inner diameter (circle connecting the surfaces of the convex parts 13) is 30M1 and the groove pitch is 4m in the straight body part.
The groove depth was 3 am and the groove width was 2 m. This crucible 11
The cross-sectional view of the straight body (section along the line ■a-[a- in Fig. 1) is as shown in Fig. 2(a), whereas
The cross-sectional view of the conical part (cross section along the line mb-mb' in Figure 1) is as shown in Figure 2 (b), and as the inner diameter becomes smaller, the values of the groove pitch etc. also decrease. It's getting smaller.

本発明に係る単結晶成長装置はこのるつぼ11を用いる
以外は、第4図に示す従来の単結晶成長装置と同様な構
成を有する。そして、例えばGaAS単結晶の成長を行
なう場合、種子結晶、GaAs多結晶及び液体封止剤と
なるB2O3の充填、炉内の真空引き、不活性ガスによ
る加圧密封を行なった後、加熱して液体封圧剤となる8
203及びGaAs多結晶を順次融解し、更に炉内温度
を徐々に下げることにより下部(種子結晶側)から上部
に向かって融液の固化を進行させ、最終的にはるつぼ1
1の形状に対応する形状のGaA!9単結晶を成長させ
る。
The single crystal growth apparatus according to the present invention has the same configuration as the conventional single crystal growth apparatus shown in FIG. 4, except for using this crucible 11. For example, when growing a GaAS single crystal, the seed crystal, GaAs polycrystal, and B2O3 as a liquid sealant are filled, the furnace is evacuated, and the furnace is sealed under pressure with an inert gas, and then heated. 8 becomes a liquid sealant
By sequentially melting 203 and GaAs polycrystals and gradually lowering the temperature in the furnace, the melt solidifies from the bottom (seed crystal side) to the top, and finally melts into crucible 1.
GaA with a shape corresponding to the shape of 1! 9. Grow a single crystal.

上述した工程のうち、液体封止剤となる8203及びG
aAs多結晶を順次融解させる際、GaAs多結晶が融
解する前にまず低融点の8203が融解し、その一部は
毛管msによりるつぼ11の内壁に形成された溝12を
経路として効率的にるつぼ11の下部まで達し、溝12
を埋めつくす。次に、溝12を埋めたB2O3融液は、
るつぼ11内壁表面を円周方向に拡がる。ここで、隣接
する溝12どうしが極端に趙れていない限り、上述した
ような溝ピッチであるならば溝12以外の凸部13の表
面も極めて短時間のうちに8203融液で完全に覆うこ
とができる。次いで、高融点のGaAs多結晶は、るつ
ぼ11の内壁全体が8203!を液で覆われた後、融解
されて融液となる。ここで、GaAs等の化合物半導体
の融液は、一般に表面張力が大きく、その表面積をでき
るだけ小さく保とうとする性質を有するため、溝12内
部の8203 R液を押しのけて溝12内部に侵入した
り、凸部13表面でもB2O3融液を押しのけたりする
ことはなく、GaAS融液が直接るつは11の内壁と接
触することはない。第3図(a)及び(b)は以上のよ
うな過程を経てGaAs多結晶が融解した後の状態を示
しており(ただし、第3図(b)は同図(a)のB−8
−線に沿う断面図である)、るつぼ11内部においてG
aAS融液6′は種子結晶5との界面を除いて、その周
囲が完全に液体封止剤であるB2O3融液7−で覆われ
ている。したがって、従来の単結晶成長装置の場合と異
なり、結晶成長時にるっぽ11の壁面から結晶核が発生
するのを防止することができ、多結晶化を防止して単結
晶の歩留りを向上することができる。
Among the above steps, 8203 and G, which are liquid sealants,
When aAs polycrystals are sequentially melted, 8203 with a low melting point is melted first before the GaAs polycrystals are melted, and a part of it is efficiently transferred to the crucible through the groove 12 formed on the inner wall of the crucible 11 by the capillary ms. 11 and reach the bottom of groove 12.
Fill it all up. Next, the B2O3 melt filling the groove 12 is
The inner wall surface of the crucible 11 is expanded in the circumferential direction. Here, as long as the adjacent grooves 12 do not overlap extremely, if the groove pitch is as described above, the surfaces of the convex parts 13 other than the grooves 12 will be completely covered with the 8203 melt in a very short time. be able to. Next, the high-melting-point GaAs polycrystal has a diameter of 8203! on the entire inner wall of the crucible 11! After being covered with liquid, it is melted to form a melt. Here, the melt of a compound semiconductor such as GaAs generally has a large surface tension and has the property of trying to keep its surface area as small as possible, so it may displace the 8203 R liquid inside the groove 12 and invade the inside of the groove 12. The B2O3 melt is not pushed away even on the surface of the convex portion 13, and the GaAS melt does not come into direct contact with the inner wall of the melt 11. Figures 3(a) and (b) show the state after the GaAs polycrystal has melted through the above process (however, Figure 3(b) shows the state of B-8 in Figure 3(a)).
- is a cross-sectional view along the line), G inside the crucible 11
The periphery of the aAS melt 6', except for the interface with the seed crystal 5, is completely covered with the B2O3 melt 7-, which is a liquid sealant. Therefore, unlike in the case of conventional single crystal growth equipment, it is possible to prevent crystal nuclei from being generated from the wall surface of the Luppo 11 during crystal growth, preventing polycrystalization and improving the yield of single crystals. be able to.

実際に、従来の単結晶成長装置及び上記実施例の単結晶
成長装置(るつぼの材質はいずれも窒化ボロン)により
、〈OOl〉種子結晶を用いて直径30JIIIのGa
AS結晶を成長させ、これらの結晶から結晶成長軸に垂
直に切り出したウェハについて、ラッピングして結晶状
態を観察したところ、上記実施例の単結晶成長装置では
良好な単結晶が1fIられることが判明した。すなわち
、従来の単結晶成長装置を用いた場合には、GaASイ
ンゴットのコーン部においてスティッキングにより結晶
外周からサブグレインが形成され、直胴部では多結晶化
がかなり進行していた。これに対して、実施例の単結晶
成長装置を用いた場合には、GaASインゴットのコー
ン部及び直胴部のいずれにおいてもサブグレイン等の発
生は観察されず、種子結晶と同一の結晶方位を有する<
001>単結晶が得られた。
In fact, using the conventional single crystal growth apparatus and the single crystal growth apparatus of the above embodiment (the material of the crucible is boron nitride), Ga of 30JIII in diameter was
When AS crystals were grown and wafers cut perpendicularly to the crystal growth axis from these crystals were wrapped and the crystal state was observed, it was found that the single crystal growth apparatus of the above example produced a good single crystal of 1fI. did. That is, when a conventional single crystal growth apparatus was used, subgrains were formed from the crystal periphery due to sticking in the cone portion of the GaAS ingot, and polycrystalization progressed considerably in the straight body portion. On the other hand, when the single crystal growth apparatus of the example was used, no subgrains were observed in either the cone part or the body part of the GaAS ingot, and the crystal orientation was the same as that of the seed crystal. have <
001> single crystal was obtained.

なお、上記実施例ではるつぼの内壁に結晶成長方向に沿
って角形の溝を形成したが、溝の形状は角形に限らず半
円形あるいは三角形等信の形状でも上記実施例と同様な
効果が得られることは勿論である。また、るつぼの内壁
に形成される溝は結晶成長方向に沿うものに限らず、例
えばスパイラル状に形成されたものでもよい。ただし、
液体封止剤を短時間で効率よく、るつぼ下部まで導入す
るという点から、るつぼ内壁に結晶成長方向に沿って溝
を形成することが本発明の目的に最も適している。しか
も、近年、■−v族化合物半導体の結晶成長においては
、高純度化に適した熱分解窒化ボロンるつぼが一般に用
いられる傾向にあり、この熱分解窒化ボロンるつぼの作
製の容易さという点からも、結晶成長方向に沿う溝を有
するるつぼが望ましい。
In the above example, a rectangular groove was formed on the inner wall of the crucible along the crystal growth direction, but the shape of the groove is not limited to a rectangular shape, but the same effect as in the above example can be obtained by using a semicircular or triangular shape. Of course, it can be done. Furthermore, the grooves formed in the inner wall of the crucible are not limited to those along the crystal growth direction, but may be formed in a spiral shape, for example. however,
Forming grooves along the crystal growth direction on the inner wall of the crucible is most suitable for the purpose of the present invention in order to efficiently introduce the liquid sealant to the bottom of the crucible in a short time. Moreover, in recent years, pyrolytic boron nitride crucibles, which are suitable for high purification, have been generally used for crystal growth of ■-V group compound semiconductors, and this pyrolytic boron nitride crucible is easy to manufacture. , a crucible having grooves along the crystal growth direction is desirable.

更に、上記実施例では本発明の単結晶成長装置をGaA
S単結晶の成長に適用した場合について説明したが、る
つぼ内で融液を固化させる結晶成長法であるならば本発
明の単結晶成長装置はこうした揮発性元素を含む■−v
族化合物半導体のみならず、It−Vl族化合物半導体
あるいは揮発性元素を含まない半導体単結晶の成長にも
有効に適用できることは勿論である。
Furthermore, in the above embodiment, the single crystal growth apparatus of the present invention was
Although the case where it is applied to the growth of an S single crystal has been described, if the crystal growth method is to solidify a melt in a crucible, the single crystal growth apparatus of the present invention may contain such volatile elements.
It goes without saying that the method can be effectively applied not only to the growth of group compound semiconductors but also to the growth of It-Vl group compound semiconductors or semiconductor single crystals that do not contain volatile elements.

[発明の効果] 以上詳述したように本発明の単結晶成長装置によれば、
円形の(100)ウェハが得られ、かつ低温度勾配での
結晶成長が容易な液体封止・垂直温度勾配凝固法により
高い歩留りで単結晶を得ることができ、超高速集積回路
や光電子集積回路等の基板として用いることができる高
品質かつ大直径・長尺単結晶への対応も容易になる等そ
の工業的価値は極めて大きいものである。
[Effects of the Invention] As detailed above, according to the single crystal growth apparatus of the present invention,
Circular (100) wafers can be obtained, and single crystals can be obtained with a high yield using the liquid confinement/vertical temperature gradient solidification method, which facilitates crystal growth at low temperature gradients. Its industrial value is extremely large, as it facilitates the production of high-quality, large-diameter, and long single crystals that can be used as substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における単結晶成長装置に用い
られるるつぼの斜視図、第2図は同るつぼの横断面図で
あり同図(a)は第1図の■a−1ia−線に沿う横断
面図、同図(b)は第1図のnb−mb=線に沿う横断
面図、第3図は同るつぼ内で液体封止剤及びGaAs多
結晶を融解した状態を示す断面図であり同図(a>は縦
断面図、同図(b)は同図(a)のB−B′線に沿う横
断面図、第4図は従来の単結晶成長装置の縦断面図、第
5図は液体封止・垂直温度勾配凝固法における炉内温度
変化を示す説明図、第6図は従来の単結晶成長装置を用
いた場合のるつぼ内での融液の同化状態を示す説明図で
あり同図(a)は成長開始時の状態を示し、同図(b)
は炉内温度が第5図の(b)に対応する時の状態を示す
ものである。 1・・・高圧容器、2・・・ベディスタル、3・・・サ
セプタ、5・・・種子結晶、6・・・GaAs多結晶、
6′・・・GaAS融液、7・・B2O3,7−−B2
O3融液、8・・・発熱体、9・・・保温筒、11・・
・るつぼ、12・・・溝、13・・・凸部。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 第5図 (a)        (b) 第6図
FIG. 1 is a perspective view of a crucible used in a single crystal growth apparatus in an embodiment of the present invention, FIG. 2 is a cross-sectional view of the same crucible, and FIG. Figure 3 (b) is a cross-sectional view taken along the nb-mb = line in Figure 1, and Figure 3 is a cross-sectional view showing the state in which the liquid sealant and GaAs polycrystal are melted in the same crucible. The figure (a> is a longitudinal cross-sectional view, the figure (b) is a cross-sectional view taken along the line B-B' in figure (a), and FIG. , Fig. 5 is an explanatory diagram showing the temperature change in the furnace in the liquid confinement/vertical temperature gradient solidification method, and Fig. 6 shows the assimilation state of the melt in the crucible when using a conventional single crystal growth apparatus. It is an explanatory diagram, and the figure (a) shows the state at the start of growth, and the figure (b)
5 shows the state when the furnace temperature corresponds to FIG. 5(b). DESCRIPTION OF SYMBOLS 1... High pressure container, 2... Bedistal, 3... Susceptor, 5... Seed crystal, 6... GaAs polycrystal,
6'...GaAS melt, 7...B2O3, 7--B2
O3 melt, 8... Heating element, 9... Heat retention cylinder, 11...
- Crucible, 12...groove, 13...convex part. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (a) (b) Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)高圧容器と、この高圧容器内に配置されたるつぼ
と、このるつぼの周囲に配置された発熱体とを有し、前
記るつぼ内で表面を液体封止剤により封止した状態で原
料を溶融し、この融液を固化させることにより前記るつ
ぼ形状に対応した形状の単結晶を成長させる装置におい
て、前記るつぼの内壁に凹凸を形成したことを特徴とす
る単結晶成長装置。
(1) It has a high-pressure container, a crucible placed in the high-pressure container, and a heating element placed around the crucible, and the raw material is stored in the crucible with its surface sealed with a liquid sealant. A single crystal growth apparatus for growing a single crystal having a shape corresponding to the shape of the crucible by melting the melt and solidifying the melt, characterized in that the inner wall of the crucible has irregularities formed therein.
(2)るつぼの内壁に結晶成長方向に沿う溝を形成する
ことにより凹凸を形成したことを特徴とする特許請求の
範囲第1項記載の単結晶成長装置。
(2) The single crystal growth apparatus according to claim 1, wherein the unevenness is formed by forming grooves along the crystal growth direction on the inner wall of the crucible.
JP22513086A 1986-09-24 1986-09-24 Device for growing single crystal Pending JPS6379792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22513086A JPS6379792A (en) 1986-09-24 1986-09-24 Device for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22513086A JPS6379792A (en) 1986-09-24 1986-09-24 Device for growing single crystal

Publications (1)

Publication Number Publication Date
JPS6379792A true JPS6379792A (en) 1988-04-09

Family

ID=16824430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22513086A Pending JPS6379792A (en) 1986-09-24 1986-09-24 Device for growing single crystal

Country Status (1)

Country Link
JP (1) JPS6379792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132553A (en) * 2010-01-28 2010-06-17 Sumitomo Electric Ind Ltd Single crystal growing vessel used for method for producing compound single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116956A (en) * 1973-03-09 1974-11-08
JPS60200893A (en) * 1984-03-27 1985-10-11 Nippon Telegr & Teleph Corp <Ntt> Crucible

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116956A (en) * 1973-03-09 1974-11-08
JPS60200893A (en) * 1984-03-27 1985-10-11 Nippon Telegr & Teleph Corp <Ntt> Crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132553A (en) * 2010-01-28 2010-06-17 Sumitomo Electric Ind Ltd Single crystal growing vessel used for method for producing compound single crystal

Similar Documents

Publication Publication Date Title
JPS6379792A (en) Device for growing single crystal
US5379717A (en) Method of growing single crystal of compound semiconductors
JPH0340987A (en) Growing method for single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP2758038B2 (en) Single crystal manufacturing equipment
JP3018738B2 (en) Single crystal manufacturing equipment
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0699233B2 (en) Single crystal manufacturing method
JP2855408B2 (en) Single crystal growth equipment
JPS6217496Y2 (en)
JP2002234792A (en) Method of producing single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2585415B2 (en) Single crystal manufacturing equipment
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH11189499A (en) Production of compound semiconductor single crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JPH02229790A (en) Apparatus for producing compound semiconductor single crystal
JP5698171B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPH0764671B2 (en) Method for growing compound semiconductor single crystal
JPH0329752B2 (en)
JPS60122791A (en) Pulling up method of crystal under liquid sealing