JPS6114193A - Manufacture of compound semiconductor single crystal - Google Patents
Manufacture of compound semiconductor single crystalInfo
- Publication number
- JPS6114193A JPS6114193A JP13333484A JP13333484A JPS6114193A JP S6114193 A JPS6114193 A JP S6114193A JP 13333484 A JP13333484 A JP 13333484A JP 13333484 A JP13333484 A JP 13333484A JP S6114193 A JPS6114193 A JP S6114193A
- Authority
- JP
- Japan
- Prior art keywords
- melt
- sealant
- single crystal
- crucible
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/30—Mechanisms for rotating or moving either the melt or the crystal
- C30B15/305—Stirring of the melt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
不発明線、化合物半導体単結晶を磁場印加液体封止チヨ
コラルスキー法によって製造する方法に係り、特に高品
質の単結晶を製造する化合物半導体単結晶の製造方法に
関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a compound semiconductor single crystal by a magnetic field application liquid-sealed Czyocholarski method, and in particular a method for producing a compound semiconductor single crystal for producing a high quality single crystal. This invention relates to a method for producing crystals.
GaP、GaAs 、InP等の化合物半導体単結晶は
オ −フトエレクトロニクスやマイクロエレクトロニク
ス用の重要な材料であり、これらの半導体単結晶の工業
的製造方法として社液体封止チヨコラルスキー法(以下
LEO法と略省する)が知られている。Compound semiconductor single crystals such as GaP, GaAs, and InP are important materials for autoelectronics and microelectronics, and the liquid encapsulation Ctyocholarski method (hereinafter referred to as LEO method) is an industrial manufacturing method for these semiconductor single crystals. ) is known.
このLEO法を用いて高品質な単結晶を製造する方法の
一つとし、て磁場をかけながらLEO法によって単結晶
を製造する方法(磁場印加液体封止チヨコラルスキー法
二以下MLBO法と略省する説明する。このMLEO法
は基本的にはLBO法に磁場印加装置を付設したもので
ある。高圧チャンバ■内のルツボささえ軸■に例えば石
英らるいは熱分解窒化ポロン(以下PBNと略省する)
からなるルツボ■を装着し、その中に結晶作成用原料、
GaAs単結晶製造の場合はGaとAsを充填し、そこ
にさらに液体封止′剤、例えば酸化ボロン(B。One of the methods for manufacturing high-quality single crystals using this LEO method is the method of manufacturing single crystals by the LEO method while applying a magnetic field (magnetic field applied liquid seal Czyochoralski method, hereinafter referred to as MLBO method). This MLEO method is basically the LBO method with the addition of a magnetic field application device.For example, quartz or pyrolytic poron nitride (hereinafter abbreviated as PBN) is placed on the crucible supporting shaft (■) in the high-pressure chamber (■). omit)
A crucible made of
In the case of GaAs single crystal production, Ga and As are filled, and a liquid sealing agent such as boron oxide (B) is added thereto.
03)を充填する。このルツボを同軸円筒状に取り囲ん
だヒータ■で加熱してG a A s融液■とその表面
を封止剤が覆う二層を形成する。この時チャンバ内は不
活性ガス、例えばアルゴンガスで加圧されている。この
ようにして原料の分解、飛散を防ぎ、この状態で結晶引
上げ軸■の先端につけた種結晶■を封止剤を通過させて
、GaAβ融液゛融液接面させて、回転させながら引上
げて単結晶■を作成する。これは通常のL’IO法によ
る結晶作成方法でちるが、MLEO法では、この高圧チ
ャンバの周囲に磁場発生装置[相]を設置して結晶作成
炉内のルツボ内結晶原料融液に磁場を印加できるように
したもので、この磁場発生装置によって磁場をかけなが
ら単結晶を作成する。03). This crucible is heated with a heater (2) surrounding the crucible in a coaxial cylindrical shape to form two layers of GaAs melt (2) and a sealing agent covering the surface thereof. At this time, the inside of the chamber is pressurized with an inert gas, such as argon gas. In this way, the decomposition and scattering of the raw materials are prevented, and in this state, the seed crystal attached to the tip of the crystal pulling shaft ■ is passed through the sealant, brought into contact with the GaAβ melt, and pulled up while rotating. to create a single crystal ■. This is done using the normal L'IO method, but in the MLEO method, a magnetic field generator [phase] is installed around this high-pressure chamber to apply a magnetic field to the crystal raw material melt in the crucible in the crystal creation furnace. A single crystal is created while applying a magnetic field using this magnetic field generator.
T、 1180法で化合物半導体を作成する場合、外部
より加熱されている結晶原料融液や封止剤中には大きな
熱対流が生じ、このために結晶が成長する固液界面での
温度がふらつく。このような温度変動は結晶成長速度の
変動や結晶再熔融凝固につながり、結晶性が低下し、た
9、おるいは不純物濃度が不均一になったりする。゛
MLEO法は半導体融液が電荷をもち、熱対流に従って
この電荷が流れていることに注目し、で、外部から磁場
を加えることによって′電荷が流れていることに注目し
て、外部から磁場を加えることによって電荷に対流と逆
方向の力をかけ、この力と対流による流れとを相殺し合
うことによって融液対流を止め、この効果によって結晶
成長時の固液界面の温度のふらつきを止め高品質な単結
晶を作成する方法でおる。 。T. When creating a compound semiconductor using the 1180 method, large thermal convection occurs in the externally heated crystal raw material melt and sealant, which causes the temperature at the solid-liquid interface where the crystal grows to fluctuate. . Such temperature fluctuations lead to fluctuations in crystal growth rate and crystal re-melting and solidification, resulting in decreased crystallinity, 9 or non-uniform impurity concentration. The MLEO method focuses on the fact that the semiconductor melt has an electric charge and that this electric charge flows according to thermal convection.By applying an external magnetic field, it focuses on the fact that the electric charge is flowing. By adding , a force is applied to the charge in the opposite direction to the convection, and this force and the flow due to convection cancel each other out, stopping the melt convection, and this effect stops the fluctuation of the temperature at the solid-liquid interface during crystal growth. This is a method for creating high-quality single crystals. .
しかしながらこのMLEO法においても封止剤としては
電気伝導度の小さなり、03が使われるために、磁場を
かけた場合においても電気伝導度の □大きな原料
融液中の対流は止まるが、B、O,中の対流は止めるこ
とはできない。B20.中に対流が存在することは半導
体融液とB、03融液との界面に温度のふらつきを生じ
させ、そのために結晶が成長する固液界面での温度がふ
らつく。この温度変動は磁場をかけない場合と同様に結
晶の成長速度の変動や結晶再熔融凝固につながフ、結晶
性が低下したシ、あるいは不純物濃度が不均一になった
り、また結晶面内での転位が不均一になってしまう。However, even in this MLEO method, since B or 03 with low electrical conductivity is used as the sealant, convection in the raw material melt with large electrical conductivity stops even when a magnetic field is applied. O, the convection inside cannot be stopped. B20. The presence of convection causes temperature fluctuations at the interface between the semiconductor melt and the B,03 melt, which causes fluctuations in the temperature at the solid-liquid interface where crystals grow. Similar to when no magnetic field is applied, this temperature fluctuation can lead to fluctuations in the crystal growth rate, crystal re-melting and solidification, decreased crystallinity, non-uniform impurity concentration, or changes in the crystal plane. Dislocations become uneven.
本発明は上記欠点に鑑み、磁場印加液体封止チヨコラル
スキー法において、従来の原料の融液のみならず、封止
剤中の対流をも同時に止めることによって高品質の化合
物半導体単結晶を製造する方法を提供することVcうる
。In view of the above-mentioned drawbacks, the present invention manufactures high-quality compound semiconductor single crystals by simultaneously stopping not only the conventional melt of the raw material but also the convection in the sealant using the magnetic field application liquid sealing Czyochoralski method. To provide a method for Vc.
本発明の概要をG a A s単結晶の作成を例にと9
、図を参照しながら説明する。An overview of the present invention will be given by taking the production of a GaAs single crystal as an example.
, will be explained with reference to the figures.
・第1図に従ってMLEIO法にょるGaAs単結晶の
作成法を説明する。・The method for producing a GaAs single crystal using the MLEIO method will be explained according to FIG.
高圧チャンバ■内のルツボささえ軸■に、GaとAsと
封止剤OB、03を入れたルツボ■を装着し、そのルツ
ボを同軸円筒状に取少囲むヒータ■で加熱し、GaAs
融液■とGaAs融液を覆う二酸化スズ(Snow)を
混合したB、03融液[相]の二層状態にする。The crucible ■ containing Ga, As, and sealants OB and 03 is mounted on the crucible support shaft ■ in the high-pressure chamber ■, and the crucible is heated with a heater ■ that surrounds the crucible in a coaxial cylindrical shape.
A two-layer state of B and 03 melt [phase] is created by mixing the melt ■ and tin dioxide (Snow) covering the GaAs melt.
この時高圧チャンバ■内はアルゴンガスで加圧されてい
る。このGaAsと8n02を混合し、たB2O3を融
液状態にしてから結晶引上げ軸■の先端に取少つけた種
結晶■を8nO,を混合した°B2O3融液を通過させ
て、GaAs融液に接触させ、結晶引上げ軸■を回転さ
せながら引上げてG a A s単結晶■を得る。この
際高圧チャンバの外に設置した磁場印加装置によってと
のGaAs単結晶を作成している部分に従来と同様磁場
を印加している。At this time, the inside of the high-pressure chamber (2) is pressurized with argon gas. This GaAs and 8n02 are mixed, the B2O3 is made into a melt state, and a seed crystal (2) attached to the tip of the crystal pulling shaft (2) is passed through the B2O3 melt mixed with 8nO to form the GaAs melt. The crystals are brought into contact with each other and pulled up while rotating the crystal pulling shaft (■) to obtain a GaAs single crystal (■). At this time, a magnetic field is applied to the portion where the GaAs single crystal is being formed using a magnetic field application device installed outside the high-pressure chamber, as in the conventional case.
第2図VC第7図に示し、たものと同じ条件下で、結晶
引上げ軸■に、種結晶■を取9つける変りに熱電対■を
数少つけた図を示す。この熱電対をGaAs融液■、B
、O,融液■にっけて、磁場を印加した場合と印加し、
ない場合の温度変動を観測した。Figure 2 VC shows a diagram under the same conditions as shown in Figure 7, with a few thermocouples (2) attached instead of nine seed crystals (2) attached to the crystal pulling shaft (2). This thermocouple is connected to GaAs melt ■, B
, O, when a magnetic field is applied to the melt ■, and when it is applied,
We observed temperature fluctuations in the absence of this.
その結果を第3図((a)図が封止剤、(b)図が G
a A s融液)に示す。The results are shown in Figure 3 ((a) is the sealant, (b) is the G
a A s melt).
第3図に示すように従来のB、0.を封止剤とじて用い
た場合、GaAs融液■融液上中度変動が少なくなって
も、封止剤中ではほとんど変化が見られない。これはB
20.融液の抵抗が高く、常温でB!Oa融液は106
Ω・儂以上の高抵抗物質でラシ、融液状態にしてもGa
Asと比較し、てiるかに高い抵抗をもっているためで
ある。As shown in FIG. 3, conventional B, 0. When used together with a sealant, even if moderate fluctuations in the top of the GaAs melt decrease, almost no change is observed in the sealant. This is B
20. The resistance of the melt is high and it is B at room temperature! Oa melt is 106
Ga
This is because it has a much higher resistance than As.
そこで本発明セは上述した如く二酸化スズ(Sn01)
を混合したB!03融液[相]を封止剤として使用した
場合、この封止剤の常温での抵抗率は100Ω・備であ
る。これを第2図に示す方法と同様り方法で温度変動を
観測した。その結果を第4図((a)図が封止剤、う)
がGa A s融液)に示す。−のように封止剤中の温
度変動もG a A s融液中の温度変動とほぼ同程度
まで減少することができるようになった。Therefore, the present invention uses tin dioxide (Sn01) as described above.
B mixed with B! When the 03 melt [phase] is used as a sealant, the resistivity of this sealant at room temperature is 100Ω. Temperature fluctuations were observed using a method similar to that shown in FIG. The results are shown in Figure 4 (Figure (a) is the sealant, c)
is a GaAs melt). - The temperature fluctuation in the sealant can now be reduced to almost the same level as the temperature fluctuation in the GaAs melt.
つづいて封止剤の温度変動と封止剤の抵抗率の関係を調
べるために、B2O3融液に8nO1、Nano 。Next, in order to investigate the relationship between the temperature fluctuation of the sealant and the resistivity of the sealant, 8nO1 and Nano were added to the B2O3 melt.
In103 、 Ga2O3、A71!103 、 K
、O等の金属酸化物を混合し、常温での抵抗率と、封止
剤融液中での温度変動の関係を調べた。ここで封止剤の
温度変動は外部熱環境を一定にした場合の最高温度と最
低温度の差を示す。その結果を第5図に示す。この図か
ら明らかなように温度変動は1000Ω備を境にして急
激に減少し、封止剤の抵抗率としてFilo00Ω・α
以下にすると、磁場印加することによって温度変動を小
さくできることがわかった。In103, Ga2O3, A71!103, K
, O, etc. were mixed, and the relationship between resistivity at room temperature and temperature fluctuation in the sealant melt was investigated. Here, the temperature fluctuation of the sealant indicates the difference between the maximum temperature and the minimum temperature when the external thermal environment is kept constant. The results are shown in FIG. As is clear from this figure, the temperature fluctuation rapidly decreases after reaching 1000Ω, and the resistivity of the sealant is Filo00Ω・α.
It was found that temperature fluctuations can be reduced by applying a magnetic field if the temperature is set as follows.
このように本発明はMLEO法において封止剤としてB
2O2に適当な金属酸化物を混合することによって、抵
抗率を下げ、封止剤融液中の温度変動を小さくすること
を特徴とした半導体単結晶の製造方法である。In this way, the present invention uses B as a sealant in the MLEO method.
This method of manufacturing a semiconductor single crystal is characterized in that resistivity is lowered and temperature fluctuations in the sealant melt are reduced by mixing an appropriate metal oxide with 2O2.
本発明によってMLEO法によって単結晶を作成する際
、封止剤の対流も同時に抑制されるために、熱環境が安
定し、これ罠よって低転位で不純物濃度が均一化した化
合物半導−単結晶を作成することかできる。When a single crystal is created by the MLEO method according to the present invention, the convection of the sealant is simultaneously suppressed, so the thermal environment is stabilized, and this traps a compound semiconductor-single crystal with low dislocations and a uniform impurity concentration. can be created.
本発明の一施例をGaAsを例にとって説明する。
へまずMLEO法にょるG a A s単結晶の作成
方法を第1図に従って説明する。An embodiment of the present invention will be explained using GaAs as an example.
First, a method for producing a GaAs single crystal using the MLEO method will be explained with reference to FIG.
高圧チャンバ■にArガスを充填し、ルツボささえ軸■
に装着されたPBN製内径96φ酩のルツボ■へGa
500.lil、As 550gと、BtO3150#
と、8n02101− ln2C)110gを充填し、
ヒータ■で加熱してGa A s融液■と封止剤[相]
の二層状態にした。この封止剤の抵抗率は常温で480
・儂であった。この時ルツボに磁場印加装置[相]で1
300エルステツドの磁場をかけ、この状態で結晶引上
げ軸■の先端につけた<Zoo>方向の種結晶をつけて
、GaAs融液■につけ直径50m長さ100mのG
a A s単結晶■を得た。この結晶をスライスして(
100)ウェハを作り、これを溶融KOHエツチング法
でエツチングして転位分布を求めた。Fill the high pressure chamber ■ with Ar gas and support the crucible shaft ■
To the crucible made of PBN with an inner diameter of 96φ attached to the
500. lil, As 550g and BtO3150#
and 8n02101-ln2C) 110g,
Heat with heater ■ to form Ga As melt ■ and sealant [phase]
It was made into a two-layer state. The resistivity of this sealant is 480 at room temperature.
・It was me. At this time, a magnetic field application device [phase] is applied to the crucible.
A magnetic field of 300 oersted is applied, and in this state, a seed crystal in the <Zoo> direction attached to the tip of the crystal pulling shaft (■) is attached to the GaAs melt (■), and a G magnet of 50 m in diameter and 100 m in length is attached.
A As single crystal ■ was obtained. Slice this crystal (
100) A wafer was made and etched using the molten KOH etching method to determine the dislocation distribution.
第6図に本発明によるML、BO法による単結晶の結果
と、従来のMLEO法による結果を示す。FIG. 6 shows the results of single crystals obtained by the ML and BO methods according to the present invention and the results obtained by the conventional MLEO method.
@が従来のMLEO法による転位密度分布、0は本発明
を用いたMLBO法による転位密度分布を示す。@ indicates the dislocation density distribution by the conventional MLEO method, and 0 indicates the dislocation density distribution by the MLBO method using the present invention.
このように本発明を用いることによシ、封止剤中の熱環
境が安定し、特に結晶の周辺部の転位密度が大幅に減少
することがわかった。As described above, it has been found that by using the present invention, the thermal environment in the sealant is stabilized, and in particular, the dislocation density in the peripheral area of the crystal is significantly reduced.
以上のように、B2O2の電気抵抗を下げることにより
、高品質な単結晶を作成できる。As described above, high quality single crystals can be produced by lowering the electrical resistance of B2O2.
第1図は本発明の概要のMLEO法を説明するための概
略図、第2図は融液温度の測定法を示した図、第3図及
び第4図はG a A s融液と封止剤融液中の温度変
動図、第5図は封止剤の抵抗率と温度変動との相関図、
第6図は転位密度分布を示す図、第7図は従来のMLE
O法を説明するための概略図でおる。
■:高圧チャ/バ、■ニルツボささえ軸、■ニルツボ、
■:ヒータ、■:結晶原料融液、■: B、03融液、
■:結晶引上げ軸、02種結晶、■:単結晶、[相]:
磁場印加装置、■:熱電対、@:従来のMLEO法によ
る転位密度分布線、@:本発明によるMLEO法の転位
密度分布線、[相]: 8nO,等を混合したB、Os
融液。
代理人 弁理士 則 近 憲4佑(ほか1名)第 1
図
じ
第 2 図
第8図
(Q)
Cb】
第4図
(0L)
石へ馬な(嵐4あす
第5@1
.ta心Ω、C匍
第6図Fig. 1 is a schematic diagram for explaining the MLEO method that outlines the present invention, Fig. 2 is a diagram showing a method for measuring melt temperature, and Figs. A diagram of temperature fluctuation in the sealant melt; Figure 5 is a diagram of the correlation between the resistivity of the sealant and temperature fluctuation;
Figure 6 shows the dislocation density distribution, Figure 7 shows the conventional MLE.
This is a schematic diagram for explaining the O method. ■:High-pressure cha/ba, ■Nil acupuncture support shaft, ■Nil acupuncture point,
■: Heater, ■: Crystal raw material melt, ■: B, 03 melt,
■: Crystal pulling axis, 02 seed crystal, ■: Single crystal, [phase]:
Magnetic field application device, ■: Thermocouple, @: Dislocation density distribution line by conventional MLEO method, @: Dislocation density distribution line by MLEO method according to the present invention, [Phase]: B, Os mixed with 8nO, etc.
Melt. Agent: Patent Attorney Noriyuki Kenshi (and 1 other person) No. 1
Figure 2 Figure 8 (Q) Cb] Figure 4 (0L) Stone to Horse (Arashi 4 Tomorrow 5 @1 .tashin Ω, C 匍 Figure 6
Claims (3)
合物半導体単結晶を製造する方法において、前記液体封
止剤の常温での抵抗率が1000Ω・cm以下であるこ
とを特徴とする化合物半導体単結晶の製造方法。(1) A method for manufacturing a compound semiconductor single crystal by a magnetic field applied liquid sealing Czyochoralski method, wherein the liquid sealant has a resistivity of 1000 Ω·cm or less at room temperature. Method for producing single crystals.
外の金属酸化物の1種あるいは2種以上の混合物である
ことを特徴とする特許請求の範囲第1項記載の化合物半
導体単結晶の製造方法。(2) The compound semiconductor monomer according to claim 1, wherein the liquid sealant is one or a mixture of two or more of diboron trioxide and metal oxides other than diboron trioxide. Method of manufacturing crystals.
化アルミニウム、酸化ガリウム、五酸化リン、酸化ナト
リウム、酸化カリウム、酸化カルシウムの少なくとも1
つの酸化物であることを特徴とする特許請求の範囲第2
項記載の化合物半導体単結晶の製造方法。(3) The metal oxide is at least one of tin dioxide, indium oxide, aluminum oxide, gallium oxide, phosphorus pentoxide, sodium oxide, potassium oxide, and calcium oxide.
Claim 2, characterized in that the oxide is
A method for producing a compound semiconductor single crystal as described in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13333484A JPS6114193A (en) | 1984-06-29 | 1984-06-29 | Manufacture of compound semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13333484A JPS6114193A (en) | 1984-06-29 | 1984-06-29 | Manufacture of compound semiconductor single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6114193A true JPS6114193A (en) | 1986-01-22 |
Family
ID=15102287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13333484A Pending JPS6114193A (en) | 1984-06-29 | 1984-06-29 | Manufacture of compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6114193A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6230697A (en) * | 1985-08-02 | 1987-02-09 | Agency Of Ind Science & Technol | Production of gaas single crystal |
JPH0280358A (en) * | 1988-09-14 | 1990-03-20 | Denki Kagaku Kogyo Kk | Cement admixture |
JPH02120297A (en) * | 1988-10-28 | 1990-05-08 | Nippon Mining Co Ltd | Production of iii-v compound semiconductor single crystal |
US5196085A (en) * | 1990-12-28 | 1993-03-23 | Massachusetts Institute Of Technology | Active magnetic flow control in Czochralski systems |
-
1984
- 1984-06-29 JP JP13333484A patent/JPS6114193A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6230697A (en) * | 1985-08-02 | 1987-02-09 | Agency Of Ind Science & Technol | Production of gaas single crystal |
JPH0317799B2 (en) * | 1985-08-02 | 1991-03-08 | Kogyo Gijutsuin | |
JPH0280358A (en) * | 1988-09-14 | 1990-03-20 | Denki Kagaku Kogyo Kk | Cement admixture |
JPH02120297A (en) * | 1988-10-28 | 1990-05-08 | Nippon Mining Co Ltd | Production of iii-v compound semiconductor single crystal |
US5196085A (en) * | 1990-12-28 | 1993-03-23 | Massachusetts Institute Of Technology | Active magnetic flow control in Czochralski systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111118604A (en) | GaN crystal growth device | |
GB2180469A (en) | Methods of manufacturing compound semiconductor crystals and apparatus for the same | |
JPS6345198A (en) | Production of crystal of multiple system | |
JPS6114193A (en) | Manufacture of compound semiconductor single crystal | |
JPS61247683A (en) | Pulling device for single crystal sapphire | |
JPS58135626A (en) | Manufacture of compound semiconductor single crystal and manufacturing device thereof | |
JPS58161999A (en) | Production of gallium arsenide single crystal having semi-insulation characteristic | |
JP2517803B2 (en) | Method for synthesizing II-VI compound semiconductor polycrystal | |
JPH0557239B2 (en) | ||
JPH01317188A (en) | Production of single crystal of semiconductor and device therefor | |
JPS6317291A (en) | Method for growing crystal and device therefor | |
JPS6021900A (en) | Apparatus for preparing compound semiconductor single crystal | |
JPS6339558B2 (en) | ||
JPS62216995A (en) | Device for growing compound semiconductor single crystal | |
JPS6251237B2 (en) | ||
JP2726887B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPS6389498A (en) | Production of silicon-added gallium arsenide single crystal | |
JPS58125692A (en) | Production unit for belting silicon crystal | |
JPH05139884A (en) | Production of single crystal | |
JPS6153186A (en) | Heater for resistance heating | |
JP2766716B2 (en) | Single crystal manufacturing method | |
JPS61222991A (en) | Production of single crystal of gallium arsenide | |
JPS6339557B2 (en) | ||
JPH05163094A (en) | Production of compound semiconductor crystal | |
JPH03159998A (en) | In-doped dislocatioin-free pulled gallium arsenide single crystal |