JPH02229790A - Apparatus for producing compound semiconductor single crystal - Google Patents

Apparatus for producing compound semiconductor single crystal

Info

Publication number
JPH02229790A
JPH02229790A JP5156289A JP5156289A JPH02229790A JP H02229790 A JPH02229790 A JP H02229790A JP 5156289 A JP5156289 A JP 5156289A JP 5156289 A JP5156289 A JP 5156289A JP H02229790 A JPH02229790 A JP H02229790A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
liquid sealant
compound semiconductor
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5156289A
Other languages
Japanese (ja)
Inventor
Shoichi Ozawa
小沢 章一
Takashi Kijima
木島 孝
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5156289A priority Critical patent/JPH02229790A/en
Publication of JPH02229790A publication Critical patent/JPH02229790A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the dissociation of a single crystal from a crucible and a liquid sealant with a device for executing a TKM method using the liquid sealant by providing a means for removing the liquid sealant from the crucible after the solidification of a raw material melt. CONSTITUTION:Polycrystalline raw materials of polycrystal GaAs and B2O3 (liquid sealant) are put into the crucible 14 and a seed crystal 1 is attached to a pulling-up shaft 4. The inside of a high-pressure vessel 13 is evacuated to a vacuum. Ar which is an inert gas is introduced and the pressure and temp. thereof are increased to melt the raw materials. The seed crystal 1 is then brought into contact with the raw material melt 2 and the temp of heaters 5, 6 is controlled to execute seeding. While the temp. in a melt zone and a low-temp. zone is controlled to 1250 deg.C to 900 deg.C, the seed crystal 1 and the crucible 14 are moved upward and the melt 2 is fully solidified to the single crystal. The crucible 14 is moved toward a liquid sealant container 9 which is made of quartz and is provided above the heater 5. The container 9 is heated to the temp. higher than the temp. around the crucible 14 by a heater 10. The pressure in the container 9 drops and the sealant 3 is sucked into the container 9 when the nozzle at the front end of the container 9 is brought into contact with the sealant 3 and the temp. of the heater 10 is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はルツボの上昇により化合物半導体単結晶を製造
する装置に関するものである.(従来の技術) 従来GaAs,InP等のm−v族化合物半導体単結晶
を製造する方法としては液体封止チョクラルスキー法(
LEC法)が広《用いられている.しかしながら、この
方法は、結晶成長中に熱歪による転位を生ずるという欠
点を有している.そこで、この欠点を克服するためアル
カリハライド系材料の成長に用いられているキロボウロ
ス(κyropoulos )法を応用したLEK法(
LiquidEncapsulated Kyropo
ulos)という技術がある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing a compound semiconductor single crystal by raising a crucible. (Prior art) As a conventional method for manufacturing m-v group compound semiconductor single crystals such as GaAs and InP, the liquid-sealed Czochralski method (
LEC method) is widely used. However, this method has the drawback of generating dislocations due to thermal strain during crystal growth. Therefore, in order to overcome this drawback, the LEK method (LEK method) is an application of the κyropoulos method used for the growth of alkali halide materials.
LiquidEncapsulated Kyropo
There is a technology called ulos).

LEK法は、反応炉内設置されたルツボ内の化合物半導
体融液に種結晶を接触させた後、反応炉内の温度を徐々
に下げていくことにより単結晶を成長させる方法である
.また、本発明者によりTKM法(Traveling
 Kyropoulos Method)という技術が
開発されている.この方法は、反応炉内に上下方向の温
度分布を設け、種結晶をルツポ内の化合物半導体融液に
接触させてルツボおよび種結晶を上方の低温度領域に移
動し、種結晶と接触するルツボ内の融液を凝固せしめて
化合物半導体の単結晶を得る方法である。
The LEK method is a method of growing a single crystal by bringing a seed crystal into contact with a compound semiconductor melt in a crucible placed inside a reactor, and then gradually lowering the temperature inside the reactor. In addition, the present inventor has also developed the TKM method (Traveling
A technique called the Kyropoulos Method has been developed. In this method, a vertical temperature distribution is provided in the reactor, a seed crystal is brought into contact with the compound semiconductor melt in the crucible, the crucible and the seed crystal are moved to an upper low temperature region, and the crucible in contact with the seed crystal is This is a method to obtain a single crystal of a compound semiconductor by solidifying the melt inside.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のLEK法およびTKM法には次の
ような問題点がある.すなわち、イ)液体封止剤として
用いられるB z O *は固化するとPBN製のルツ
ボに強く付着する。また、化合物半導体融液は結晶化す
ると体積が膨張する。
However, the above-mentioned LEK method and TKM method have the following problems. That is, a) B z O * used as a liquid sealant strongly adheres to the PBN crucible when solidified. Further, when the compound semiconductor melt is crystallized, the volume expands.

従って、化合物半導体単結晶をルツボおよび液体封止剤
から季離させ、取り出す作業が困難である。
Therefore, it is difficult to separate and take out the compound semiconductor single crystal from the crucible and the liquid sealant.

口)′a.体封止剤が凝固すると、化合物半導体単結晶
に大きな残留歪を発生し、場合によっては、単結晶が破
壊するという現象さえ生ずる。
mouth)'a. When the body sealant solidifies, a large residual strain is generated in the compound semiconductor single crystal, and in some cases, the single crystal may even be destroyed.

本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、ノレツホおよび液体封止剤か
らの単結晶の垂離を容易にする化合物半導体単結晶製造
装置を提供することにある.〔課題を解決するための手
段と作用〕 上記目的を達成するための本発明は、次の通りである.
すなわち、本発明は、不活性ガスが充填される高圧容器
内に原料融液と液体封止剤が入るルツボを設け、ルツボ
周囲には上方の温度が下方より低い所定の温度分布をつ
くるヒーターを設け、種結晶を原料融液に接触させなが
ら種結晶とルツボを上方に移動する手段を有する化合物
半導体単結晶製造装置において、原料融液が凝固した後
、液体封止剤をルツボから除去する手段を有することを
特徴とする化合物半導体単結晶製造装置である。液体封
止剤は化合物半導体よりも融点が低いため、加熱すると
、まず液体封止剤が溶融してルツボ壁内面を濡らし、化
合物半導体を覆う。化合物半導体を溶融した後、ルツボ
を上昇させて温度を下げると、化合物半導体がまず固化
し、液体封止剤は溶融状態になっている.そこで、本発
明にかかる装置では、固化した化合物半導体上にある溶
融した液体封止剤を除去する。液体封止剤を完全に除去
することは困難であるが、残存したわずかな液体封止剤
は、ルツボを高圧容器から取り出した後に、有機溶剤に
より除去することができ、この際には、ルツボ壁内面に
付着している液体封止剤も除去されて、化合物半導体単
結晶をルツボから取り出すことが容易になる.また、化
合物半導体単結晶上の液体封止剤は凝固する前に除去さ
れるため、化合物半導体単結晶に歪が生じることもない
. 〔実施例) 以下、図面に示したー実施例に基づいて本発明を説明す
る. 第1図は本発明にかかる化合物半導体単結晶製造装置の
断面図と温度分布図であり、ステンレス製高圧容器03
)の下面を貫通する上下移動および回転自在なルツボ軸
(8)の上端にルツボ支持台(7)を取り付け、その上
にPBN製のルツボ04)を設置する.ルツボ041の
周囲には、融液帯域のヒーター(6)とその上方に低温
度の固化帯域のヒーター(5)を配置し、さらに、高圧
容器0クの上面を貫通して上下移動と回転自在な引上軸
(4)が設けられている.固化帯域のヒーター(5)の
上方には、石英製の液体封止剤融液収納容器(9)が設
置され、その周囲には加熱用のヒーター00が設けられ
ている。なお、θ1)は断熱材、02)はルツボ内を観
察するビューイングロンド、05)はOリングである。
The present invention has been made in view of the above points.
The purpose is to provide a compound semiconductor single crystal manufacturing apparatus that facilitates the separation of a single crystal from a liquid sealant and a liquid encapsulant. [Means and effects for solving the problems] The present invention for achieving the above objects is as follows.
That is, the present invention provides a crucible in which a raw material melt and a liquid sealant are placed in a high-pressure container filled with an inert gas, and a heater is provided around the crucible to create a predetermined temperature distribution in which the upper temperature is lower than the lower temperature. In a compound semiconductor single crystal manufacturing apparatus having means for moving the seed crystal and the crucible upward while bringing the seed crystal into contact with the raw material melt, the liquid sealant is removed from the crucible after the raw material melt is solidified. This is a compound semiconductor single crystal manufacturing apparatus characterized by having the following. Since the liquid sealant has a lower melting point than the compound semiconductor, when heated, the liquid sealant first melts and wets the inner surface of the crucible wall, covering the compound semiconductor. After melting the compound semiconductor, when the crucible is raised and the temperature is lowered, the compound semiconductor first solidifies, and the liquid encapsulant remains in a molten state. Therefore, in the apparatus according to the present invention, the molten liquid encapsulant on the solidified compound semiconductor is removed. Although it is difficult to completely remove the liquid sealant, the small amount of remaining liquid sealant can be removed with an organic solvent after the crucible is removed from the high-pressure container. The liquid sealant adhering to the inner surface of the wall is also removed, making it easier to remove the compound semiconductor single crystal from the crucible. Furthermore, since the liquid encapsulant on the compound semiconductor single crystal is removed before it solidifies, no distortion occurs in the compound semiconductor single crystal. [Example] The present invention will be explained below based on the example shown in the drawings. FIG. 1 is a cross-sectional view and a temperature distribution diagram of a compound semiconductor single crystal manufacturing apparatus according to the present invention, and shows a stainless steel high-pressure vessel 03.
) A crucible support stand (7) is attached to the upper end of a crucible shaft (8) that can move up and down and rotate freely, passing through the lower surface of the crucible (04) made of PBN. Around the crucible 041, a heater (6) for the melt zone and a heater (5) for the solidification zone at a low temperature are placed above the crucible 041, and furthermore, they penetrate the top surface of the high pressure container 041 and can freely move up and down and rotate. A lifting shaft (4) is provided. A liquid sealant melt storage container (9) made of quartz is installed above the heater (5) in the solidification zone, and a heating heater 00 is provided around it. Note that θ1) is a heat insulating material, 02) is a viewing rond for observing the inside of the crucible, and 05) is an O-ring.

上記装置により、以下の工程によりGaAs単結晶を製
作した.まず、ルツボ0〜内にGaAs多結晶原料又は
GaとAsを一定のモル比で約4kg、およびB20,
を液体封止剤として約200g充填し、種結晶(1)を
引上軸(4)に装填してから、高圧容器0■内を真空排
気し、不活性ガスとしてArを導入して約20kg/c
dに加圧し、昇温しで原料を溶融した。
Using the above apparatus, a GaAs single crystal was manufactured through the following steps. First, about 4 kg of GaAs polycrystalline raw material or Ga and As at a constant molar ratio is placed in a crucible 0~, and B20,
After filling about 200g of liquid sealant as a liquid sealant and loading the seed crystal (1) onto the pulling shaft (4), the inside of the high-pressure container was evacuated, Ar was introduced as an inert gas, and about 20kg of /c
The raw material was melted by applying pressure to d and raising the temperature.

原料融液(2)の深さは約10cm、液体封止剤(3)
の深さは約2cmであった.次いで、種結晶(1)をG
aAsの原料融液(2)に接触させ、ヒーター(5)、
(6)の温度を制御して、種付けを行った.次に、融液
帯の温度を1250゜C1低温度域の温度を900″C
に制御しながら、種結晶(1)を5.5m/Hr、ルツ
ポ(3)を5amm/Hrの速度で上方に移動させ、原
料融液(2)を全て固化させた,GaAsの凝固による
体積膨張率は約lθ%もあるため、ルツボにより結晶が
圧迫されないように、移動速度に差をつけてある.次に
、ルツボQ4)内の原料融液(2)が全て単結晶化した
後、ルツボ04を上方の液体封止剤収納容器(9)に向
って移動させる.該収納容H(9)の先端部のノズルが
液体封止剤(3)融液に接触する前に、収納容器(9)
をヒーター0ωにより加熱して、その温度をルツボθ委
周囲温度よりも高< 1100゜C程度にする.収納容
器(9)の先端ノズルが液体封止剤(3)に接触し、単
結晶に接触する直前までルツボ04)を上方に移動させ
た後(第1図点線の位置)、ヒーター0ωの温度を下げ
る.そうすると、収納容器(9)内の圧力は下がり、液
体封止剤(3)融液がルツボ(ロ)上面から収納容器(
9)内に吸引されていった.収納容器(9)の温度は液
体封止剤(3)融液の融点よりも高く保たれているため
、液体封止剤(2)融液はノズルから収納容器(9)に
流動していく.液体封止剤の吸収が終了した後、引上軸
(4)を上昇させてルツボ(ロ)から化合物半導体単結
晶を徐々に分離していった.ルツボ(ロ)から化合物半
導体単結晶を分離させる方法としては、冷却後にルツボ
04)を高圧容器0湯から取り出し、有機溶剤により残
存したB!0,の液体封止剤を除去して、化合物半導体
単結晶を取り出してもよい.なお、溶融した液体封止剤
(3)を除去する方法は、上記方法に限定することなく
、例えば、別の引上軸により液体封止剤のみを引上げて
固化し、化合物半導体単結晶の上面から除去してもよい
.〔発明の効果〕 以上説明ように本発明によれば、原料融液が凝固した後
、液体封止剤をルツボから除去するため化合物半導体単
結晶に歪が生ずることなく、また化合物半導体単結晶を
ルツボから容易に季離することができるという優れた効
果がある。
The depth of the raw material melt (2) is approximately 10 cm, and the liquid sealant (3)
The depth was approximately 2 cm. Next, the seed crystal (1) is
A heater (5),
Seeding was carried out by controlling the temperature in (6). Next, the temperature of the melt zone is set to 1250°C, and the temperature of the low temperature region is set to 900"C.
The seed crystal (1) was moved upward at a speed of 5.5 m/Hr and the lubrication point (3) was moved upward at a speed of 5 am/Hr, and the raw material melt (2) was completely solidified. Volume due to solidification of GaAs Since the expansion rate is about lθ%, the movement speeds are set differently so that the crystals are not compressed by the crucible. Next, after all of the raw material melt (2) in the crucible Q4) has become a single crystal, the crucible 04 is moved toward the liquid sealant storage container (9) above. Before the nozzle at the tip of the storage container H (9) comes into contact with the liquid sealant (3) melt, the storage container (9)
is heated by a heater 0ω to bring the temperature to about <1100°C, which is higher than the ambient temperature of the crucible θ. After the crucible 04) is moved upward until the tip nozzle of the storage container (9) comes into contact with the liquid sealant (3) and just before it comes into contact with the single crystal (the position indicated by the dotted line in Figure 1), the temperature of the heater 0ω is increased. lower. As a result, the pressure inside the storage container (9) decreases, and the liquid sealant (3) melt flows from the upper surface of the crucible (B) to the storage container (
9) It was sucked into the body. Since the temperature of the storage container (9) is kept higher than the melting point of the liquid sealant (3) melt, the liquid sealant (2) melt flows from the nozzle to the storage container (9). .. After the absorption of the liquid sealant was completed, the pulling shaft (4) was raised to gradually separate the compound semiconductor single crystal from the crucible (B). The method for separating the compound semiconductor single crystal from the crucible (b) is to remove the crucible 04) from the high-pressure container after cooling, and use an organic solvent to remove the remaining B! 0, the compound semiconductor single crystal may be taken out by removing the liquid sealant. Note that the method for removing the molten liquid encapsulant (3) is not limited to the above method; for example, by pulling up only the liquid encapsulant with another pulling shaft and solidifying it, the upper surface of the compound semiconductor single crystal is removed. You can remove it from [Effects of the Invention] As explained above, according to the present invention, the liquid sealant is removed from the crucible after the raw material melt is solidified, so that the compound semiconductor single crystal is not strained, and the compound semiconductor single crystal is It has the excellent effect of being easily separated from the crucible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる化合物半導体単結晶製造装置の
断面図と温度分布図である.
Figure 1 is a cross-sectional view and temperature distribution diagram of the compound semiconductor single crystal manufacturing apparatus according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 不活性ガスが充填される高圧容器内に原料融液と液体封
止剤が入るルツボを設け、ルツボ周囲には上方の温度が
下方より低い所定の温度分布をつくるヒーターを設け、
種結晶を原料融液に接触させながら種結晶とルツボを上
方に移動する手段を有する化合物半導体単結晶製造装置
において、原料融液が凝固した後、液体封止剤をルツボ
から除去する手段を有することを特徴とする化合物半導
体単結晶製造装置。
A crucible containing the raw material melt and liquid sealant is installed in a high-pressure container filled with inert gas, and a heater is installed around the crucible to create a predetermined temperature distribution where the upper temperature is lower than the lower temperature.
A compound semiconductor single crystal manufacturing apparatus having means for moving the seed crystal and crucible upward while bringing the seed crystal into contact with the raw material melt, and having means for removing the liquid sealant from the crucible after the raw material melt has solidified. A compound semiconductor single crystal manufacturing device characterized by the following.
JP5156289A 1989-03-03 1989-03-03 Apparatus for producing compound semiconductor single crystal Pending JPH02229790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156289A JPH02229790A (en) 1989-03-03 1989-03-03 Apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156289A JPH02229790A (en) 1989-03-03 1989-03-03 Apparatus for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH02229790A true JPH02229790A (en) 1990-09-12

Family

ID=12890418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156289A Pending JPH02229790A (en) 1989-03-03 1989-03-03 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH02229790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659910A3 (en) * 1993-11-19 1998-10-21 Mega Chips Corporation Semiconductor device and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659910A3 (en) * 1993-11-19 1998-10-21 Mega Chips Corporation Semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
GB1353917A (en) Method and apparatus for forming crystalline bodies of a semicon ductor material
JPH02229790A (en) Apparatus for producing compound semiconductor single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2834558B2 (en) Compound semiconductor single crystal growth method
JPH11302094A (en) Production of compound semiconductor single crystal
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6379792A (en) Device for growing single crystal
JPH05319973A (en) Single crystal production unit
JPH0341432B2 (en)
JPH02204394A (en) Method and device for growing single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
JPH07206584A (en) Production of compound semiconductor single crystal
JPH0367996B2 (en)
JPH05178684A (en) Production of semiconductor single crystal
JPS6296394A (en) Crystal growth for compound semiconductor
JPH0412081A (en) Production of single crystal of compound of group iii-v
JPH0867593A (en) Method for growing single crystal
JPH01226797A (en) Device for growing compound semiconductor single crystal
JPS6212695A (en) Treatment of crucible
JPH03247583A (en) Method for growing single crystal of compound semiconductor