JPS60149124A - Method for liquid-phase epitaxial growth - Google Patents

Method for liquid-phase epitaxial growth

Info

Publication number
JPS60149124A
JPS60149124A JP540284A JP540284A JPS60149124A JP S60149124 A JPS60149124 A JP S60149124A JP 540284 A JP540284 A JP 540284A JP 540284 A JP540284 A JP 540284A JP S60149124 A JPS60149124 A JP S60149124A
Authority
JP
Japan
Prior art keywords
melt
temperature
thermocouple
holder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP540284A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Yamazoe
山添 良光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP540284A priority Critical patent/JPS60149124A/en
Publication of JPS60149124A publication Critical patent/JPS60149124A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve the reproductivity of growing conditions by increasing the accuracy in temperature detection by using the voltage value corresponding to a saturation temperature of melt which is determined experimentaly by observing variation with time of the output voltage of a thermocouple for observation which is immersed in one of melts through a protective layer as a reference voltage value of the thermcouple for controlling a temperature of a furnace. CONSTITUTION:A tube reactor 6 is surrounded by a heater 7 in which thermocouples 21-23 for controlling an electric power are buried and in the reactor 6, a substrate holder 4 having semiconductor substrate 5 which are placed with levelling their surfaces is arranged. Also, a melt holder 3 containing plural melts 1 and 2 put on the holder 4, which is aliced to bring the melts 1 and 2 in contact with the surface of substrate 5 successively and the desired epitaxial layer is obtained. In this consitution, a thermocouple for observation 42 is immersed in the melt 1 by using an operation bar 41 coated with a protective layer consisting of BN and etc., and the voltage value corresponding to a saturation temperature of the obtained melt is used as an applied voltage of a thermocouple for temperature detection 9 which is buried in a holder 3.

Description

【発明の詳細な説明】 (技術分野) 本発明はエピタキシャル法による結晶成長方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an improvement in a crystal growth method using an epitaxial method.

(従来技術とその問題点) エピタキシャル成長法には各種の方法があるが、液相エ
ピタキシャル法は形成された結晶の品質が良く、特に発
光・受光デバイスに用いるエピタキシャルウェハの製造
には欠かせない重要な技術である。しかしながら、液相
エピタキシャル法は、製造原理上、非常に正画な温度制
御精度が要求される。
(Prior art and its problems) There are various epitaxial growth methods, but the liquid phase epitaxial method produces crystals of good quality, which is especially important for manufacturing epitaxial wafers used in light emitting and light receiving devices. It is a great technology. However, the liquid phase epitaxial method requires extremely precise temperature control due to its manufacturing principle.

以下、図面にもとづいて、液相エピタキシャル法の原理
と、従来の電気炉の問題点を簡単に述べる。例として、
InPのエピタキシャル成長の場合を示す。第11Z目
よIn 中にPをとかした場合の飽和温度を示す図面で
ある。温度TlのInには、原子分率X1 のPをとか
し込むことができる。温度T2のInではX2 のPを
とかし込むことができる。 ′温度T+ に床たれ、P
を原子分率x1 で溶解した原料メルトをTQまで冷却
すると、xl−X2に相当するPがよぶんに溶存する過
飽和状態のIn 融液が出来る該融液すなわちメルトに
InP結晶基板を接触させておけば、よぶんのPはIn
Pとして基板上に析出し、InPの薄膜結晶を得る。T
2はTlより低く、かつメルト内に自然核形成を生じな
い範囲すなわち過飽和限界内で設定される。必要に応じ
て接触後さらに冷却する方法もとられることがある。以
上が液相エピタキシャル法の原理であり、第1図に示し
た溶質の原子分率と飽和温度の関係は液イ・旧腺と呼ば
れ、とりあつかう原子の種類によって個有の関係がある
The principles of the liquid phase epitaxial method and the problems of conventional electric furnaces will be briefly described below based on the drawings. As an example,
The case of epitaxial growth of InP is shown. 11th Z is a drawing showing the saturation temperature when P is dissolved in In. P at an atomic fraction of X1 can be mixed into In at a temperature of Tl. In In at temperature T2, P at X2 can be mixed. 'Temperature T+ floor sauce, P
When a raw material melt in which is dissolved at an atomic fraction x1 is cooled to TQ, a supersaturated In melt containing a large amount of dissolved P corresponding to If you put it, the P of the call is In
P is deposited on the substrate to obtain a thin film crystal of InP. T
2 is set lower than Tl and within a range that does not cause spontaneous nucleation in the melt, that is, within the supersaturation limit. If necessary, a method of further cooling after contact may be used. The above is the principle of the liquid phase epitaxial method, and the relationship between the atomic fraction of the solute and the saturation temperature shown in Figure 1 is called the liquid A old gland, and has a unique relationship depending on the type of atoms involved.

液相1成長法では、液相線をもとに所定の量たとえばX
l のPを混入した1、を用意し、第2図に示すような
炉の中に保持する。第2図は従来から用いられている液
相エピタキシャル炉の断面を示すものである。メルトホ
ルダー3に前記のPを混入せる。その後所要の温度たと
えばT2 まで冷却したのち操作棒8によりメルトホル
ダー3を動かし、メルト1をまず基板5に接触させ、次
いでメルト2を接ノ9すζさせ、かようにして二層のエ
ピタキシャル結晶を得ることができる。この時温度制御
は重要な役割りをはたす。もし実際のメルトの温度がT
I に達しなければメルト内に所定量のPがとけこまな
い。Pは通常はメルト上にInP結晶を加える方法で投
入するのでメルト上にInPが残存し、そのまま冷却す
ると該InP上に結晶成長を生じてメルトと基板を接触
させても基板上には不完全なエピタキシャル層しか得ら
れない。またメルトと基板の接触時の温度がT2 より
も高い場合、基板上のエピタキシャル層が異常に薄くな
ったり、あるいは温度分布によっては全くエピタキシャ
ル層が得られなかったり、極端な場合には基板結晶が溶
解される。
In the liquid phase 1 growth method, a predetermined amount, e.g.
1 mixed with P is prepared and kept in a furnace as shown in FIG. FIG. 2 shows a cross section of a conventionally used liquid phase epitaxial furnace. The above P is mixed into the melt holder 3. Thereafter, after cooling to a required temperature, for example, T2, the melt holder 3 is moved by the operation rod 8, and the melt 1 is first brought into contact with the substrate 5, and then the melt 2 is brought into contact with the substrate 5. In this way, a two-layer epitaxial crystal is formed. can be obtained. At this time, temperature control plays an important role. If the actual melt temperature is T
If I is not reached, the predetermined amount of P will not dissolve into the melt. P is usually added by adding InP crystals onto the melt, so InP remains on the melt, and if it is cooled as it is, crystal growth will occur on the InP, and even if the melt and the substrate are brought into contact, there will be no incomplete contact with the substrate. Only the epitaxial layer can be obtained. Furthermore, if the temperature at the time of contact between the melt and the substrate is higher than T2, the epitaxial layer on the substrate may become abnormally thin, or depending on the temperature distribution, no epitaxial layer may be obtained at all, or in extreme cases, the substrate crystal may become thinner. be dissolved.

場合には、過飽和限界をこえてしまい、メルトと基板の
接触以前にメルト内にInP結晶が形成されてしまい、
基板上には不規則なエピタキシャル層や異常に薄いエピ
タキシャル層しか形成されない。
In some cases, the supersaturation limit is exceeded, and InP crystals are formed in the melt before the melt and the substrate come into contact.
Only irregular or unusually thin epitaxial layers are formed on the substrate.

従来の液相エピタキシャル成長のプロ七スハ基板付近に
挿入した熱電対9の示す温度にもとづいて成されていた
ため、熱電対出力の岡有差や、炉内の微小な温度分布の
変動があれば、メルトの過飽和度は大きく変動してしま
う。特に従来の温度制御法を1いる場合、熱電対の特性
上エピタキシャル成長温度付近での温度差は正確であっ
ても、温度の絶対値については上記のような原因により
十分な精度は確保されていない。すなわち第1図の例で
はTi −Tg の温度差は正確に設定できてもT1あ
るいはT11 自身の数値は非常に不確実である。
Conventional liquid phase epitaxial growth is based on the temperature indicated by the thermocouple 9 inserted near the substrate, so if there is a difference in the thermocouple output or a small fluctuation in the temperature distribution inside the furnace, The degree of supersaturation of the melt varies greatly. In particular, when using conventional temperature control methods, even though the temperature difference near the epitaxial growth temperature is accurate due to the characteristics of thermocouples, sufficient accuracy is not ensured for the absolute value of temperature due to the reasons mentioned above. . That is, in the example of FIG. 1, even if the temperature difference between Ti and Tg can be set accurately, the value of T1 or T11 itself is very uncertain.

このため、液相エピタキシャル法による結晶製造は不安
定かつ、きわめて制御のむつかしい技術であった。
For this reason, crystal production using the liquid phase epitaxial method has been an unstable and extremely difficult technique to control.

本発明は上記の点を改良すべくなされたものである。The present invention has been made to improve the above points.

正値として結晶の原料となる複数の融液のひとつの中に
保護層を介して浸漬された観測用熱電対の出力電圧の時
゛間変動を観測する事によって実験的に定められた、融
液の飽和温度に相当する電圧値を使用する事を特徴とす
る液相エピタキシャル成長の方法である。
As a positive value, the melt value is experimentally determined by observing the time fluctuation of the output voltage of an observation thermocouple immersed through a protective layer into one of the multiple melts that are the raw materials for crystals. This is a liquid phase epitaxial growth method characterized by using a voltage value corresponding to the saturation temperature of the liquid.

特に本発明の液相エピタキシャル法は、温度制御用熱電
対の出力電圧に対する比較基準となるべき基準電圧を記
憶保持するための記憶装置が設備されており、しかも該
記憶装置にエピタキシャル成長を行なうべき結晶の原料
となる融液すなわちメルトのひとつの飽和温度に相当す
る熱電対の出力電圧が基準電圧として保持されており、
該基準電圧をもとに炉の温度制御を行なう電子回路を有
する液相エピタキシャル成長用電気炉を使用する場合に
、前記基準電圧として前記融液中に保護層を介して浸漬
された観測用熱電対の出力電圧の時間変動を観測する事
によって、実験的に定められた、ひとつの融液の飽和温
度に相当する電圧値を使用する事を特徴としている。
In particular, the liquid phase epitaxial method of the present invention is equipped with a storage device for storing and holding a reference voltage to be compared with the output voltage of a thermocouple for temperature control, and furthermore, the storage device is equipped with a storage device for storing a reference voltage to be compared with the output voltage of a thermocouple for temperature control, and a crystal to be epitaxially grown is stored in the storage device. The output voltage of the thermocouple corresponding to the saturation temperature of one of the melts, which is the raw material of the melt, is held as the reference voltage.
When using an electric furnace for liquid phase epitaxial growth having an electronic circuit for controlling the temperature of the furnace based on the reference voltage, an observation thermocouple immersed in the melt through a protective layer serves as the reference voltage. It is characterized by using a voltage value corresponding to the saturation temperature of one melt, which is determined experimentally by observing the time fluctuation of the output voltage.

ために用いる液相エピタキシャル成長用電気炉の構造の
1例を第2図の如き構造図で48図に示す。
An example of the structure of an electric furnace for liquid phase epitaxial growth used for this purpose is shown in FIG. 48 in a structural diagram as shown in FIG.

第2図との差異は観測用熱電対4.2を含んだ操作捧4
1をもつことである。操作捧41の先端はメルト1を汚
染しない材料、たとえばBNを保護層として被覆されて
おり、観ill用熱電対4・2とともにメルト1に達し
ている。この状態で一定の比率で昇温し、メルト1内に
InP結晶が残っている状態と、InPが完全に溶解し
た状態での、InPの溶解熱の効果による微小な温度変
動率の差をたとえば観測用熱電対42によって電子的に
検出する事により電子回路を用いてメルl−1の飽和温
度に相当する熱電対9の出力電圧値を記憶装置に記憶さ
せる。同電圧値は、液相線の定義と正確に対応しており
、たとえば加熱中のPの揮発等があってメルト1内のP
?!’動があるような場合、あるいは熱電対の個有差を
もつ場合でも、常にメルトlにち炉の制御は正確な飽和
温度T1 に相当する熱電対の出力電圧にもとづいて成
され、しかも熱電対の特性上、成長温度付近での温度差
の設定たとえばT i −T 2 の設定はTIあるい
はT2の絶対値よりはるかに正確に出来る。従って従来
よりはるかに正確かつ基礎原理に忠実な温度制御が本発
明により可能となり、熱電対の個有差による不安定性は
原理上全く消失する。
The difference from Fig. 2 is that the operating section 4 includes the observation thermocouple 4.2.
It is to have 1. The tip of the operating tip 41 is coated with a protective layer of a material that does not contaminate the melt 1, such as BN, and reaches the melt 1 together with the viewing thermocouples 4 and 2. In this state, the temperature is raised at a constant rate, and the difference in the minute temperature fluctuation rate due to the effect of the heat of dissolution of InP between a state in which InP crystals remain in melt 1 and a state in which InP is completely dissolved can be calculated, for example. By electronically detecting the observation thermocouple 42, the output voltage value of the thermocouple 9 corresponding to the saturation temperature of Mel l-1 is stored in the storage device using an electronic circuit. The same voltage value corresponds exactly to the definition of the liquidus line, and for example, P volatilization during heating causes the P
? ! Even if there is a certain amount of movement, or if there are individual differences in thermocouples, the control of the furnace after melting is always based on the output voltage of the thermocouple corresponding to the exact saturation temperature T1. Due to the characteristics of the pair, setting the temperature difference near the growth temperature, for example, setting T i -T 2 can be much more accurate than the absolute value of TI or T2. Therefore, the present invention enables temperature control that is far more accurate and faithful to the basic principle than in the past, and in principle, instability caused by individual differences in thermocouples is completely eliminated.

本発明の方法は、液相成長を行なうごとに使用してもか
まわないし、熱電対交換等、何らかの成長条件の更新ご
とに応用し、その他は更新時に記憶した基準電圧を用い
る方法でもよい。
The method of the present invention may be used every time liquid phase growth is performed, or may be applied every time some growth condition is updated, such as by exchanging a thermocouple, and the reference voltage stored at the time of update is used for other purposes.

また、基準点とすべき熱電対の出力電圧呟は、制御用熱
電対22の出力電圧を使用することも可能である。
Furthermore, the output voltage of the control thermocouple 22 can be used as the output voltage of the thermocouple to be used as the reference point.

また、説明の都合上1nPの液相エピタキシャル法を例
にとったが、本発明はすべての液イ・目エピタキシャル
法を用いる結晶GaAs+ InGaAsP+ GaA
lAs等に応用できることはいうまでもない。
Furthermore, for convenience of explanation, a 1nP liquid phase epitaxial method is taken as an example, but the present invention applies to all crystalline GaAs+ InGaAsP+ GaA crystals using the liquid phase epitaxial method.
Needless to say, it can be applied to lAs, etc.

長の基礎原理に直接関係する温度定点を制御の基礎とす
るため、従来の液相エピタキシャル法による温度検出精
度による不安定性は完全に解消される。従って本発明に
よって成長条件の再現性は飛躍的に改良される。この結
果、液相成長法による結晶の製造の歩どまりは大幅に改
良され、かような結晶を材料とするデバイス、特に半導
体発光・受光デバイスの生産性は大幅に改善されること
から本発明は光エレクトロニクスの発展に資するところ
非常に大である。
Since the control is based on a temperature fixed point that is directly related to the fundamental principle of long-term temperature, the instability caused by the temperature detection accuracy of the conventional liquid phase epitaxial method is completely eliminated. Therefore, the reproducibility of growth conditions is dramatically improved by the present invention. As a result, the production yield of crystals by liquid phase growth method is greatly improved, and the productivity of devices using such crystals, especially semiconductor light-emitting/light-receiving devices, is greatly improved. This will greatly contribute to the development of optoelectronics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はIn 融液中のPの溶解度を示す図面である。 第2図は従来から広く用いられている液相エピタキシャ
ル成長法に用いられる電気炉の断面図、第3図は本発明
の液相エピタキシャル成長法を実施するために使用すべ
き電気炉の構造の1例を示す第2図の如き断面図である
。 おりである。 ■、第1のメルト 2、第2のメルト 3、 メルトホルダー 4、 基板ホルダー 5、基板 6、 反応管 7、 ヒーター 8、 操作捧 9、 温度検出用熱電対 41、先端を深護材料で肢位された操作棒42、観測用
熱電対
FIG. 1 is a drawing showing the solubility of P in an In melt. Fig. 2 is a cross-sectional view of an electric furnace used in the conventionally widely used liquid phase epitaxial growth method, and Fig. 3 is an example of the structure of an electric furnace to be used to carry out the liquid phase epitaxial growth method of the present invention. FIG. 2 is a sectional view similar to FIG. It is a cage. ■, the first melt 2, the second melt 3, the melt holder 4, the substrate holder 5, the substrate 6, the reaction tube 7, the heater 8, the operating tip 9, the temperature detection thermocouple 41, the tip of which is covered with a protective material. Positioned operating rod 42, observation thermocouple

Claims (1)

【特許請求の範囲】[Claims] (1)炉の温度制御用熱電対の基準電圧値として結晶の
原料となる複数の融液のひとつの中に保護層を介して浸
漬された観測用熱電対の出力電圧の時間変動を観測する
事によって実験的に定められた融液の飽和温度に相当す
る電圧値を使用する事ン特徴とする液相エピタキシャル
成長の方法。
(1) As the reference voltage value of the thermocouple for controlling the temperature of the furnace, observe the time fluctuation of the output voltage of the observation thermocouple immersed through a protective layer into one of the multiple melts that are the raw materials for crystals. A method of liquid phase epitaxial growth characterized by using a voltage value corresponding to a saturation temperature of a melt determined experimentally.
JP540284A 1984-01-13 1984-01-13 Method for liquid-phase epitaxial growth Pending JPS60149124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP540284A JPS60149124A (en) 1984-01-13 1984-01-13 Method for liquid-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP540284A JPS60149124A (en) 1984-01-13 1984-01-13 Method for liquid-phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS60149124A true JPS60149124A (en) 1985-08-06

Family

ID=11610148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP540284A Pending JPS60149124A (en) 1984-01-13 1984-01-13 Method for liquid-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS60149124A (en)

Similar Documents

Publication Publication Date Title
US5030315A (en) Methods of manufacturing compound semiconductor crystals and apparatus for the same
US4022652A (en) Method of growing multiple monocrystalline layers
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US4088514A (en) Method for epitaxial growth of thin semiconductor layer from solution
JPS6345198A (en) Production of crystal of multiple system
JPS60149124A (en) Method for liquid-phase epitaxial growth
US4567849A (en) Dipping liquid phase epitaxy for HgCdTe
Linares Properties and growth of flux ruby
EP0311038B1 (en) Process for making single-crystal mercury cadmium telluride layers
US4235663A (en) Method of producing a dielectric of two-layer construction
JPS60150622A (en) Liquid-phase epitaxial growing method
US4474640A (en) In situ differential thermal analysis for HgCdTe LPE
US4179317A (en) Method for producing compound semiconductor crystals
EP0295659A1 (en) Process for making single-crystal mercury cadmium telluride layers
JP2548722B2 (en) Liquid phase crystal growth equipment
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS6065799A (en) Process for crystal growth
JPH0566352B2 (en)
JPS6357398B2 (en)
JPH06177063A (en) Semiconductor manufacturing device and method
Anukhin Component distribution during the melting of solid solution (Bi, Sb)/sub 2/Te/sub 3/grown from the excessive tellurium melt
JPH0582459A (en) Manufacture of epitaxial crystal
JPH06345589A (en) Device for growing epitaxially in liquid phase
JPS5893320A (en) Method for measuring temperature of device for molecular beam epitaxial growth
JPH04238898A (en) Method and apparatus for growing semiconductor crystal