JPH0687697A - Production of thin film of lithium niobate single crystal - Google Patents

Production of thin film of lithium niobate single crystal

Info

Publication number
JPH0687697A
JPH0687697A JP23547092A JP23547092A JPH0687697A JP H0687697 A JPH0687697 A JP H0687697A JP 23547092 A JP23547092 A JP 23547092A JP 23547092 A JP23547092 A JP 23547092A JP H0687697 A JPH0687697 A JP H0687697A
Authority
JP
Japan
Prior art keywords
thin film
single crystal
lithium niobate
niobate single
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23547092A
Other languages
Japanese (ja)
Inventor
Hisao Kurosawa
久夫 黒沢
Fumio Nitanda
文雄 二反田
Masazumi Sato
正純 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23547092A priority Critical patent/JPH0687697A/en
Publication of JPH0687697A publication Critical patent/JPH0687697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a thin film of a lithium niobate single crystal ensuring reduced optical transmission loss and suitable for use as a thin film optical waveguide type element. CONSTITUTION:When a thin film of a lithium niobate single crystal is formed by liq. phase epitaxial growth, a substrate of an MgO doped lithium niobate single crystal is immersed in a melt consisting of, by mol. 40-56.3% LiO2, 6.7-13% Nb2O5, 26.3-50% B2O3 and 0-20% MoO3 as starting materials and a thin film is grown on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜光導波路型素子に
好適な光伝搬損失を低減したニオブ酸リチウム単結晶薄
膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium niobate single crystal thin film, which is suitable for a thin film optical waveguide type device and has a reduced optical propagation loss.

【0002】[0002]

【従来の技術】液相エピタキシャル(以後LPEと略
す)法を用いた単結晶薄膜の育成は、酸化物結晶あるい
は化合物結晶の育成法として広く用いられている。中で
も等温回転ディッピングLPE法は、結晶性及び均一性
の面で優れており、大面積の結晶育成にも有利であるこ
とが知られている。LPE法は、溶質成分と溶媒(フラ
ックス)成分を混合した原料を液相温度以上に加熱・融
解して育成用溶融液とするが、溶融液成分としてフラッ
クスを用いることから原理的にはフラックス法とほぼ同
様である。LPE法がフラックス法と異なる点は、LP
E法が過冷却状態に保持した溶融液中に種結晶となる基
板を浸漬させ、その基板上に結晶を析出成長させるのに
対し、フラックス法は溶融液を徐冷しながら核の自由生
成により結晶を成長させる。このためフラックス法は育
成時間が長い、成分偏析による濃度バラツキが生じ易い
等の欠点があるが、LPE法は基板を回転させながら基
板上にエピタキシャル成長させることから上記問題は生
じ難い。しかし、フラックス法と同様に溶媒となるフラ
ックス成分を溶融液中に含むことから、このフラックス
成分が結晶中に混入し易いことがLPE法の欠点であ
る。フラックス成分として必要な条件は、液相温度を
実用温度域まで低下させる、溶質成分を固溶する、
結晶成長を妨げない、あるいは溶質成分を置換しな
い、等が上げられるが、これらはLPE法の根本的な要
因でもある。したがって、フラックス成分の良否でLP
E法の成否が左右されると言っても過言ではない。
2. Description of the Related Art Growth of a single crystal thin film using a liquid phase epitaxial (hereinafter abbreviated as LPE) method is widely used as a method for growing an oxide crystal or a compound crystal. Among them, the isothermal rotary dipping LPE method is excellent in crystallinity and uniformity and is known to be advantageous for growing a large area crystal. In the LPE method, a raw material in which a solute component and a solvent (flux) component are mixed is heated and melted at a liquidus temperature or higher to form a melt for growth. In principle, the flux method is used because a flux is used as the melt component Is almost the same as. The difference between the LPE method and the flux method is that LP
In the E method, a substrate to be a seed crystal is immersed in a melt kept in a supercooled state, and the crystal is deposited and grown on the substrate. Grow crystals. For this reason, the flux method has drawbacks such as long growth time and easy concentration variation due to component segregation, but the LPE method does not easily cause the above problems because the substrate is epitaxially grown on the substrate while rotating. However, as in the case of the flux method, since a flux component serving as a solvent is contained in the melt, it is a drawback of the LPE method that this flux component is easily mixed in the crystal. The necessary conditions for the flux component are to lower the liquidus temperature to a practical temperature range, to dissolve the solute component in solid solution,
It does not impede the crystal growth or does not replace the solute component, but these are also the fundamental factors of the LPE method. Therefore, depending on the quality of the flux component, LP
It is no exaggeration to say that the success or failure of the E law will be affected.

【0003】本提案のニオブ酸リチウム単結晶薄膜をL
PE法により形成した例は、(1)Applied P
hysics Letters,Vol.26,No.
1,1January 1975(P8)、あるいは
(2)J.Appl.phys,Vol.70,No.
5,1September 1991(P2536)等
に開示されているが、用いたフラックス成分はいずれも
Li2O−V25である。また、(3)特公平3−69
586号公報にはK2O−V25をフラックス成分とし
て用いることが記載されている。
The proposed lithium niobate single crystal thin film is
The example formed by the PE method is (1) Applied P
hysics Letters, Vol. 26, No.
1,1 January 1975 (P8), or (2) J. Appl. physs, Vol. 70, No.
5,1 September 1991 (P2536) and the like, the flux components used are all Li 2 O—V 2 O 5 . In addition, (3) Japanese Patent Fair 3-69
Japanese Patent No. 586 describes using K 2 O-V 2 O 5 as a flux component.

【0004】[0004]

【発明が解決しようとする課題】前述の(1)〜(3)
で示した技術のフラックス成分の中には、いずれもV2
5が共通して用いられているが、V元素と溶質成分の
Nb元素は同じVA族に位置している。したがって、V
25成分を混合した溶融液からニオブ酸リチウム単結晶
薄膜を形成した場合、V元素が膜中に混入し上記薄膜の
構成元素であるNb元素を置換する可能性が非常に大き
い。このV元素が混入した膜中に光を導波した場合、そ
の膜中において光の吸収が生じ光伝搬損失が数10(d
B/cm)に大きくなることが指摘されている。(例え
ば、(1)Journal ofCrystal Gr
owth,46,(1979)P314,(2)J.A
ppl.phys,Vol.70,No.5,1Sep
tember 1991(P2536)等参照)本発明
は、上記の問題点を解消したニオブ酸リチウム単結晶薄
膜の製造方法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention (1) to (3)
Among the flux components of the technology shown in, V 2
Although O 5 is commonly used, the V element and the Nb element of the solute component are located in the same VA group. Therefore, V
When a lithium niobate single crystal thin film is formed from a melt containing a mixture of 2 O 5 components, it is highly possible that V element is mixed into the film and replaces the Nb element which is a constituent element of the thin film. When light is guided into the film in which the V element is mixed, light is absorbed in the film and the light propagation loss is several tens (d).
B / cm) has been pointed out. (For example, (1) Journal of Crystal Gr
owth, 46, (1979) P314, (2) J. A
ppl. physs, Vol. 70, No. 5,1 Sep
The present invention aims to provide a method for producing a lithium niobate single crystal thin film which solves the above problems.

【0005】[0005]

【課題を解決するための手段】本発明は、液相エピタキ
シャル成長法によりニオブ酸リチウム単結晶薄膜を形成
させる方法において、Li2O、Nb25、B23、お
よびMoO3を原料成分とした溶融液にMgOをドープ
したニオブ酸リチウム単結晶基板を浸漬させて、該基板
上に薄膜を育成させることを特徴とするニオブ酸リチウ
ム単結晶薄膜の製造方法を提供するものであり、上記溶
融液の組成は、Li2Oが40モル%〜56.3モル
%、Nb25が6.7モル%〜13モル%、B23が2
6.3モル%〜50モル%、およびMoO3が0モル%
〜20モル%の範囲であることを特徴としている。
The present invention relates to a method of forming a lithium niobate single crystal thin film by a liquid phase epitaxial growth method, wherein Li 2 O, Nb 2 O 5 , B 2 O 3 and MoO 3 are used as raw material components. A method for producing a lithium niobate single crystal thin film, which comprises immersing a MgO-doped lithium niobate single crystal substrate in the molten solution described above to grow a thin film on the substrate. The composition of the melt is 40 mol% to 56.3 mol% of Li 2 O, 6.7 mol% to 13 mol% of Nb 2 O 5 , and 2 mol of B 2 O 3.
6.3 mol% to 50 mol% and 0% MoO 3
It is characterized by being in the range of ˜20 mol%.

【0006】以下、本発明の溶融液組成の限定理由を述
べる。Li2OならびにNb25は、各々40モル%〜
56.3モル%、ならびに6.7モル%〜13モル%以
外ではLiNb36、あるいはLi3NbO4等の結晶が
析出しLiNbO3結晶と混在することから光学用単結
晶薄膜として使用できない。Li2OならびにNb25
の範囲として望ましくは、44モル%〜52モル%、な
らびに7.3モル%〜12モル%が好適である。なお、
Li2O/Nb25の比は、4.0〜6.5が好適であ
る。B23は、26.3モル%以下では液相温度が10
00℃を越える高温になることから基板が割れ易くな
り、また成長速度が数μm/min以上に増大すること
から薄膜の結晶性が低下する。一方、50モル%以上で
は溶融液の粘性が増加し、溶融液中の組成が均一化しな
い。望ましくは、30モル%〜45モル%が好適であ
る。
The reasons for limiting the melt composition of the present invention will be described below. Li 2 O and Nb 2 O 5 are each 40 mol% to
56.3 mole%, and can not be used as an optical single crystal thin film from that mixed with LiNb 3 O 6, or Li 3 NbO 4 crystal or the like is deposited LiNbO 3 crystals other than 6.7 mole% to 13 mole% . Li 2 O and Nb 2 O 5
The range of 44 mol% to 52 mol% and 7.3 mol% to 12 mol% are preferable. In addition,
The Li 2 O / Nb 2 O 5 ratio is preferably 4.0 to 6.5. B 2 O 3 has a liquidus temperature of 10 at 26.3 mol% or less.
Since the substrate temperature is higher than 00 ° C., the substrate is easily cracked, and the growth rate is increased to several μm / min or more, so that the crystallinity of the thin film is deteriorated. On the other hand, when it is 50 mol% or more, the viscosity of the melt increases and the composition in the melt does not become uniform. Desirably, 30 mol% to 45 mol% is suitable.

【0007】MoO3は、20モル%以上では基板引き
上げ後の膜表面にMoO3が残存する。望ましくは、0
モル%〜15モル%が好適である。本発明において用い
る基板は、MgOをドープした光学用のニオブ酸リチウ
ム単結晶が好ましい。この理由は、形成する薄膜と結
晶系が同じであるため、エピタキシャル成長が容易であ
る、基板の主成分は薄膜と同じであるため格子整合が
容易に図れる、MgOをドープすることにより屈折率
が薄膜よりも小さくなるため、導波した光を薄膜中に閉
じこめることが可能になる、等である。上記基板の成長
面は、(0001)面が好ましく、かつ光学研磨を施す
必要がある。
When MoO 3 is 20 mol% or more, MoO 3 remains on the film surface after the substrate is pulled up. Desirably 0
Mol% to 15 mol% are preferred. The substrate used in the present invention is preferably an optical lithium niobate single crystal doped with MgO. This is because the thin film to be formed has the same crystal system, which facilitates the epitaxial growth. The main component of the substrate is the same as that of the thin film, so that the lattice matching can be easily achieved. Since it becomes smaller than that, it becomes possible to confine guided light in a thin film, and so on. The growth surface of the substrate is preferably the (0001) plane and needs to be optically polished.

【0008】ところで、LPE法によるニオブ酸リチウ
ム単結晶薄膜の形成において、B23、及びMoO3
フラックスとして検討された例として、(1)Jour
nal of Crystal Growth,46,
(1979)P314,ならびに(2)Applied
Physics Letters,Vol.26,N
o.9,1May 1975が開示されているが、いず
れの場合も味見をした程度の記述であり、詳細に進めた
フラックス系はLi2O−V25系であった。また、
(3)Journal of Crystal Gro
wth,43,(1978)P197には、LiB
2、及びLi2MoO4系を検討した報告があるが、上
記(1)〜(2)と同様に味見に終わっている。
By the way, in the formation of a lithium niobate single crystal thin film by the LPE method, as an example in which B 2 O 3 and MoO 3 were used as flux, (1) Jour
nal of Crystal Growth, 46,
(1979) P314, and (2) Applied
Physics Letters, Vol. 26, N
o. Although 9,1May 1975 discloses a description of the extent also that tasted cases, flux system has proceeded in detail was Li 2 O-V 2 O 5 system. Also,
(3) Journal of Crystal Gro
wth, 43, (1978) P197 contains LiB
Although there are reports of studies on O 2 and Li 2 MoO 4 systems, they have ended up being a tasting as in (1) and (2) above.

【0009】また、(4)Journal of Cr
ystal Growth,29,(1975)P28
9には、Li224系を検討した報告があるが、その
内容は LiNbO3との疑二元系の相図を作成した結果
を主に述べており、本発明の意 図とする技術とは根本
的に異なっている。
Further, (4) Journal of Cr
ystal Growth, 29, (1975) P28
9 reports a study of the Li 2 B 2 O 4 system, the content of which mainly describes the results of making a phase diagram of a pseudo binary system with LiNbO 3 and the intention of the present invention. It is fundamentally different from the technology used.

【0010】[0010]

【実施例】以下、本発明を実施例に従い説明する。 (実施例)Li2CO3、Nb25、B23、または/お
よびMoO3を表1に示す組成で混合し、その混合物を
白金ルツボに充填した後、約1100〜1200℃に加
熱して均質化した。その後、溶融液を過冷却状態に保持
し、その液中にMgOをドープしたニオブ酸リチウム単
結晶基板を浸漬させ、静止状態あるいは約30〜100
rpmで回転させながら、約1〜10分間LPEを行っ
た。回転時は約5〜10秒間隔で回転方向を反転させ
た。LPE後、膜表面を洗浄し、プリズム移動法(西
原、他:光集積回路(オーム社)P251参照)により波
長0.83μm半導体レーザ光に対する光伝搬損失を測
定した。結果を表1に示した。なお、プリズム移動法の
模式図を図1に示す。
EXAMPLES The present invention will be described below with reference to examples. (Example) Li 2 CO 3, Nb 2 O 5, B 2 O 3 and / or MoO 3, were mixed in compositions shown in Table 1, after filling the mixture in a platinum crucible at about 1100 to 1200 ° C. Heat to homogenize. Then, the melt is kept in a supercooled state, and a MgO-doped lithium niobate single crystal substrate is dipped in the solution to stand still or about 30 to 100.
LPE was performed for about 1-10 minutes while rotating at rpm. During rotation, the rotation direction was reversed at intervals of about 5 to 10 seconds. After the LPE, the surface of the film was washed, and the optical propagation loss for a semiconductor laser beam having a wavelength of 0.83 μm was measured by a prism moving method (see Nishihara, et al .: Optical integrated circuit (Ohm) P251). The results are shown in Table 1. A schematic diagram of the prism moving method is shown in FIG.

【表1】 [Table 1]

【0011】[0011]

【発明の効果】本発明により、光伝搬損失が非常に小さ
いニオブ酸リチウム単結晶薄膜の製造が可能であること
から、光導波路型素子等の光デバイス材料として好適で
ある。
INDUSTRIAL APPLICABILITY According to the present invention, a lithium niobate single crystal thin film having a very small light propagation loss can be produced, and thus it is suitable as an optical device material such as an optical waveguide device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるニオブ酸リチウム単結晶薄膜の
評価に用いたプリズム移動法の測定装置を示す図であ
る。
FIG. 1 is a view showing a measuring apparatus of a prism moving method used for evaluation of a lithium niobate single crystal thin film according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液相エピタキシャル成長法によりニオブ
酸リチウム単結晶薄膜を形成させるニオブ酸リチウム単
結晶薄膜の製造方法において、Li2O、Nb25、B2
3、及びMoO3を原料成分とした溶融液にMgOをド
ープしたニオブ酸リチウム単結晶基板を浸漬させて、該
基板上に薄膜を育成させることを特徴とするニオブ酸リ
チウム単結晶薄膜の製造方法
1. A method for producing a lithium niobate single crystal thin film by forming a lithium niobate single crystal thin film by a liquid phase epitaxial growth method, comprising: Li 2 O, Nb 2 O 5 , B 2
Manufacture of a lithium niobate single crystal thin film characterized by immersing a MgO-doped lithium niobate single crystal substrate in a melt containing O 3 and MoO 3 as raw material components to grow a thin film on the substrate. Method
【請求項2】 前記溶融液の組成は、Li2Oが40モ
ル%〜56.3モル%、Nb25が6.7モル%〜13
モル%、B23が26.3モル%〜50モル%、および
MoO3が0モル%〜20モル%の範囲であることを特
徴とする請求項1に記載のニオブ酸リチウム単結晶薄膜
の製造方法。
2. The composition of the melt is 40 mol% to 56.3 mol% of Li 2 O and 6.7 mol% to 13 of Nb 2 O 5.
The lithium niobate single crystal thin film according to claim 1, wherein the mole%, B 2 O 3 are in the range of 26.3 mole% to 50 mole%, and MoO 3 is in the range of 0 mole% to 20 mole%. Manufacturing method.
JP23547092A 1992-09-03 1992-09-03 Production of thin film of lithium niobate single crystal Pending JPH0687697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23547092A JPH0687697A (en) 1992-09-03 1992-09-03 Production of thin film of lithium niobate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23547092A JPH0687697A (en) 1992-09-03 1992-09-03 Production of thin film of lithium niobate single crystal

Publications (1)

Publication Number Publication Date
JPH0687697A true JPH0687697A (en) 1994-03-29

Family

ID=16986562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23547092A Pending JPH0687697A (en) 1992-09-03 1992-09-03 Production of thin film of lithium niobate single crystal

Country Status (1)

Country Link
JP (1) JPH0687697A (en)

Similar Documents

Publication Publication Date Title
US5315432A (en) Thin film of lithium niobate single crystal
Ballman et al. The growth of single crystalline waveguiding thin films of piezoelectric sillenites
US3998687A (en) Technique for growth of thin film lithium niobate by liquid phase epitaxy
US4073675A (en) Waveguiding epitaxial LiNbO3 films
JPH0687697A (en) Production of thin film of lithium niobate single crystal
JP4067845B2 (en) Magnesium lithium niobate single crystal and method for producing the same
JPH0664996A (en) Production of thin film of lithium niobate single crystal
US4235663A (en) Method of producing a dielectric of two-layer construction
US5650006A (en) Process for producing a lithium niobate-lithium tantalate single crystal substrate
JPH07311370A (en) Electro-optical part and its production
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JP3858776B2 (en) Polarizer and prism using it
JPH07126096A (en) Production of lithium niobate single crystal film
JP3346176B2 (en) Manufacturing method of polarizer
JP2781341B2 (en) Method for manufacturing oxide single crystal film
JP3010881B2 (en) Single crystal growth method
JPH02279596A (en) Method for growing thin film of single crystal
JPH05117096A (en) Method for growing thin film of lithium niobate single crystal
JPS5888198A (en) Growth of liquid phase
JPH0753300A (en) Lithium niobate and its production
JP4211811B2 (en) prism
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JPH06345594A (en) Production of optical waveguide
Ballman et al. Waveguiding epitaxial LiNbO 3 films
JP3151277B2 (en) Liquid phase epitaxial growth method