JPS5954694A - Method for growth of single crystal - Google Patents

Method for growth of single crystal

Info

Publication number
JPS5954694A
JPS5954694A JP16611082A JP16611082A JPS5954694A JP S5954694 A JPS5954694 A JP S5954694A JP 16611082 A JP16611082 A JP 16611082A JP 16611082 A JP16611082 A JP 16611082A JP S5954694 A JPS5954694 A JP S5954694A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
growth
pulling
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16611082A
Other languages
Japanese (ja)
Other versions
JPH0420875B2 (en
Inventor
Ritsuo Takizawa
滝沢 律夫
Koichiro Honda
耕一郎 本田
Shigeru Okamura
茂 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16611082A priority Critical patent/JPS5954694A/en
Publication of JPS5954694A publication Critical patent/JPS5954694A/en
Publication of JPH0420875B2 publication Critical patent/JPH0420875B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/16Heating of the melt or the crystallised materials by irradiation or electric discharge

Abstract

PURPOSE:To obtain a right cylindrical single crystal having uniform diameter by the pulling of single crystal using Czochralskii method, by pulling the crystal while irradiating the meniscus line between the pulled crystal and the molten liquid with laser beam, and controlling the pulling speed at a constant level. CONSTITUTION:A single crystal is pulled and grown from the molten liquid 23 for the growth of crystal in the crucible 21 by Czochralski method using a seed crystal 24. In the above process, the growth is carried out under the irradiation of the laser beam 35 to the meniscus line 33 through the quartz inspection window 31 to suppress the abnormal growth and to melt the laterally grown excessive single crystal. The pulling speed of the crystal is adjusted to somewhat lower than the standard level to obtain a rather large crystal and keep only an extremely small part of the crystal always to molten state by irradiation with the laser beam.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は単結晶成長方法に係り、特に、異常結晶の成長
を抑制でき且つ均一な径をもつ単結晶バルクが得られる
成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a single crystal growth method, and particularly to a growth method that can suppress the growth of abnormal crystals and obtain a single crystal bulk having a uniform diameter.

(b)技術の背景 JC,トランジスタなとの半導体素子はシリコン(Si
)、ガリウム砒素(GaAs)などの単結晶基板(ウェ
ハ)を用いて形成されているが、これらの単結晶はチョ
クラルスキー法(略称CZ法)か或はフローティングゾ
ーン法(略称FZ法)によって作られている。
(b) Technical background JC, semiconductor devices such as transistors are silicon (Si)
), gallium arsenide (GaAs), etc., using single crystal substrates (wafers), but these single crystals are formed using the Czochralski method (abbreviated as CZ method) or the floating zone method (abbreviated as FZ method). It is made.

こゝでCZ法は大直径化の点でまたFZ法は高純度のも
のが得られ易い点に特徴があるが現在大部分の用途に対
してはCZ法により得られた単結晶が用いられている。
The CZ method is characterized by its large diameter, and the FZ method is characterized by the fact that it is easy to obtain highly pure crystals, but currently single crystals obtained by the CZ method are used for most applications. ing.

第1図はCZ法により単結晶の引上げを行う際の単結晶
と坩堝との関係図を示すもので、石英(SiO2)或は
窒化硅素(Si3N4)などからなる坩堝1の中に育成
すべき単結晶と同一材料からなる多結晶を入れ、アルゴ
ン(Ar)などの不活性雰囲気中でカーボンヒータ2に
電流を通じて坩堝1を加熱するか、或は高周波加熱など
方法により坩堝1を加熱して多結晶材料を溶融して融液
3とする。
Figure 1 shows the relationship between a single crystal and a crucible when pulling a single crystal using the CZ method. A polycrystal made of the same material as the single crystal is placed, and the crucible 1 is heated by passing an electric current through the carbon heater 2 in an inert atmosphere such as argon (Ar), or by heating the crucible 1 by a method such as high frequency heating. The crystal material is melted to form a melt 3.

次に単結晶の育成は結晶成長させようとする結晶方位を
もつ種結晶4の先端を融液3につけることにより行なわ
れるが、この際の融液3の温度は種結晶4の先端が僅か
に融解しつゝ均り合いが保たれる温度に設定してあり、
平衡に達した後、比較的速い引き上げ速度で結晶を細く
絞って種結晶にある転位を外周に追い出すと共に転位の
発生を抑えて無転位化する。
Next, the single crystal is grown by dipping the tip of the seed crystal 4 having the crystal orientation desired for crystal growth into the melt 3, but at this time the temperature of the melt 3 is such that the tip of the seed crystal 4 is slightly The temperature is set so that it melts and maintains its balance.
After equilibrium is reached, the crystal is narrowed at a relatively high pulling speed to drive out dislocations in the seed crystal to the outer periphery, suppress the generation of dislocations, and eliminate dislocations.

なお融液3の均一化と温度差を少くするために、種結晶
4を保持する引上げ軸と坩堝1とは互に反対方向に低速
回転させている。さて引上げ結晶は無転位化された後融
液の温度を下げることにより希望する直径にまで太らせ
ると共に一定の速度で引き上げることにより長さ方向に
単結晶を成長させる。こゝで育成された単結晶について
の必要条件としては転位などの欠陥や径方向かつ引上げ
方向での抵抗率変動および酸素不純物などの分布が少い
ことなどが挙げられるが、結晶成長に際して径の変動が
少いことおよび異常結晶の成長を伴わぬことなども必要
である。
In order to make the melt 3 uniform and to reduce the temperature difference, the pulling shaft holding the seed crystal 4 and the crucible 1 are rotated at low speed in opposite directions. Now, after the pulled crystal has been made dislocation-free, it is thickened to a desired diameter by lowering the temperature of the melt, and the single crystal is grown in the length direction by being pulled at a constant speed. Necessary conditions for the single crystal grown here include defects such as dislocations, resistivity fluctuations in the radial and pulling directions, and small distribution of oxygen impurities. It is also necessary that there be little fluctuation and that abnormal crystal growth does not occur.

(c)従来技術と問題点 本発明は各種の単結晶成長に適用できるが、こゝでは代
表的な半導体であるSiの場合について説明する。
(c) Prior Art and Problems Although the present invention can be applied to the growth of various single crystals, the case of Si, which is a typical semiconductor, will be explained here.

Siは1410〔℃〕の融点をもつ半導体であり、第2
図に示すような引上げ装置を用いて単結晶の引上げが行
われている。Si単結晶は4〔インチ〕径のものが普通
であり5〔インチ〕径のものも作られるようになった。
Si is a semiconductor with a melting point of 1410 [°C], and the second
Single crystals are pulled using a pulling device as shown in the figure. Si single crystals usually have a diameter of 4 inches, and crystals with a diameter of 5 inches are now also produced.

こゝで4〔インチ〕径の成長の場合、高程度のSi多結
晶粉末約20〔kg〕を石英製の坩堝1に充填した後、
吸気孔5よりニードルバルブ或はガスフローメータを通
してArガスを供給し、排気口6より真空ポンプを用い
て排気することにより装置内の真空度を約20〔Tor
r〕に保ち、カーボンヒータ2に通電することにより多
結晶Siを融解する。
In the case of growth with a diameter of 4 inches, after filling the quartz crucible 1 with approximately 20 kg of high-grade Si polycrystalline powder,
By supplying Ar gas from the intake port 5 through a needle valve or gas flow meter and exhausting the air from the exhaust port 6 using a vacuum pump, the degree of vacuum in the device is maintained at approximately 20 [Tor].
r] and energizing the carbon heater 2 to melt the polycrystalline Si.

次に保持枠7に固定されている種結晶4は融液3に浸漬
した後モータ8により保持棒7を保持しているモリブデ
ン(Mo)線9を回転させ乍ら引上げることにより結晶
成長が行われている。
Next, the seed crystal 4 fixed to the holding frame 7 is immersed in the melt 3 and then pulled up while rotating the molybdenum (Mo) wire 9 holding the holding rod 7 by the motor 8, thereby causing crystal growth. It is being done.

なお坩堝1もモータ10により支持台ごと回転するよう
に構成されている。
Note that the crucible 1 is also configured to be rotated together with the support base by the motor 10.

かゝる装置を用いて予定する径寸法をもつSi単結晶を
引上げる場合は種結品4の先端が僅かに融解し乍ら均り
合いが保たれている融液3の温度を平衡状態を保ち乍ら
徐々に降下させて希望する直径にまで太らせると共に種
結晶を引上げることにより行われている。
When pulling a Si single crystal with a predetermined diameter using such a device, the temperature of the melt 3 must be kept at equilibrium, where the tip of the seed 4 is slightly melted but balanced. This is done by gradually lowering the seed crystal while maintaining the same diameter until it thickens to the desired diameter, and then pulling up the seed crystal.

こゝで単結晶成長における直径制御は融液3の温度と引
上げ速度の両端で行うことが可能であるが、融液3の温
度制御は融液3の重量がこの場合約20〔kg〕と大き
くそのため熱容量が大で応答性はよくない。そこで殆ん
どは引上げ速度の調整により直径制御が行われている。
Here, diameter control in single crystal growth can be performed at both ends of the temperature of the melt 3 and the pulling speed, but the temperature control of the melt 3 is only possible when the weight of the melt 3 is approximately 20 [kg] in this case. It is large and therefore has a large heat capacity and poor response. Therefore, in most cases, the diameter is controlled by adjusting the pulling speed.

然し引上げ速度を大幅に変化させると結晶の縦方向にト
ーバント不純物や酸素,炭素などの不純物の濃度むらが
現われ特性の均一性を損う点から好ましくない。さて以
上のような直径制御は装置の上部に設けられている覗き
窓11を通じ輻射高温計12で測温すると共に目視によ
り行われているが目標の直径を持つ直胴型の単結晶を得
ることは技術的に相当の熟練が必要であった。
However, if the pulling speed is changed significantly, concentration unevenness of toubant impurities, oxygen, carbon, and other impurities appears in the longitudinal direction of the crystal, which is undesirable because it impairs the uniformity of properties. Now, the diameter control as described above is carried out by measuring the temperature with a radiation pyrometer 12 through the viewing window 11 provided at the top of the device and by visual inspection, but it is not possible to obtain a straight-shaped single crystal with a target diameter. required considerable technical skill.

(d)発明の目的 本発明は引上げ速度を一定にし均一径をもつ直胴形の単
結晶を得る成長方法を提供することを目的とする。
(d) Purpose of the Invention The object of the present invention is to provide a growth method for obtaining a cylindrical single crystal having a uniform diameter while maintaining a constant pulling rate.

(e)発明の構成 本発明の目的は単結晶の引上げを行う際に引上げ結晶と
融液とが接するメニスカスラインをレーザ光線で照射し
つゝ引上げを行う方法を用いることにより達成される。
(e) Structure of the Invention The object of the present invention is achieved by using a method of pulling a single crystal while irradiating the meniscus line where the pulled crystal and the melt contact with a laser beam.

(f) 発明の実施例 以下、本発明の一実施例を説明する。第3図は本実施例
に使用される装置の概略断面図である。
(f) Embodiment of the Invention An embodiment of the invention will be described below. FIG. 3 is a schematic cross-sectional view of the device used in this example.

同図に於いて、21は坩堝、22はカーボンヒータ、2
3は結晶成長用融液、24は種結晶、25は吸気孔、2
6は排気口、27は保持棒、28は種結晶24を回転さ
せるモータ、2pはMo線、30は坩堝21を回転させ
るモータ、31は覗き窓、32は輻射温度計、33はメ
ニスカスライン、34はレーザ発生源、35はレーザ光
をそれぞれ示す。
In the figure, 21 is a crucible, 22 is a carbon heater, 2
3 is a melt for crystal growth, 24 is a seed crystal, 25 is an intake hole, 2
6 is an exhaust port, 27 is a holding rod, 28 is a motor that rotates the seed crystal 24, 2p is a Mo wire, 30 is a motor that rotates the crucible 21, 31 is a viewing window, 32 is a radiation thermometer, 33 is a meniscus line, Reference numeral 34 indicates a laser source, and 35 indicates a laser beam.

本発明は引上げ装置に備えられている石英製の覗き窓3
1の1つを用い、メニスカスライン33にレーザ光発生
源34から出射されるレーザ光35を照射し乍ら成長を
行うことにより異常成長を抑制すると共に横方向へ成長
した余分な単結晶を溶解させるものである。
The present invention is a quartz viewing window 3 provided in a pulling device.
1 is used to grow while irradiating the meniscus line 33 with the laser beam 35 emitted from the laser beam generation source 34 to suppress abnormal growth and melt the excess single crystal that has grown laterally. It is something that makes you

すなわち透明石英製の覗き窓31を通して炭酸ガスレー
ザ或ばYAGレーザを用い、結晶の引上げが行われてい
るメニスカスライン33にこのレーザ光35のスポット
を当てる。
That is, a carbon dioxide laser or a YAG laser is used to shine a spot of laser light 35 through a viewing window 31 made of transparent quartz onto the meniscus line 33 where the crystal is being pulled.

こゝで本発明は異常結晶が結晶と融液23とが接するメ
ニスカスライン33から横方向に成長し易いのをレーザ
照射により溶解して、たとえ発生したとしても直ちにそ
の根源を無くする働きをする以外に引上げている単結晶
の径が目標値より太ることを防ぐ働きをする。
Therefore, the present invention works to dissolve abnormal crystals that tend to grow laterally from the meniscus line 33 where the crystals and the melt 23 are in contact with each other by laser irradiation, and immediately eliminate the source of the abnormal crystals even if they occur. In addition, it works to prevent the diameter of the single crystal being pulled from becoming larger than the target value.

そのためには結晶の引上げ速度を標準値より幾分低めに
して結晶を太り加減にし、レーザ照射により常にその極
く一部分が溶解している状態に保っておけばよい。すな
わち種結晶24を含めて成長が行われている結晶は装置
上部のモータ28により毎分10回転程度で回転してい
るが、レーザ光35のスポラトラメニスカスライン33
に合わせて一定の引上げ速度で結晶成長型行えばよい。
To achieve this, it is sufficient to make the crystal thicker by setting the crystal pulling speed somewhat lower than the standard value, and to maintain a state in which a very small portion of the crystal is always melted by laser irradiation. That is, the crystals being grown, including the seed crystal 24, are rotated at about 10 revolutions per minute by the motor 28 on the top of the apparatus, but the sporatra meniscus line 33 of the laser beam 35
The crystal growth type may be performed at a constant pulling rate according to the

(g)発明の効果 本発明の実施により異常結晶の成長を無くすることがで
き、また目標の直径をもつ直胴形の単結晶が得られるよ
うになった。
(g) Effects of the Invention By carrying out the present invention, abnormal crystal growth can be eliminated, and a cylindrical single crystal having a target diameter can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単結晶引上げを行う坩堝と融液の関係を示す断
面図また第2図は従来の結晶成長方法に用いた結晶成長
装置の構成図、第3図は本実施例に用いた結晶成長装置
の構成図である。 図において、1,21は坩堝、2,22はカーボンヒー
タ、3,23は融液、4,24は種結晶、8,10,2
8,30はモータ、11,31は覗き窓、12,32は
輻射高温計、13,33はメニスカスライン、14,3
5はレーザ光線、34はレーザ光発生源。 茅/fJ (〕 第2図 、P3図
Figure 1 is a cross-sectional view showing the relationship between the crucible and melt for pulling a single crystal, Figure 2 is a block diagram of a crystal growth apparatus used in a conventional crystal growth method, and Figure 3 is a diagram showing the structure of a crystal growth apparatus used in this example. It is a block diagram of a growth apparatus. In the figure, 1 and 21 are crucibles, 2 and 22 are carbon heaters, 3 and 23 are melts, 4 and 24 are seed crystals, and 8, 10, 2
8, 30 are motors, 11, 31 are observation windows, 12, 32 are radiation pyrometers, 13, 33 are meniscus lines, 14, 3
5 is a laser beam, and 34 is a laser beam generation source. Kaya/fJ () Figure 2, Figure P3

Claims (1)

【特許請求の範囲】[Claims] チヨクラルスキー法により種結晶を用いて溶融している
坩堝中の結晶成長用融液より単結晶の引上げ成長を行う
際、引上げ結晶と融液とが接するメニスカスラインをレ
ーザ照射を行いつつ引上げを行うことを特徴とする単結
晶成長方法。
When pulling a single crystal from a crystal growth melt in a crucible using a seed crystal using the Czyochralski method, the pulling is performed while irradiating the meniscus line where the pulled crystal and the melt contact with the laser. A single crystal growth method characterized by:
JP16611082A 1982-09-24 1982-09-24 Method for growth of single crystal Granted JPS5954694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16611082A JPS5954694A (en) 1982-09-24 1982-09-24 Method for growth of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16611082A JPS5954694A (en) 1982-09-24 1982-09-24 Method for growth of single crystal

Publications (2)

Publication Number Publication Date
JPS5954694A true JPS5954694A (en) 1984-03-29
JPH0420875B2 JPH0420875B2 (en) 1992-04-07

Family

ID=15825202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16611082A Granted JPS5954694A (en) 1982-09-24 1982-09-24 Method for growth of single crystal

Country Status (1)

Country Link
JP (1) JPS5954694A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043949A (en) * 1973-07-16 1975-04-21
JPS5560096A (en) * 1978-10-26 1980-05-06 Ricoh Co Ltd Crystal diameter controlling method with laser beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043949A (en) * 1973-07-16 1975-04-21
JPS5560096A (en) * 1978-10-26 1980-05-06 Ricoh Co Ltd Crystal diameter controlling method with laser beam

Also Published As

Publication number Publication date
JPH0420875B2 (en) 1992-04-07

Similar Documents

Publication Publication Date Title
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
JPS5954694A (en) Method for growth of single crystal
JP3521070B2 (en) Fibrous crystal production equipment
JPH0474789A (en) Method for pulling up semiconductor single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH08333189A (en) Apparatus for pulling up crystal
JP3367616B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH05294784A (en) Single crystal growth device
JP2543449B2 (en) Crystal growth method and apparatus
JP2717685B2 (en) Method and apparatus for crystal growth by Czochralski method
JPH04164889A (en) Production of single crystal
JPH01160893A (en) Method for controlling oxygen concentration in silicon single crystal
EP0100453A1 (en) Method for growing a GaAs single crystal by pulling from GaAs melt
JP2002179494A (en) Quartz crucible for pulling up single crystal, single crystal pulling up device and single crystal pulling up method
JPH0710674A (en) Method for growing inorganic compound signal crystal
JPH0867593A (en) Method for growing single crystal
JPH0597567A (en) Apparatus for producing single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH02248399A (en) Method for growing mixed crystal-type compound semiconductor
JP2011001241A (en) Apparatus and method for producing single crystal
JPS63176390A (en) Apparatus for growing single crystal
JPS5964592A (en) Method for growing crystal
JPS58115088A (en) Growing of silicon single crystal