JPH06345589A - Device for growing epitaxially in liquid phase - Google Patents

Device for growing epitaxially in liquid phase

Info

Publication number
JPH06345589A
JPH06345589A JP13055593A JP13055593A JPH06345589A JP H06345589 A JPH06345589 A JP H06345589A JP 13055593 A JP13055593 A JP 13055593A JP 13055593 A JP13055593 A JP 13055593A JP H06345589 A JPH06345589 A JP H06345589A
Authority
JP
Japan
Prior art keywords
single crystal
crystal film
substrate
base substrate
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13055593A
Other languages
Japanese (ja)
Inventor
Katsunori Sekijima
雄徳 関島
Takashi Fujii
高志 藤井
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP13055593A priority Critical patent/JPH06345589A/en
Publication of JPH06345589A publication Critical patent/JPH06345589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To fix the growth rate of a single crystal film and obtain a homogeneous single crystal film with a high reproducibility by placing a thermocouple in the hollow hole of a driving shaft and exposing the temp. measuring part on the open end of a supporting rod to control the temp. distribution. CONSTITUTION:The oxides of the elements (Fe2O3, Y2O3) constituting, for example, garnet and a solvent (PbO, B2O3) are filled in a crucible 6. The crucible is placed on a holder 7 and heated to convert the oxides to a homogeneous soln. The soln. is held between a liquidus line and a solidus line to supercool the garnet. A substrate 8 is fixed to a substrate holder 9, the temp. measuring part at the tip of a thermocouple 15 is arranged at the center of the upper surface, and then a rod 11 supporting the holder 9 is lowered into a furnace core tube 1 to preheat the substrate 8. The substrate 8 is dipped in the soln., the temp. is monitored by the thermocouple 15 to form a stabilized temp. region, the dipping depth is fixed, and the substrate is rotated in one direction or the forward and backward directions for a specified time to grow a magnetic garnet single crystal film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は下地基板の表面に単結晶
膜を液相エピタキシャル成長法により育成する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for growing a single crystal film on the surface of a base substrate by a liquid phase epitaxial growth method.

【0002】[0002]

【従来の技術】従来、遅延線フィルター、発振器、非線
形デバイスなどの静磁波(MSW)デバイス、およびフ
ァラデー回転効果を利用した光アイソレータ、サーキュ
レータまたはスイッチなどの磁気光学素子等に、磁性ガ
ーネット単結晶が広く用いられている。この磁性ガーネ
ット単結晶の主な製造方法として、液相エピタキシャル
成長法が知られている。
2. Description of the Related Art Conventionally, magnetic garnet single crystals have been used in magnetostatic wave (MSW) devices such as delay line filters, oscillators, nonlinear devices, and magneto-optical elements such as optical isolators, circulators or switches utilizing the Faraday rotation effect. Widely used. A liquid phase epitaxial growth method is known as a main method for producing the magnetic garnet single crystal.

【0003】図3に従来の液相エピタキシャル成長装置
の概略断面図を示す。同図において、1はアルミナ製の
縦形筒状の炉芯管、2a、2b、2cは炉芯管1の周囲
に設けた抵抗加熱のヒータ、3は炉芯管1の周囲を包囲
する炉体、4は炉芯管1の内部への空気の侵入を抑制す
るシャッター、5は磁性ガーネット膜の原料の溶液、6
は磁性ガーネット膜の原料を収容する白金製の坩堝、7
は坩堝6を支持する支持台、8はGd3 Ga5 12(以
下GGGと称す)よりなる下地基板、9は下地基板8を
水平に保持する白金製または白金合金製の基板保持具、
10は回転方向および上下方向に駆動されるアルミナ製
の支持棒である。
FIG. 3 shows a schematic sectional view of a conventional liquid phase epitaxial growth apparatus. In the figure, 1 is a vertical cylindrical furnace core tube made of alumina, 2a, 2b and 2c are heaters for resistance heating provided around the furnace core tube 1, and 3 is a furnace body surrounding the furnace core tube 1. Reference numeral 4 is a shutter for suppressing the invasion of air into the furnace core tube 1, 5 is a solution of the raw material of the magnetic garnet film, 6
Is a platinum crucible containing the raw material for the magnetic garnet film, 7
Is a support base for supporting the crucible 6, 8 is a base substrate made of Gd 3 Ga 5 O 12 (hereinafter referred to as GGG), 9 is a substrate holder made of platinum or platinum alloy for holding the base substrate 8 horizontally,
Reference numeral 10 is a support rod made of alumina that is driven in the rotation direction and the vertical direction.

【0004】単結晶膜の育成方法は以下の通りである。
まず、白金製の坩堝6にガーネットを構成する元素の酸
化物であるFe2 3 、Y2 3 と溶剤としてのPb
O、B2 3 とを充填する。次に、この坩堝6を炉芯管
1の中の支持台7の上に乗せた後、約1200℃で加熱
溶解して均質化を行う。その後、この溶液を液相線と固
相線の間の温度、すなわち約900℃前後の一定温度に
保持してガーネットを過冷却状態にする。次に、基板保
持具9に下地基板8として準備したGGG基板を取り付
け、基板保持具9を支持する支持棒10を炉芯管1の中
に降下させて下地基板8を予熱する。その後、下地基板
8を原料の溶液5の中に浸漬して、所定時間一定位置で
一方向あるいは正逆に回転させて磁性ガーネット単結晶
膜の育成を行なう。最後に、溶液5の上方で下地基板8
を約500rpmの回転数で回転させることによって、
育成した磁性ガーネット単結晶膜上に付着している溶液
5を振り切る。
The method for growing a single crystal film is as follows.
First, Fe 2 O 3 and Y 2 O 3 which are oxides of the elements composing the garnet and Pb as a solvent are provided in the platinum crucible 6.
O and B 2 O 3 are filled. Next, this crucible 6 is placed on the support 7 in the furnace core tube 1, and then heated and melted at about 1200 ° C. to homogenize. Then, this solution is kept at a temperature between the liquidus and the solidus, that is, a constant temperature of about 900 ° C. to bring the garnet into a supercooled state. Next, the GGG substrate prepared as the base substrate 8 is attached to the substrate holder 9, and the support rod 10 supporting the substrate holder 9 is lowered into the furnace core tube 1 to preheat the base substrate 8. After that, the base substrate 8 is immersed in the raw material solution 5 and is rotated in one direction or forward and reverse at a fixed position for a predetermined time to grow a magnetic garnet single crystal film. Finally, the base substrate 8 is placed above the solution 5.
By rotating at about 500 rpm,
The solution 5 attached to the grown magnetic garnet single crystal film is shaken off.

【0005】この、一連の単結晶膜の育成において、原
料の溶液の温度は単結晶膜を育成する前に下地基板のな
い状態で熱電対により温度分布を測定して予測し、育成
中の温度は坩堝横あるいは坩堝底に配置した熱電対(図
示せず)によりモニターして制御を行っている。
In the growth of a series of single crystal films, the temperature of the raw material solution is predicted by measuring the temperature distribution with a thermocouple in the absence of the base substrate before growing the single crystal film, and the temperature during the growth is predicted. Is monitored and controlled by a thermocouple (not shown) arranged beside the crucible or at the bottom of the crucible.

【0006】[0006]

【発明が解決しようとする課題】単結晶膜を育成中の原
料の溶液の温度は、溶液の対流により揺らいでおり、ま
た、下地基板への成長時に発生する潜熱により下地基板
周辺の溶液の温度は周りの溶液の温度と異なり変動して
いる。また、炉芯管内の汚れや加熱源の劣化等により、
毎回設定値通りの値を示すとは限らない。
The temperature of the raw material solution during the growth of the single crystal film fluctuates due to the convection of the solution, and the temperature of the solution around the base substrate is changed by the latent heat generated during the growth on the base substrate. Fluctuates unlike the temperature of the surrounding solution. Also, due to dirt inside the furnace core tube or deterioration of the heating source,
The value does not always show the set value every time.

【0007】しかしながら、従来の液相エピタキシャル
成長装置では、熱電対により坩堝を介して間接的に育成
中の原料の溶液の温度を測定しているため、溶液の温度
変動の検知に時間的ずれが生じる。そのためフィードバ
ックによる温度制御が遅れて、溶液の温度変動幅が大き
くなるのを避けられなかった。すなわち、溶液を一定の
過冷却度に保つのが困難で、育成中に成長速度が変動し
て結晶性の悪い単結晶膜ができるという問題点があっ
た。
However, in the conventional liquid phase epitaxial growth apparatus, since the temperature of the raw material solution being grown is indirectly measured by the thermocouple through the crucible, there is a time lag in detecting the temperature fluctuation of the solution. . Therefore, it was unavoidable that the temperature control by feedback was delayed and the temperature fluctuation range of the solution became large. That is, there is a problem that it is difficult to maintain the solution at a constant supercooling degree, and the growth rate changes during the growth to form a single crystal film having poor crystallinity.

【0008】したがって、育成中の原料の溶液の温度を
直接測定するために、たとえば、光の輻射を利用する方
法等が検討されている。しかしこの方法では、溶液の輻
射率が不明なこと、空気中での吸収や炉芯管内の汚染に
よる反射率の違い等の多様な外乱により温度を一義的に
決めることができないといった欠点を有している。
Therefore, in order to directly measure the temperature of the raw material solution being grown, for example, a method utilizing light radiation has been studied. However, this method has the drawbacks that the emissivity of the solution is unknown and the temperature cannot be uniquely determined due to various disturbances such as absorption in the air and differences in the reflectance due to contamination in the furnace core tube. ing.

【0009】そこで、本発明の目的は、育成中の原料の
溶液の温度を精度良くモニターし、それをフィードバッ
クして溶液の温度を一定に保ち、過冷却度一定のもとで
均質な単結晶膜を育成できる液相エピタキシャル成長装
置を提供することにある。
Therefore, an object of the present invention is to accurately monitor the temperature of the solution of the raw material during the growth and feed it back to keep the temperature of the solution constant so as to obtain a uniform single crystal under a constant supercooling degree. An object is to provide a liquid phase epitaxial growth apparatus capable of growing a film.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、縦形筒状の炉芯管の内部に容器を配置
し、炉芯管をヒータで加熱することにより容器内の単結
晶原料を溶解し、この溶液中に下地基板を浸漬して、液
相エピタキシャル成長法により下地基板の表面に単結晶
膜を育成する装置において、前記単結晶膜成長装置は、
下地基板を支持する中空長尺状の支持棒と、該支持棒に
連結し該支持棒を回転および上下駆動させる中空長尺状
の駆動軸と、該駆動軸に固定したスリップリングと、前
記支持棒の中空穴と前記駆動軸の中空穴に挿通された熱
電対を有し、該熱電対の測温部分は前記支持棒の開口端
に露出し他端はスリップリングを介して計測機器に接続
されていることを特徴とする。
In order to achieve the above object, the present invention provides a container inside a vertical tube-shaped furnace core tube, and heats the furnace core tube with a heater to form a single container inside the container. In a device for dissolving a crystal raw material, immersing a base substrate in this solution, and growing a single crystal film on the surface of the base substrate by a liquid phase epitaxial growth method, the single crystal film growth device is:
A hollow elongated support rod for supporting the underlying substrate, a hollow elongated drive shaft connected to the support rod for rotating and vertically moving the support rod, a slip ring fixed to the drive shaft, and the support. It has a thermocouple inserted in the hollow hole of the rod and the hollow hole of the drive shaft, the temperature measuring portion of the thermocouple is exposed at the open end of the supporting rod, and the other end is connected to a measuring instrument via a slip ring. It is characterized by being.

【0011】[0011]

【作用】本発明の液相エピタキシャル成長装置は、熱電
対で単結晶膜の育成中に直接に原料の溶液の温度を測定
できる。
The liquid phase epitaxial growth apparatus of the present invention can directly measure the temperature of the raw material solution during the growth of the single crystal film by the thermocouple.

【0012】したがって、原料の溶液の温度の変動を即
座に検知でき、それをフィードバックして温度を制御す
ることで、溶液の温度の変動を最小限に押さえることが
できる。これにより、単結晶膜の成長速度のばらつきを
抑えることができる。また、下地基板の中心部と周辺部
とに熱電対を複数本配置することで下地基板内の温度分
布を知ることができ、これをもとに下地基板を均一温度
分布の位置に浸漬して単結晶膜の育成ができる。これに
より、下地基板内の成長速度のばらつきを抑えることが
できる。
Therefore, the temperature variation of the solution of the raw material can be immediately detected, and the temperature is controlled by feeding back the variation, whereby the variation of the temperature of the solution can be minimized. As a result, it is possible to suppress variations in the growth rate of the single crystal film. Also, by arranging multiple thermocouples in the center and the peripheral part of the base substrate, it is possible to know the temperature distribution in the base substrate. Based on this, the base substrate is immersed in the position of uniform temperature distribution. A single crystal film can be grown. As a result, it is possible to suppress variations in the growth rate within the base substrate.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本実施例にかかる液相エピタキシャル成長
装置の概略構造を示す断面図である。同図において、1
1は回転方向あるいは上下に駆動されるアルミナ製の中
空の支持棒、12は中空の駆動軸、13は支持棒11と
駆動軸12を連結するチャックホルダー、14は駆動装
置であり、それ自体は動かずその内部に駆動軸12を回
転および上下に駆動する機構を備えている。15は熱電
対であり、その先端の測温部分が下地基板8の面上に配
置されたあと支持棒11の内部および駆動軸12の内部
に挿通されている。16a,16b,16cは回転する
駆動軸内の熱電対15より起電力信号を取り出す一対の
スリップリングであり、16aは駆動軸に同期して回転
する回転子、16bは回転子16aより接点を介して起
電力信号を取り出す固定子、16cは固定子16bを支
持する固定支持部である。さらに、17は起電力信号を
モニターするデジタルボルトメータ、18は加熱炉のヒ
ータ2a、2b、2cそれぞれを制御する加熱制御装
置、19はモニターした起電力信号すなわち温度をもと
に駆動装置14および加熱制御装置18をコントロール
するコンピュータである。その他の部分は従来と同一で
あるので、同一番号を付して説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a schematic structure of a liquid phase epitaxial growth apparatus according to this example. In the figure, 1
Reference numeral 1 is a hollow support rod made of alumina that is driven in the rotational direction or up and down, 12 is a hollow drive shaft, 13 is a chuck holder that connects the support rod 11 and the drive shaft 12, and 14 is a drive device. A mechanism that does not move and that rotates and vertically drives the drive shaft 12 is provided inside. Reference numeral 15 is a thermocouple, and the temperature measuring portion at the tip thereof is arranged on the surface of the base substrate 8 and then inserted into the support rod 11 and the drive shaft 12. Reference numerals 16a, 16b and 16c are a pair of slip rings for taking out an electromotive force signal from the thermocouple 15 in the rotating drive shaft, 16a is a rotor rotating in synchronization with the drive shaft, and 16b is a rotor 16a and a contact from the rotor 16a A stator 16c for taking out an electromotive force signal, and a stationary support portion 16c for supporting the stator 16b. Further, 17 is a digital voltmeter that monitors an electromotive force signal, 18 is a heating control device that controls each of the heaters 2a, 2b, and 2c of the heating furnace, and 19 is a drive device 14 based on the monitored electromotive force signal, that is, temperature. It is a computer that controls the heating control device 18. Since other parts are the same as the conventional ones, the same numbers are given and the description thereof is omitted.

【0014】次に、上記構成の液相エピタキシャル成長
装置の動作を、ガーネット単結晶膜を育成させる場合を
例として説明する。
Next, the operation of the liquid phase epitaxial growth apparatus having the above structure will be described by taking the case of growing a garnet single crystal film as an example.

【0015】まず、白金製の坩堝6にガーネットを構成
する元素の酸化物であるFe2 3 2 3 と溶剤とし
てのPbO、B2 3 とを充填する。次に、この坩堝6
を支持台7に乗せた後、約1200℃に加熱して溶液化
し均質化を行う。その後、この溶液を液相線と固相線の
間の温度、すなわち約900℃前後の一定温度に保持し
てガーネットを過冷却状態にする。次に、基板保持具9
に下地基板8として準備したGGG基板を取り付け、そ
の下地基板8の上面中央部に熱電対15の先端の測温部
分を配置した後、基板保持具9を支持する支持棒10を
炉芯管1の中に降下させて下地基板8を予熱する。その
後、下地基板8を原料の溶液5の中に浸漬しながら熱電
対で温度をモニターして安定した温度域に浸漬深さを固
定した後、所定時間一方向あるいは正逆に回転させて磁
性ガーネット単結晶膜の育成を行なう。最後に、溶液5
の上方で下地基板8を約500rpmの回転数で回転さ
せることによって、育成した磁性ガーネット単結晶膜上
に付着している溶液5を振り切る。この単結晶膜の育成
中、原料の溶液5の温度を継続してモニターしてコンピ
ュータに入力し、この値を元に演算処理を行い、駆動装
置14、加熱制御装置18へフィードバックをかける。
First, a platinum crucible 6 is filled with Fe 2 O 3 and Y 2 O 3 which are oxides of elements constituting garnet and PbO and B 2 O 3 as solvents. Next, this crucible 6
After being placed on the support base 7, it is heated to about 1200 ° C. to form a solution and homogenize. Then, this solution is kept at a temperature between the liquidus and the solidus, that is, a constant temperature of about 900 ° C. to bring the garnet into a supercooled state. Next, the substrate holder 9
The GGG substrate prepared as the base substrate 8 is attached to the base substrate 8, the temperature measuring portion at the tip of the thermocouple 15 is arranged at the center of the upper surface of the base substrate 8, and then the supporting rod 10 for supporting the substrate holder 9 is attached to the furnace core tube 1. To preheat the base substrate 8. Then, while immersing the base substrate 8 in the raw material solution 5, the temperature is monitored by a thermocouple to fix the immersion depth in a stable temperature range, and then the garnet is rotated in one direction or in the reverse direction for a predetermined time. Growing a single crystal film. Finally, solution 5
The underlying substrate 8 is rotated at a rotation speed of about 500 rpm above the substrate to shake off the solution 5 adhering to the grown magnetic garnet single crystal film. During the growth of this single crystal film, the temperature of the raw material solution 5 is continuously monitored and input to a computer, and based on this value, arithmetic processing is performed and feedback is given to the drive device 14 and the heating control device 18.

【0016】表1は、従来の液相エピタキシャル成長装
置により磁性ガーネット単結晶膜を作製した場合と、本
発明の液相エピタキシャル成長装置により磁性ガーネッ
ト単結晶膜を作製した場合とで、育成時間ごとの膜厚と
下地基板面内の育成膜厚分布を比較したものである。な
お、面内膜厚分布は120分育成後の値を示し、周辺部
は下地基板面内の周辺4箇所の値の平均を示す。
Table 1 shows the film for each growth time when the magnetic garnet single crystal film was produced by the conventional liquid phase epitaxial growth apparatus and when the magnetic garnet single crystal film was produced by the liquid phase epitaxial growth apparatus of the present invention. This is a comparison between the thickness and the grown film thickness distribution on the surface of the underlying substrate. The in-plane film thickness distribution shows the value after 120 minutes of growth, and the peripheral part shows the average of the values at four peripheral positions on the surface of the underlying substrate.

【0017】表1から明らかなように、本発明の液相エ
ピタキシャル成長装置によれば、育成している時の原料
の溶液の温度を直接モニターしてコンピュータで育成条
件にフィードバック制御しているので、単結晶膜の成長
速度が一定となる。
As is clear from Table 1, according to the liquid phase epitaxial growth apparatus of the present invention, the temperature of the solution of the raw material during the growth is directly monitored and the feedback control is performed by the computer to the growth conditions. The growth rate of the single crystal film becomes constant.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、上記実施例においては、熱電対15
は下地基板8の上面中央部に1本配置しているが、これ
に限定されることなく複数本の熱電対を配置して下地基
板上の温度分布をモニターすることができる。図2は下
地基板上の中央部に1本と周辺部に4本の合計5本の熱
電対を配置して、下地基板中央部と周辺部の温度をモニ
ターする例を示す。
In the above embodiment, the thermocouple 15
One is arranged at the center of the upper surface of the base substrate 8, but the present invention is not limited to this, and a plurality of thermocouples can be arranged to monitor the temperature distribution on the base substrate. FIG. 2 shows an example of arranging a total of five thermocouples, one at the center of the base substrate and four at the periphery, to monitor the temperature of the center and the periphery of the base substrate.

【0020】さらに、上記実施例においては、磁性ガー
ネット単結晶膜について説明したが、本発明はこれのみ
に限定されるものではなく、例えば光学デバイスよう単
結晶であるニオブ酸リチウムの液相エピタキシャル成長
にも本発明の装置を適用することができる。
Further, although the magnetic garnet single crystal film has been described in the above embodiment, the present invention is not limited to this, and for example, liquid crystal epitaxial growth of single crystal lithium niobate such as an optical device is possible. Also, the device of the present invention can be applied.

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明の
液相エピタキシャル成長装置によれば、単結晶膜の育成
中に熱電対で直接に原料の溶液の温度を測定できる。こ
のため、原料の溶液の温度の変動を即座に検知でき、そ
れをフィードバックして温度を制御することで、溶液の
温度の変動を最小限にに押さえることができる。また、
熱電対を下地基板の中心部と周辺部とに複数本配置する
ことで下地基板上の温度分布を知ることができ、下地基
板を温度分布が均一な位置に浸漬して単結晶膜を育成さ
せることができる。
As is apparent from the above description, according to the liquid phase epitaxial growth apparatus of the present invention, the temperature of the raw material solution can be directly measured by the thermocouple during the growth of the single crystal film. Therefore, it is possible to immediately detect a change in the temperature of the solution of the raw material, and by feeding back the temperature to control the temperature, it is possible to minimize the change in the temperature of the solution. Also,
By arranging multiple thermocouples in the central part and the peripheral part of the base substrate, the temperature distribution on the base substrate can be known, and the base substrate is immersed in a position where the temperature distribution is uniform to grow a single crystal film. be able to.

【0022】このため、単結晶膜育成中の原料の溶液の
過冷却度が一定のもとで、単結晶膜の成長速度が一定と
なり、均質な単結晶膜を再現性良く得ることができる。
Therefore, the growth rate of the single crystal film becomes constant under a constant degree of supercooling of the raw material solution during the growth of the single crystal film, and a uniform single crystal film can be obtained with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液相エピタキシャル成長装置の概略構
造を示す断面図である。
FIG. 1 is a sectional view showing a schematic structure of a liquid phase epitaxial growth apparatus of the present invention.

【図2】熱電対を5本とした配置例を示す斜視図であ
る。
FIG. 2 is a perspective view showing an arrangement example with five thermocouples.

【図3】従来の液相エピタキシャル成長装置の概略断面
図である。
FIG. 3 is a schematic sectional view of a conventional liquid phase epitaxial growth apparatus.

【符号の説明】[Explanation of symbols]

1 炉芯管 2a、2b、2c ヒータ 3 炉体 5 原料の溶液 6 坩堝 8 下地基板 9 基板保持具 11 支持棒 12 駆動軸 13 チャックホルダー 14 駆動装置 15 熱電対 16a スリップリングの回転子 16b スリップリングの固定子 17 デジタルボルトメータ 18 加熱制御装置 19 コンピュータ 1 furnace core tube 2a, 2b, 2c heater 3 furnace body 5 raw material solution 6 crucible 8 base substrate 9 substrate holder 11 support rod 12 drive shaft 13 chuck holder 14 drive device 15 thermocouple 16a slip ring rotor 16b slip ring Stator 17 Digital voltmeter 18 Heating controller 19 Computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 縦形筒状の炉芯管の内部に容器を配置
し、炉芯管をヒータで加熱することにより容器内の単結
晶原料を溶解し、この溶液中に下地基板を浸漬して、液
相エピタキシャル成長法により下地基板の表面に単結晶
膜を育成する装置において、 前記単結晶膜成長装置は、下地基板を支持する中空長尺
状の支持棒と、該支持棒に連結し該支持棒を回転および
上下駆動させる中空長尺状の駆動軸と、該駆動軸に固定
したスリップリングと、前記支持棒の中空穴と前記駆動
軸の中空穴に挿通された熱電対を有し、該熱電対の測温
部分は前記支持棒の開口端に露出し他端はスリップリン
グを介して計測機器に接続されていることを特徴とする
液相エピタキシャル成長装置。
1. A container is placed inside a vertical cylindrical furnace core tube, and the furnace core tube is heated by a heater to dissolve the single crystal raw material in the container, and the base substrate is immersed in this solution. In a device for growing a single crystal film on a surface of a base substrate by a liquid phase epitaxial growth method, the single crystal film growth device comprises a hollow elongated support rod for supporting the base substrate and the support rod connected to the support rod. A hollow elongated drive shaft for rotating and vertically driving the rod, a slip ring fixed to the drive shaft, a hollow hole of the support rod and a thermocouple inserted through the hollow hole of the drive shaft, The liquid phase epitaxial growth apparatus, wherein a temperature measuring portion of the thermocouple is exposed at an opening end of the support rod and the other end is connected to a measuring instrument via a slip ring.
JP13055593A 1993-06-01 1993-06-01 Device for growing epitaxially in liquid phase Pending JPH06345589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13055593A JPH06345589A (en) 1993-06-01 1993-06-01 Device for growing epitaxially in liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13055593A JPH06345589A (en) 1993-06-01 1993-06-01 Device for growing epitaxially in liquid phase

Publications (1)

Publication Number Publication Date
JPH06345589A true JPH06345589A (en) 1994-12-20

Family

ID=15037076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13055593A Pending JPH06345589A (en) 1993-06-01 1993-06-01 Device for growing epitaxially in liquid phase

Country Status (1)

Country Link
JP (1) JPH06345589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736657A1 (en) * 1995-07-14 1997-01-17 Murata Manufacturing Co Liq. phase epitaxy system for single crystal film growth
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736657A1 (en) * 1995-07-14 1997-01-17 Murata Manufacturing Co Liq. phase epitaxy system for single crystal film growth
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions

Similar Documents

Publication Publication Date Title
EP0252537B1 (en) Process for crystal growth of ktiopo4 from solution
EP1201793B1 (en) Method and apparatus for growing high quality single crystal
JP3893012B2 (en) CLBO single crystal growth method
JPH06345589A (en) Device for growing epitaxially in liquid phase
JPS6157696B2 (en)
US4474640A (en) In situ differential thermal analysis for HgCdTe LPE
JP3250365B2 (en) Liquid phase epitaxial growth equipment
JP2721242B2 (en) Silicon single crystal pulling method
JP3991400B2 (en) Single crystal growth method and apparatus
RU2054495C1 (en) Gallium arsenide monocrystal growing method for manufacturing integrated circuit substrates
JPS6360195A (en) Liquid phase epitaxy
JPH0310598B2 (en)
JPS5912632B2 (en) Tanketshuyounohikiagesouchi
JPH05330983A (en) Device for liquid-phase epitaxial growth
JPH06206792A (en) Apparatus for liquid-phase epitaxial growth
JPH05330979A (en) Device for liquid-phase epitaxial growth
JPH0656573A (en) Liquid phase epitaxial growth device
JPH06316485A (en) Liquid phase epitaxial growth method
JPS5954694A (en) Method for growth of single crystal
JP2021155246A (en) Lithium niobate single crystal and method for manufacturing the same
JPH06321681A (en) Liquid phase epitaxial growth device
JPH06206791A (en) Method for liquid-phase epitaxial growth
JP2002137985A (en) Crucible for growing oxide single crystal and growing device of oxide single crystal using it
JPH05229893A (en) Apparatus for liquid-phase epitaxial growth
JP2019038729A (en) Method for manufacturing oxide single crystal