JP3367616B2 - Single crystal manufacturing method and single crystal manufacturing apparatus - Google Patents

Single crystal manufacturing method and single crystal manufacturing apparatus

Info

Publication number
JP3367616B2
JP3367616B2 JP21389493A JP21389493A JP3367616B2 JP 3367616 B2 JP3367616 B2 JP 3367616B2 JP 21389493 A JP21389493 A JP 21389493A JP 21389493 A JP21389493 A JP 21389493A JP 3367616 B2 JP3367616 B2 JP 3367616B2
Authority
JP
Japan
Prior art keywords
crystal
base material
straight pipe
single crystal
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21389493A
Other languages
Japanese (ja)
Other versions
JPH0769774A (en
Inventor
篤 横尾
暁 都丸
至 横浜
弘樹 伊藤
俊邦 戒能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21389493A priority Critical patent/JP3367616B2/en
Publication of JPH0769774A publication Critical patent/JPH0769774A/en
Application granted granted Critical
Publication of JP3367616B2 publication Critical patent/JP3367616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高品質な単結晶作製技
術に関し、さらに詳細には欠陥が少なく、長い結晶長を
有し、結晶方位の制御が可能な単結晶作製方法およびそ
の作製装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high quality single crystal manufacturing technique, and more specifically to a single crystal manufacturing method and a manufacturing apparatus therefor having few defects, a long crystal length, and a controllable crystal orientation. It is about.

【0002】[0002]

【従来の技術】従来の主な単結晶作製法には以下のよう
なものがある。図5では、チョクラルスキー法(Cz
法)による単結晶作製技術を示す。図5において、るつ
ぼ501中で目的の材料が加熱用ヒータ502により加
熱溶融され、この融液505の液面に、種結晶504を
接触させ、融点以上の温度に保たれたるつぼ501から
融点以下の温度の領域に向かって引き上げることによっ
て単結晶503を成長させるというものである。
2. Description of the Related Art The following are the major conventional single crystal production methods. In FIG. 5, the Czochralski method (Cz
Method). In FIG. 5, the target material is heated and melted in the crucible 501 by the heating heater 502, and the seed crystal 504 is brought into contact with the liquid surface of the melt 505 so that the melting point of the crucible 501 is kept below the melting point. That is, the single crystal 503 is grown by pulling it toward the temperature region of.

【0003】図6では、フローティングゾーン法(FZ
法)による単結晶作製技術を示す。図6において、加熱
用光源601からの光は凹面鏡606により母材602
の上部に集光され、溶融部605を形成する。溶融部6
05に種結晶604を接触させ、種結晶を速度V2 で移
動させつつ結晶母材602を速度V1 で移動させると単
結晶603が形成される。ここで、単結晶603の方位
は種結晶の結晶方位と一致する。また、単結晶の外径D
2 は D2 =D1 ×(V1 /V2 1/2 ・・・(1) なる式で表される。ここで、D1 は結晶母材の外径であ
る。さらに、加熱用光源としてCO2 レーザを用いたレ
ーザ溶融ベデスタル法(LHPG法)により、成長方位
が制御されたニオブ酸リチウム、サファイア等の単結晶
ファイバを作製できる。
In FIG. 6, the floating zone method (FZ
Method). In FIG. 6, the light from the heating light source 601 is reflected by the concave mirror 606 to form the base material 602.
Is condensed on the upper part of the substrate to form a fusion zone 605. Melting part 6
When the seed crystal 604 is brought into contact with 05 and the crystal base material 602 is moved at the speed V 1 while moving the seed crystal at the speed V 2 , a single crystal 603 is formed. Here, the orientation of the single crystal 603 matches the crystal orientation of the seed crystal. Also, the outer diameter D of the single crystal
2 is represented by the formula: D 2 = D 1 × (V 1 / V 2 ) 1/2 (1) Here, D 1 is the outer diameter of the crystal base material. Furthermore, a single crystal fiber such as lithium niobate or sapphire whose growth orientation is controlled can be manufactured by a laser melting pedestal method (LHPG method) using a CO 2 laser as a heating light source.

【0004】図7では、ブリッジマン−ストックバーガ
ー法を示す。この方法は加熱用ヒータ702と断熱材7
04とで構成されている加熱炉701が所望の材料の融
点以上に保たれている。そして、この材料を石英ガラス
製等の成長容器706に封入した後、この成長容器70
6を加熱炉701の中に入れると材料が溶融し、融液7
05となる。続いて、成長容器706の一端を加熱炉7
01から、この材料の融点より低い温度に保たれた領域
へ徐々に引き出す。すると、単結晶703が成長すると
いう方法である。
FIG. 7 shows the Bridgman-Stockburger method. This method uses a heater 702 for heating and a heat insulating material 7.
The heating furnace 701 constituted by 04 and 40 is kept above the melting point of the desired material. Then, after encapsulating this material in a growth container 706 made of quartz glass or the like, the growth container 70
6 is put in the heating furnace 701, the material is melted, and the melt 7
It will be 05. Subsequently, one end of the growth container 706 is attached to the heating furnace 7
From 01 to a region kept below the melting point of this material. Then, the single crystal 703 is grown.

【0005】図8では、溶液成長法の一つである溶液温
度変化法を示す。この方法は成長容器801内に所望の
材料を有機溶媒、または水などに溶解させた飽和溶液8
02を満たし、この中に当該材料の微結晶を種結晶80
4として入れた後、溶液を徐冷する。つまり、溶解度が
温度によって異なることを利用して、成長結晶803を
得るものである。溶液成長法としては、この他に上記飽
和溶液802の溶媒を蒸発させる事で結晶を成長させる
溶媒蒸発法などがある。
FIG. 8 shows a solution temperature change method which is one of the solution growth methods. In this method, a saturated solution 8 in which a desired material is dissolved in an organic solvent, water, or the like is placed in a growth container 801.
02, in which microcrystals of the material are seed crystals 80
After adding as 4, the solution is slowly cooled. That is, the grown crystal 803 is obtained by utilizing the fact that the solubility varies depending on the temperature. In addition to this, as a solution growth method, there is a solvent evaporation method in which crystals are grown by evaporating the solvent of the saturated solution 802.

【0006】[0006]

【発明が解決しようとする課題】単結晶材料を光信号処
理素子や光記憶素子に供するためには、目的の結晶方法
と高い結晶品質をもった単結晶が必要であり、そのため
には、単結晶化しようとする材料の融点、昇華性、結晶
性を勘案した単結晶化技術が提供される必要がある。し
かしながら、前述した単結晶化技術にあっては、有機材
料等高分子材料の結晶のように分解しやすく昇華性を持
った材料については、成長方位を制御した単結晶の作製
について、次のような問題がある。
In order to provide a single crystal material for an optical signal processing element or an optical storage element, a single crystal having a desired crystallization method and high crystal quality is required. There is a need to provide a single crystallization technique that takes into consideration the melting point, sublimability, and crystallinity of the material to be crystallized. However, in the above-described single crystallization technique, for a material that easily decomposes and has a sublimable property such as a crystal of a polymer material such as an organic material, the following will be applied to the production of a single crystal in which the growth direction is controlled. There is a problem.

【0007】すなわち、Cz法にあっては、融液表面か
らの昇華が激しくおこり、微結晶が種結晶等に付着して
しまい、単結晶の連続的作製は困難である。FZ法やL
HPG法においても溶融部605の局部加熱によりスポ
ット状に材料が直接加熱されると、無機とは異なり有機
の材料では局部的な高温状態により昇華が激しく単結晶
作製が困難である。
That is, in the Cz method, sublimation from the surface of the melt occurs violently, and fine crystals adhere to seed crystals and the like, making continuous production of single crystals difficult. FZ method and L
Also in the HPG method, when the material is directly heated in spots by the local heating of the melting portion 605, unlike an inorganic material, an organic material undergoes high temperature sublimation and is difficult to produce a single crystal.

【0008】また、ブリッジマン−ストックバーガー法
では、図7の構成にて示すように成長容器706の存在
によって昇華の問題はないが、結晶の成長方位の制御が
困難であり、材料特有の成長方位のみの成長が可能でし
かない。
In the Bridgman-Stockburger method, although there is no problem of sublimation due to the existence of the growth vessel 706 as shown in the configuration of FIG. 7, it is difficult to control the crystal growth orientation, and the growth peculiar to the material. Only the azimuth can grow.

【0009】更に、溶液成長法では、ブリッジマン−ス
トックバーガー法と同様に成長方位制御が問題となる
他、溶媒の取り込みや結晶多形の問題がある。
Further, in the solution growth method, as in the Bridgman-Stockburger method, there is a problem in controlling the growth orientation, and in addition, there are problems in the solvent intake and crystal polymorphism.

【0010】本発明は、上述の問題に鑑み、昇華を抑え
方位制御が可能であって、欠陥や転移などがない電気特
性や光学特性に優れた単結晶を得る単結晶作製方法と作
製装置とを提供する。
In view of the above problems, the present invention provides a single crystal manufacturing method and a single crystal manufacturing method capable of controlling sublimation and controlling the orientation, and obtaining a single crystal excellent in electrical characteristics and optical characteristics without defects and dislocations. I will provide a.

【0011】[0011]

【課題を解決するための手段】前述した課題を解決する
ための、本発明による単結晶作製方法は、結晶母材を直
管の一端から挿入すると共に当該直管周囲に冷却ガスを
流しながら当該直管の軸方向の一部外周を赤外光照射に
より加熱し、上記直管の管壁からの輻射熱により上記結
晶母材の先端を溶融せしめ、上記直管の管壁から挿入し
た種結晶を上記結晶母材の溶融先端に接触させ、上記結
晶母材を赤外光照射部に近づくよう移動させながら種結
晶を赤外光照射部より遠のくよう移動させたことを特徴
する。
[Means for Solving the Problems ] The above-mentioned problems are solved.
For the purpose of the single crystal production method according to the present invention, a crystal base material is inserted from one end of a straight pipe and a cooling gas is provided around the straight pipe.
While flowing, a part of the outer circumference of the straight tube in the axial direction was heated by infrared light irradiation, and the tip of the crystal base material was melted by radiant heat from the tube wall of the straight tube, and was inserted from the tube wall of the straight tube. It is characterized in that the seed crystal is brought into contact with the melting tip of the crystal base material, and the seed crystal is moved farther from the infrared light irradiation portion while moving the crystal base material closer to the infrared light irradiation portion .

【0012】また、本発明による単結晶作製方法は、結
晶母材を直管の一端から挿入すると共に当該直管周囲に
配置したヒータにて結晶母材の溶融先端を中心とした軸
方向に沿う先後の温度勾配を制御しつつ当該直管の軸方
向の一部外周を赤外光照射により加熱し、上記直管の管
壁からの輻射熱により上記結晶母材の先端を溶融せし
め、上記直管の管壁から挿入した種結晶を上記結晶母材
の溶融先端に接触させ、上記結晶母材を赤外光照射部に
近づくよう移動させながら種結晶を赤外光照射部より遠
のくよう移動させたことを特徴とする。
Further, the method for producing a single crystal according to the present invention is
Insert the crystal base material from one end of the straight pipe and
An axis centered on the melting tip of the crystal matrix with the heater placed
Axial direction of the straight pipe while controlling the temperature gradient before and after along the direction
Part of the outer circumference is heated by infrared light irradiation,
The tip of the above crystal base material is melted by the radiant heat from the wall.
Therefore, the seed crystal inserted from the wall of the straight pipe is used as the crystal base material.
Of the above crystal base material to the infrared irradiation part.
Move the seed crystal farther from the infrared irradiation part while moving it closer.
It is characterized by being moved so that it can move smoothly.

【0013】さらに、上述した単結晶作製方法におい
て、加圧雰囲気内にて行うようにしたことを特徴と
る。
Further, in the above-mentioned method for producing a single crystal,
It is characterized in that it is performed in a pressurized atmosphere .
It

【0014】[0014]

【0015】他方、前述した課題を解決するための、本
発明による単結晶作製装置は、結晶母材及び種結晶を挿
入するための直管と、この直管の軸方向の一部を赤外光
照射により加熱する加熱装置と、上記結晶母材及び種結
晶を軸方向に移動させる移動装置と、直管周囲にガス流
を生ぜしめる通風装置とを有することを特徴とする。
On the other hand, a book for solving the above-mentioned problems
An apparatus for producing a single crystal according to the present invention uses a straight tube for inserting a crystal base material and a seed crystal, and a part of the straight tube in the axial direction with infrared light.
A heating device for heating by irradiation, a moving device for moving the crystal base material and the seed crystal in the axial direction, and a gas flow around the straight pipe.
And having a ventilation device which give rise to.

【0016】また、本発明による単結晶作製装置は、結
晶母材及び種結晶を挿入するための直管と、この直管の
軸方向の一部を赤外光照射により加熱する加熱装置と、
上記結晶母材及び種結晶を軸方向に移動させる移動装置
と、直管周囲に配置されたヒータとを有することを特徴
とする。
Further , the single crystal production apparatus according to the present invention is
A straight pipe for inserting the crystal base material and the seed crystal, and this straight pipe
A heating device that heats a part of the axial direction by infrared light irradiation,
Moving device for moving the crystal base material and seed crystal in the axial direction
And a heater arranged around the straight pipe.
And

【0017】さらに、上述した単結晶作製装置におい
て、直管を加圧チャンバ内に収納するようにしたことを
特徴とする。
Furthermore, in the above-mentioned single crystal production apparatus,
Thus, the straight pipe is housed in the pressurizing chamber .

【0018】加えて、上述した単結晶作製装置におい
て、加熱装置としてはCO 2 レーザを用いるようにした
ことを特徴とする。
In addition, in the above single crystal production apparatus
The CO 2 laser was used as the heating device .
It is characterized by

【0019】[0019]

【0020】[0020]

【作用】上述の構成によれば、赤外光により加熱された
直管からの輻射熱にて結晶母材を間接的に加熱するとい
う方位制御可能なFZ法を採用したことにより、結晶母
材先端の溶融部を一様に加熱することができて溶融部の
昇華や分解を抑えることができ、また、一様な加熱とい
ってもヒータ加熱のように温度勾配が小さくて溶融部の
軸方向長さが大きく表面張力による溶融部の安定な保持
ができないことはなく光照射にて溶融幅が充分小さい部
分的な加熱ができる。
According to the above construction, the crystal base material is indirectly heated by the radiant heat from the straight tube heated by infrared light, and the orientation controllable FZ method is adopted. The uniform heating of the melted part can prevent sublimation and decomposition of the melted part. Moreover, even if it is called uniform heating, the temperature gradient is small like the heater heating, and the axial direction of the melted part is small. Since the length is large and the melted portion cannot be stably held by the surface tension, it is possible to partially heat the melted width by light irradiation.

【0021】また、光照射による部分的な加熱と共に直
管の周囲に冷却ガスを流すことにより直管の軸方向に沿
った温度勾配を正確に制御できて、溶融部体積を一層正
確に制御でき、FZ法にて重要な溶融部の安定化がはか
れる。
Further, the temperature gradient along the axial direction of the straight pipe can be accurately controlled by flowing the cooling gas around the straight pipe together with the partial heating by the light irradiation, and the volume of the fusion zone can be controlled more accurately. , FZ method stabilizes the important fusion zone.

【0022】また、加圧ガスを満たした加圧チャンバ内
に直管を配置することで、加圧下にて溶融部が形成され
るので、昇華が更に抑えられ、蒸気圧の高い材料につい
ても結晶成長が可能となる。
Further, by arranging the straight pipe in the pressurizing chamber filled with the pressurizing gas, the molten portion is formed under the pressurization, so that sublimation is further suppressed and the material having high vapor pressure is crystallized. Growth is possible.

【0023】また、直管周囲にヒータを配置することで
溶融部先後の温度勾配の制御が更に好ましく、結晶性の
良好な結晶成長を可能とする。
Further, by arranging a heater around the straight pipe, it is more preferable to control the temperature gradient before and after the melting portion, and it becomes possible to grow crystals with good crystallinity.

【0024】[0024]

【実施例】ここで、図1〜図4を参照して本発明の実施
例を説明する。本発明の単結晶の作成の一例を図1に示
す。この図1では、輻射熱と冷却ガスとを併用した実施
例を示している。図1において、石英ガラス等で作製さ
れた直管106の軸方向一部外周を赤外光101により
加熱する。直管高温部からの輻射熱107により直管1
06内に挿入された母材102の上部が加熱、溶融す
る。この溶融部105を直管106内に挿入された種結
晶104に接触させ、種結晶104を速度V2で移動
し、母材102を速度V1 で移動させて線引きすること
により単結晶103が作製される。また、単結晶103
の外径D2 は前式(1)で定まる。ここで単結晶103
の結晶方位は種結晶104の方位と同一である。さら
に、赤外光として、CO2 レーザ光をもちい、直管周囲
にHe等の冷却ガス108を流すことにより、直管のご
く狭い範囲のみが高温に保たれ、母材102上部の加熱
溶融部105の体積を小さくすることが可能となり、粘
性の低い材料の単結晶作製をより容易にする。溶融部1
05の大きさはレーザ光101のパワーとガス108の
流量、直管106の材質や径により制御が可能である。
また、構造上直管106の加熱装置としてレーザ発振器
の他ランプによる集光装置があげられ、また、母材10
2の移動装置及び種結晶104の移動装置が配置され
る。
EXAMPLES Examples of the present invention will now be described with reference to FIGS. An example of producing the single crystal of the present invention is shown in FIG. FIG. 1 shows an embodiment in which radiant heat and cooling gas are used in combination. In FIG. 1, a part of the straight tube 106 made of quartz glass or the like in the axial direction is heated by infrared light 101. Straight pipe 1 due to radiant heat 107 from the high temperature portion of the straight pipe
The upper part of the base material 102 inserted in 06 is heated and melted. The melting portion 105 is brought into contact with the seed crystal 104 inserted in the straight pipe 106, the seed crystal 104 is moved at a speed V 2 , and the base material 102 is moved at a speed V 1 to draw a single crystal 103. It is made. In addition, single crystal 103
The outer diameter D 2 of is determined by the above equation (1). Single crystal 103
Has the same crystal orientation as that of the seed crystal 104. Further, by using CO 2 laser light as infrared light and flowing a cooling gas 108 such as He around the straight pipe, only a very narrow range of the straight pipe is kept at a high temperature, and the heating and melting portion above the base material 102 is maintained. It is possible to reduce the volume of 105, which makes it easier to produce a single crystal of a material having low viscosity. Melting part 1
The size of 05 can be controlled by the power of the laser light 101, the flow rate of the gas 108, and the material and diameter of the straight pipe 106.
In addition, as a heating device for the straight tube 106 due to its structure, there is a condensing device using a lamp in addition to a laser oscillator.
The second moving device and the seed crystal 104 moving device are arranged.

【0025】図2は、赤外光201の照射、冷却ガス流
208、及び加圧チャンバ209への収納を併用した実
施例を示している。図2において、種結晶204、母材
202、直管206は加圧チャンバ209内におかれ、
チャンバ内に高圧の不活性ガスを満たしておく。ファン
210の回転により、直管周囲にガス流208をつく
る。その後、図1と同様に直管206の軸方向の一部を
赤外光201により加熱し、輻射熱207により母材2
02の上部を加熱溶融する。溶融部205を種結晶20
4に接触させ、線引きすることにより単結晶203が作
製される。この例では加圧チャンバ209内へ直管20
6が収納されるため、加圧雰囲気内に溶融部205がお
かれ、このため昇華が一段と抑制される。
FIG. 2 shows an embodiment in which the irradiation of infrared light 201, the cooling gas flow 208, and the storage in the pressurizing chamber 209 are used together. In FIG. 2, the seed crystal 204, the base material 202, and the straight pipe 206 are placed in the pressure chamber 209,
The chamber is filled with a high pressure inert gas. The rotation of the fan 210 creates a gas flow 208 around the straight pipe. Thereafter, as in FIG. 1, a part of the straight tube 206 in the axial direction is heated by the infrared light 201, and the base material 2 is heated by the radiant heat 207.
The upper part of 02 is melted by heating. The fusion crystal 205 is used as the seed crystal 20.
The single crystal 203 is produced by bringing the single crystal 203 into contact with 4 and drawing. In this example, the straight pipe 20 is introduced into the pressure chamber 209.
Since 6 is stored, the melting portion 205 is placed in the pressurized atmosphere, and thus sublimation is further suppressed.

【0026】図3は、赤外光301の照射、冷却ガス流
308、ヒータ309の設置を併用した実施例を示して
いる。図3において、直管306における赤外光301
の照射位置前後にヒータ309を設置する。ヒータ温度
を調整し、溶融部305の軸方向前後の温度および温度
勾配を制御しつつ、直管306の一部外周を赤外光30
1により加熱し、輻射熱307により母材302の上部
を加熱溶融する。溶融部305を種結晶304に接触さ
せ、線引きすることにより単結晶303が作製される。
このヒータ309の設置により溶融部305以外の軸方
向の温度勾配をなだらかに変化させることができ、高品
質の結晶成長が可能となる。
FIG. 3 shows an embodiment in which the irradiation of infrared light 301, the cooling gas flow 308, and the installation of the heater 309 are used together. In FIG. 3, the infrared light 301 in the straight tube 306
A heater 309 is installed before and after the irradiation position of. The heater temperature is adjusted to control the temperature and the temperature gradient before and after the fusion zone 305 in the axial direction, and a part of the outer circumference of the straight pipe 306 is irradiated with infrared light 30.
1, and the upper part of the base material 302 is heated and melted by radiant heat 307. The single crystal 303 is produced by bringing the melted portion 305 into contact with the seed crystal 304 and drawing it.
By installing the heater 309, the temperature gradient in the axial direction other than the melting portion 305 can be gently changed, and high quality crystal growth can be performed.

【0027】本発明では、赤外光の直管への照射を基本
としており、冷却ガスの直管外周への通風や、加圧チャ
ンバへの収納、又はヒータの設置をそれぞれ単独で加え
ても良くまた任意に併用することができる。
The present invention is basically based on irradiation of a straight tube with infrared light, and even if ventilation of the cooling gas to the outer circumference of the straight tube, storage in a pressurizing chamber, or installation of a heater is added independently. It can also be used in any combination.

【0028】本実施例にて用いられる母材の材料は次の
ようなものがある。すなわち、材料としては、3−ニト
ロアニリン(m−NA)、2−メチル−4−ニトロアニ
リン(MNA)、3−メチル−(2,4−ジニトロフェ
ニル)−アミノプロパノエート(MAP)、3−メチル
−4−ニトロピリジン−1−オキサイド(POM)、3
−アミノフェニル(m−AP)、2−アダマンチルアミ
ノ−5−ニトロピリジン(AANP)、N−(4−ニト
ロフェニル)−L−プロリノール(NPP)、N−(ニ
トロフェニル)−N−メチルアミノアセトニトリル(N
PAN)、4−ニトロジメチルアニリン(NDMA)、
4−N,N−ジメチルアミノ−2−アセタミド−4−ニ
トロアニリン(DAN)、2−(N−プロリノール)−
5−ニトロピリジン(PNP)、2−シクロアセチルア
ミノ−5−ニトロピリジン(COANP)、3,9−ジ
ニトロ−5a,6,11a,12−テトラヒドロ−
[1,4]ベンズオキサジノ[3,2−b][1,4]
ベンズオキサジン(DNBB)、4′−ニトロベンジリ
デン−3−アセトアミノ−4−メトキシアニリン(MN
BA)、ジシアノビニルアニソール(DIVA)、
(−)4−(4′−ジメチルアミノフェニル)−3−
(2′−ヒドロキシプロピルアミノ)シクロブテン−
3,4−ジオン(DAD)、2−メトキシ−5−ニトロ
フェノール(MNP)、スチルバゾリウム−P−トルエ
ンスルホン酸(SPTS)、3,5−ジメチル−1−
(4−ニトロフェニル)ピラゾール(DMNP)、N−
メトキシメチル−4−ニトロアニリン(MMNA)等が
ある。
The materials for the base material used in this embodiment are as follows. That is, as a material, 3-nitroaniline (m-NA), 2-methyl-4-nitroaniline (MNA), 3-methyl- (2,4-dinitrophenyl) -aminopropanoate (MAP), 3 -Methyl-4-nitropyridine-1-oxide (POM), 3
-Aminophenyl (m-AP), 2-adamantylamino-5-nitropyridine (AANP), N- (4-nitrophenyl) -L-prolinol (NPP), N- (nitrophenyl) -N-methylamino Acetonitrile (N
PAN), 4-nitrodimethylaniline (NDMA),
4-N, N-dimethylamino-2-acetamide-4-nitroaniline (DAN), 2- (N-prolinol)-
5-nitropyridine (PNP), 2-cycloacetylamino-5-nitropyridine (COANP), 3,9-dinitro-5a, 6,11a, 12-tetrahydro-
[1,4] Benzoxazino [3,2-b] [1,4]
Benzoxazine (DNBB), 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline (MN
BA), dicyanovinyl anisole (DIVA),
(-) 4- (4'-Dimethylaminophenyl) -3-
(2'-Hydroxypropylamino) cyclobutene-
3,4-dione (DAD), 2-methoxy-5-nitrophenol (MNP), stilbazolium-P-toluenesulfonic acid (SPTS), 3,5-dimethyl-1-
(4-nitrophenyl) pyrazole (DMNP), N-
Methoxymethyl-4-nitroaniline (MMNA) and the like.

【0029】また、上記直管の材質としては、石英ガラ
ス以外に、耐熱性のある鉛ガラス、ソーダ石灰ガラス、
カリ石灰ガラス、バリウムガラス、ホウケイ酸ガラス等
のガラス材料、テフロン、シリコン、ケプラー、ポリイ
ミド等の高分子材料、セラミック材料等があり、不透明
な材質も可能である。また、上記冷却ガスとしては、ヘ
リウム、アルゴン等の希ガス、窒素、酸素等がある。こ
の場合、熱伝導性の良いヘリウムが最も効果的である。
As the material of the straight pipe, besides quartz glass, heat-resistant lead glass, soda-lime glass,
There are glass materials such as potassium lime glass, barium glass and borosilicate glass, polymer materials such as Teflon, silicon, Kepler and polyimide, ceramic materials and the like, and opaque materials are also possible. The cooling gas may be a rare gas such as helium or argon, nitrogen, oxygen or the like. In this case, helium, which has good thermal conductivity, is most effective.

【0030】次に、本発明による具体例を示すが、具体
例1は図1、具体例2は図2、具体例3は図3に示す方
法によっている。
Next, specific examples according to the present invention will be described. The specific example 1 is based on the method shown in FIG. 1, the specific example 2 is shown in FIG. 2, and the specific example 3 is based on the method shown in FIG.

【0031】(具体例1) 直管にパイレックスガラス
製ガラス管(内径4mm,肉厚1mm)、ガスとしてヘリウ
ムガス(流量15l/min )、母材としてAANP溶液
固化体(直径2mmφ)を用い、種結晶として、同結晶の
c軸方位結晶を用いて、引き上げ速度0.04〜0.4
mm/min 、種結晶と母材の移動速度比を1〜10として
単結晶を作製した。作製結晶は2〜0.6mmφ、長さ2
0mmの物が得られた。また、同様の条件で、種結晶に結
晶のc軸から40°のものを使って単結晶を作製した。
これらの単結晶の単結晶性と成長方位の種結晶との一致
はX線プリセッション写真により確認され、結晶方位も
種結晶と一致していることが確認された。
Specific Example 1 A Pyrex glass glass tube (inner diameter 4 mm, wall thickness 1 mm) was used as a straight tube, helium gas (flow rate 15 l / min) as gas, and AANP solution solidified body (diameter 2 mmφ) as base material. Using a c-axis oriented crystal of the same crystal as a seed crystal, the pulling rate was 0.04 to 0.4.
A single crystal was prepared with a moving speed ratio of the seed crystal and the base material of 1 to 10 mm / min. Fabricated crystal is 2-0.6mmφ, length 2
A product of 0 mm was obtained. Further, under the same conditions, a single crystal was produced using a seed crystal having a crystal axis of 40 ° from the c-axis.
Consistency between the single crystallinity of these single crystals and the growth direction of the seed crystal was confirmed by an X-ray precession photograph, and the crystal orientation was also confirmed to match the seed crystal.

【0032】(具体例2) 加圧チャンバ内を3atm の
ヘリウムガスで満たした。直管にパイレックスガラス製
ガラス管(内径4mm,肉厚1mm)を用い、ファンによ
り、直管周囲に0.25m/sec のガス流をおこした。
母材としてm−NA溶融固化体(直径2mmφ)を用い、
種結晶として、同結晶のc軸方位結晶を用いて、引き上
げ速度0.04〜0.4mm/min 、種結晶と母材の移動
速度比を1〜10として単結晶を作製した。m−NAは
昇華性が高く、図1による方法では長さ5mmまでしか作
製できなかったが、加圧チャンバを用いることにより直
径2〜0.6mmφ、長さ20mmの物が得られた。
(Specific Example 2) The pressure chamber was filled with 3 atm of helium gas. A Pyrex glass tube (inner diameter: 4 mm, wall thickness: 1 mm) was used as the straight tube, and a gas flow of 0.25 m / sec was generated around the straight tube by a fan.
M-NA melt solidified body (diameter 2 mmφ) is used as the base material,
Using a c-axis oriented crystal of the same crystal as a seed crystal, a single crystal was produced with a pulling rate of 0.04 to 0.4 mm / min and a moving speed ratio of the seed crystal and the base material of 1 to 10. Although m-NA has a high sublimation property and could be manufactured only up to a length of 5 mm by the method shown in FIG. 1, by using the pressurizing chamber, a product having a diameter of 2 to 0.6 mmφ and a length of 20 mm was obtained.

【0033】(具体例3) 図3におけるヒータ温度を
調整し、ヒータなしでは得られない図4の如き溶融部以
外のなだらかな温度勾配をもたせた。その他の条件は具
体例1と同様としてAANP単結晶を作製した。この結
果、ヒータの存在にてCO2 レーザによる熱の逃げが少
なくなりレーザパワーが1/3で済み、また急激な温度
変化による単結晶のクラックの発生が1/10程度減少
した。
(Specific Example 3) The heater temperature in FIG. 3 was adjusted so that a gentle temperature gradient other than the melted portion as shown in FIG. 4 could be obtained without the heater. Other conditions were the same as in Example 1 to prepare an AANP single crystal. As a result, in the presence of the heater, the heat escape by the CO 2 laser was reduced, the laser power was reduced to 1/3, and the occurrence of cracks in the single crystal due to the rapid temperature change was reduced by about 1/10.

【0034】表1は前述した各材料につき本発明によっ
て作製した場合の結果を示す。
Table 1 shows the results when the above-mentioned materials were manufactured according to the present invention.

【0035】[0035]

【表1】 いずれも種結晶と方位とが一致した高品質の単結晶が得
られた。なお、冷却ガスの供給源である通風装置として
は、ガスボンベの開栓やファンによる。
[Table 1] In each case, a high quality single crystal having the same orientation as the seed crystal was obtained. In addition, as a ventilation device which is a supply source of the cooling gas, an opening of a gas cylinder or a fan is used.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、種
結晶を用いて方位制御を行うことのできるFZ法におい
て、赤外光により加熱された直管からの輻射熱をもちい
た間接加熱を行うことにより昇華をおさえ、高昇華性材
料の方位制御された結晶成長を可能にする。また、本発
明においては、さらに、赤外光光源としてCO2 レーザ
を用い、さらに、あるいは、直管周囲にガスを流すこと
により、狭く一様な加熱範囲で温度勾配も良好なより安
定な結晶作製を可能にする。また、本発明においては、
さらに、不活性ガスによる加圧チャンバを用いることで
より一層昇華をおさえ、高昇華性材料の方位制御された
結晶成長を可能にする。また、赤外光加熱装置に加え、
ヒータによる温度および温度勾配の制御を行うことによ
り、結晶成長を容易にし、また、結晶性のよい結晶成長
を可能にする。こうして、直管を介した間接加熱を行う
単結晶作製法を用いることにより、昇華性の高い材料に
ついて、赤外光を用いて母材の一部を溶融し、種結晶を
用いて任意の結晶方位の結晶を作製することが可能とな
った。特に、従来の種結晶を用いるCz法に比べ、加熱
溶融部の体積、および表面積を小さくすることがきるた
め、昇華の影響をおさえることができる。また、溶融部
体積が小さいため材料が融点以上におかれる時間を従来
のブリッジマン法、Cz法に比べ短くすることができ、
熱分解しやすい材料の単結晶作製に有利である。この様
な技術は、光非線形効果等の光学デバイスへの応用が期
待されながら、その昇華性の高さのために任意方位での
結晶作製が困難とされてきた有機材料の単結晶作製にと
くに有利である。
As described above, according to the present invention, in the FZ method in which the orientation can be controlled by using the seed crystal, the indirect heating using the radiant heat from the straight tube heated by the infrared light is performed. By doing so, it suppresses sublimation and enables crystal growth of the highly sublimable material with controlled orientation. Further, in the present invention, a CO 2 laser is further used as an infrared light source, and a more stable crystal having a good temperature gradient in a narrow and uniform heating range is provided by flowing a gas around the straight tube. Allows fabrication. Further, in the present invention,
Furthermore, the use of a pressure chamber with an inert gas further suppresses sublimation, and enables crystallographic growth of highly sublimable materials in a controlled orientation. In addition to the infrared heating device,
By controlling the temperature and temperature gradient by the heater, crystal growth is facilitated and crystal growth with good crystallinity is enabled. Thus, by using the single crystal manufacturing method in which indirect heating is performed via a straight tube, for a material with high sublimability, a part of the base material is melted by using infrared light, and an arbitrary crystal is formed by using a seed crystal. It has become possible to produce oriented crystals. In particular, since the volume and surface area of the heating and melting part can be reduced as compared with the conventional Cz method using a seed crystal, the influence of sublimation can be suppressed. In addition, since the volume of the fusion zone is small, the time required for the material to stay above the melting point can be shortened as compared with the conventional Bridgman method and Cz method.
This is advantageous for producing a single crystal of a material that is easily decomposed by heat. Such a technique is expected to be applied to optical devices such as optical non-linear effects, but especially for the production of single crystals of organic materials, which have been difficult to produce in any orientation due to its high sublimability. It is advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による単結晶作製方法の一実施例を示す
模式図。
FIG. 1 is a schematic view showing an example of a method for producing a single crystal according to the present invention.

【図2】本発明による単結晶作製方法の別の実施例を示
す模式図。
FIG. 2 is a schematic view showing another embodiment of the method for producing a single crystal according to the present invention.

【図3】本発明による単結晶作製方法のさらに別の実施
例を示す模式図。
FIG. 3 is a schematic view showing still another embodiment of the method for producing a single crystal according to the present invention.

【図4】本発明による単結晶作製方法における赤外光と
ヒータの併用により直管内部に生じる温度勾配を示す
図。
FIG. 4 is a diagram showing a temperature gradient generated in a straight tube by using a combination of infrared light and a heater in the method for producing a single crystal according to the present invention.

【図5】従来のチョクラルスキー法による単結晶作製法
を示す図。
FIG. 5 is a diagram showing a conventional single crystal production method by the Czochralski method.

【図6】従来のフローティングゾーン法による単結晶作
製法を示す図。
FIG. 6 is a diagram showing a conventional single crystal production method by a floating zone method.

【図7】従来のブリッジマン−ストックバーガー法によ
る単結晶作製法を示す図。
FIG. 7 is a diagram showing a conventional single crystal production method by the Bridgman-Stockburger method.

【図8】従来の溶液成長法による単結晶作製法を示す
図。
FIG. 8 is a diagram showing a conventional single crystal production method by a solution growth method.

【符号の説明】[Explanation of symbols]

101,201,301 赤外光 601 加熱用光源 501 るつぼ 701 加熱炉 801 成長容器 102,202,302,602 母材 502,702 加熱用ヒータ 802 飽和溶液 103,203,303,503,603,703 単
結晶 803 成長結晶 104,204,304,504,604,804 種
結晶 704 断熱材 105,205,305,605 溶融部 505,705 融液 106,206,306 ガラス管 606 凹面鏡 706 成長容器 107,207,307 輻射熱 108,308 Heガス 208 ガス流 209 加圧チャンバ 309 ヒータ 210 ファン
101, 201, 301 Infrared light 601 Heating light source 501 Crucible 701 Heating furnace 801 Growth vessel 102, 202, 302, 602 Base material 502, 702 Heating heater 802 Saturated solution 103, 203, 303, 503, 603, 703 Single Crystal 803 Growth crystal 104, 204, 304, 504, 604, 804 Seed crystal 704 Heat insulating material 105, 205, 305, 605 Melting part 505, 705 Melt liquid 106, 206, 306 Glass tube 606 Concave mirror 706 Growth container 107, 207, 307 radiant heat 108,308 He gas 208 gas flow 209 pressurizing chamber 309 heater 210 fan

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 弘樹 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (72)発明者 戒能 俊邦 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平3−88790(JP,A) 特開 昭61−58880(JP,A) 特開 昭60−205178(JP,A) 特開 平5−341139(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 12/00 C30B 29/54 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroki Ito 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Inventor Toshikuni Kaino 1-6-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Japan (56) References JP-A-3-88790 (JP, A) JP-A-61-58880 (JP, A) JP-A-60-205178 (JP, A) JP-A-5-341139 ( (58) Fields investigated (Int.Cl. 7 , DB name) C30B 12/00 C30B 29/54

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶母材を直管の一端から挿入すると共
当該直管周囲に冷却ガスを流しながら当該直管の軸方
向の一部外周を赤外光照射により加熱し、上記直管の管
壁からの輻射熱により上記結晶母材の先端を溶融せし
め、上記直管の管壁から挿入した種結晶を上記結晶母材
の溶融先端に接触させ、上記結晶母材を赤外光照射部に
近づくよう移動させながら種結晶を赤外光照射部より遠
のくよう移動させた単結晶作製方法。
1. A crystal base material is inserted from one end of a straight pipe, and a part of the straight pipe in the axial direction is heated by infrared light irradiation while flowing a cooling gas around the straight pipe, and the straight pipe is heated. The tip of the crystal base material is melted by radiant heat from the tube wall, the seed crystal inserted from the tube wall of the straight tube is brought into contact with the melting tip of the crystal base material, and the crystal base material is irradiated with infrared light. A method for producing a single crystal in which a seed crystal is moved farther from an infrared light irradiation part while being moved closer.
【請求項2】 結晶母材を直管の一端から挿入すると共
に当該直管周囲に配置したヒータにて結晶母材の溶融先
端を中心とした軸方向に沿う先後の温度勾配を制御しつ
つ当該直管の軸方向の一部外周を赤外光照射により加熱
し、上記直管の管壁からの輻射熱により上記結晶母材の
先端を溶融せしめ、上記直管の管壁から挿入した種結晶
を上記結晶母材の溶融先端に接触させ、上記結晶母材を
赤外光照射部に近づくよう移動させながら種結晶を赤外
光照射部より遠のくよう移動させた単結晶作製方法。
2. When the crystal base material is inserted from one end of the straight pipe,
Where the crystal base material is melted by the heater placed around the straight pipe.
Controls the temperature gradient before and after along the axial direction centered on the edge.
Heat the part of the straight tube in the axial direction by irradiating infrared light.
However, the radiant heat from the wall of the straight pipe causes the crystal base material to
Seed crystal with the tip melted and inserted from the wall of the above straight pipe
To the melting tip of the crystal base material,
The seed crystal is moved to the infrared light irradiation section while moving toward the infrared
A single crystal manufacturing method in which the single crystal is moved away from the light irradiation part.
【請求項3】 加圧雰囲気内にて行うようにした請求項
又は請求項2記載の単結晶作製方法。
3. The method for producing a single crystal according to claim 1, wherein the single crystal is produced in a pressurized atmosphere.
【請求項4】 結晶母材及び種結晶を挿入するための直
管と、この直管の軸方向の一部を赤外光照射により加熱
する加熱装置と、上記結晶母材及び種結晶を軸方向に移
動させる移動装置と、直管周囲にガス流を生ぜしめる通
風装置とを有する単結晶作製装置。
4. A straight line for inserting a crystal base material and a seed crystal.
The tube and part of this straight tube in the axial direction are heated by infrared light irradiation.
Heating device and the above crystal base material and seed crystal in the axial direction.
The moving device to move and the passage that creates the gas flow around the straight pipe.
An apparatus for producing a single crystal having a wind device.
【請求項5】 結晶母材及び種結晶を挿入するための直
管と、この直管の軸方向の一部を赤外光照射により加熱
する加熱装置と、上記結晶母材及び種結晶を軸方向に移
動させる移動装置と、直管周囲に配置されたヒータと
有する単結晶作製装置。
5. A straight pipe for inserting a crystal base material and a seed crystal, a heating device for heating a part of the straight pipe in the axial direction by infrared light irradiation , and a shaft for the crystal base material and the seed crystal. An apparatus for producing a single crystal having a moving device for moving in a direction and a heater arranged around a straight pipe .
【請求項6】 直管を加圧チャンバ内に収納するように
した請求項4又は請求項5記載の単結晶作製装置。
6. A straight pipe is housed in a pressure chamber.
The single crystal production apparatus according to claim 4 or 5.
【請求項7】 加熱装置としてはCO 2 レーザを用いる
ようにした請求項4記載の単結晶作製装置。
7. A CO 2 laser is used as the heating device.
The single crystal production apparatus according to claim 4, wherein
JP21389493A 1993-08-30 1993-08-30 Single crystal manufacturing method and single crystal manufacturing apparatus Expired - Lifetime JP3367616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21389493A JP3367616B2 (en) 1993-08-30 1993-08-30 Single crystal manufacturing method and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21389493A JP3367616B2 (en) 1993-08-30 1993-08-30 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH0769774A JPH0769774A (en) 1995-03-14
JP3367616B2 true JP3367616B2 (en) 2003-01-14

Family

ID=16646780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21389493A Expired - Lifetime JP3367616B2 (en) 1993-08-30 1993-08-30 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3367616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408717C (en) * 2002-06-21 2008-08-06 北京航空航天大学 Preparation of magnetic driven memory alloy monocrystal by zone refining orientation coagulation method
WO2016147265A1 (en) * 2015-03-13 2016-09-22 伸 阿久津 Apparatus and method for manufacturing single crystal

Also Published As

Publication number Publication date
JPH0769774A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US4761202A (en) Process for crystal growth of KTiOPO4 from solution
JP3367616B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US5343827A (en) Method for crystal growth of beta barium boratean
Sankaranarayanan et al. Microtube-Czochralski technique (μT-CZ):: a novel way of seeding the melt to grow bulk single crystal
JP3369394B2 (en) Crystal preparation method
CN105063752B (en) Grow the method and device of mecrurous iodide monocrystal
JPS63319297A (en) Method and device for producing organic crystal
CN105803518A (en) Czochralski-method-like monocrystal growing device and method
JPS62202892A (en) Pulling up apparatus for silicon single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPS5954694A (en) Method for growth of single crystal
JP2002137985A (en) Crucible for growing oxide single crystal and growing device of oxide single crystal using it
JPH0948697A (en) Production of lithium triborate single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPH04321590A (en) Growing method of single crystal
JPH05319973A (en) Single crystal production unit
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS62207799A (en) Method and device for producing iii-v compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPH06211599A (en) Production of beta-bab2o4 single crystal
JPH03107905A (en) Manufacture of monocrystal fiber using organic nonlinear optical material
JPH0710674A (en) Method for growing inorganic compound signal crystal
JPH0259485A (en) Growing method for crystal
JPH07168221A (en) Production of nonlinear optical element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11