JPS62160731A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62160731A
JPS62160731A JP61003104A JP310486A JPS62160731A JP S62160731 A JPS62160731 A JP S62160731A JP 61003104 A JP61003104 A JP 61003104A JP 310486 A JP310486 A JP 310486A JP S62160731 A JPS62160731 A JP S62160731A
Authority
JP
Japan
Prior art keywords
oxide film
thermal
silicon substrate
cvd
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61003104A
Other languages
Japanese (ja)
Inventor
Keitarou Imai
馨太郎 今井
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61003104A priority Critical patent/JPS62160731A/en
Priority to US06/866,310 priority patent/US4735824A/en
Priority to KR1019860004247A priority patent/KR900000064B1/en
Priority to DE19863618128 priority patent/DE3618128A1/en
Publication of JPS62160731A publication Critical patent/JPS62160731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve insulating characteristics, by performing thermal oxidation under the state a CVD oxide film is present, and forming a thermal oxide film having a uniform thickness on the surface of a silicon layer having irregularities. CONSTITUTION:An insulating film 2 is formed on a silicon substrate 1. A CVD oxide film 3 is deposited, and a groove 4 is formed. Thereafter, an oxide film 3 is removed, and an oxide film 5 by a CVD method is deposited. Thermal oxidation is performed, and a thermal oxide film 6 is formed on the surface of the silicon substrate 1 beneath the CVD oxide film 5. At a corner A at the recessed part, oxidation speed is decreased owing to the concentration of stress at the thermal oxidation. As a result, the interface between the formed thermal oxide film 6 and the silicon substrate 1 becomes round. At a corner B at the protruded part, stress concentration is similarly formed. At this part, the amount of oxygen, which is diffused in the CVD oxide film 5 and supplied to the silicon substrate 1, is more than that in the flat part. Therefore, the effect of the decrease in oxidation speed can be compensated. Thus, the thermal oxide film 6 becomes thick, and the round part is effectively formed. Therefore, the thickness of the corner part of a thermal oxide film 7 as a capacitor insulating film, which is finally formed, does not become thin.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に係り、特に凹凸を有す
るシリコン層表面に絶縁性に優れた熱酸化膜を形成する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a thermal oxide film with excellent insulation properties on the surface of a silicon layer having unevenness.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、1トランジスタ/1キヤパシタ構成のメモリセル
を用いたダイナミックRAM (dRAM)の高集積化
が著しい。このdRAMにおいて、高集積化に伴うキャ
パシタ容量の減少を補償するためにキャパシタ領域のシ
リコン基板表面に溝を掘り、この溝側壁を利用してキャ
パシタ面積を稼ぐ構造が有望視されている。この場合シ
リコン基板の微細領域に溝を形成する方法として通常、
異方性ドライエツチング法が用いられ、溝はほぼ垂直側
壁をもって形成さ札る。ところがこのような溝が形成さ
れた。凹凸を有するシリコン基板表面にキャパシタ絶縁
膜となる熱酸化膜を形成すると、凹部および凸部のコー
ナーで熱酸化膜の膜厚が平坦部に比べて薄くなるという
現象が見られる。この原因は、凹部或いは凸部のコーナ
ーでは熱酸化時に生じる応力の集中のために酸化速度が
平坦部に比べて低下することにある。応力の集中は凹凸
の曲率半径が小さい程著しく、従って曲率半径が小さい
コーナーはど熱酸化膜の薄膜化が著しい。
In recent years, there has been a remarkable increase in the integration of dynamic RAMs (dRAMs) that use memory cells with a one-transistor/one-capacitor configuration. In this dRAM, a structure in which a trench is dug in the surface of the silicon substrate in the capacitor region to compensate for the decrease in capacitor capacitance due to higher integration, and the sidewalls of the trench are utilized to increase the capacitor area is considered promising. In this case, the usual method for forming grooves in microscopic regions of a silicon substrate is
An anisotropic dry etching process is used and the grooves are formed with substantially vertical sidewalls. However, a groove like this was formed. When a thermal oxide film serving as a capacitor insulating film is formed on the surface of a silicon substrate having irregularities, a phenomenon is observed in which the thickness of the thermal oxide film becomes thinner at the corners of the recesses and projections than at the flat parts. The reason for this is that the oxidation rate at the corners of the concave or convex portions is lower than that at the flat portions due to the concentration of stress that occurs during thermal oxidation. The concentration of stress is more significant as the radius of curvature of the unevenness is smaller, and therefore, the thermal oxide film is significantly thinner at corners where the radius of curvature is smaller.

素子の微細化とキャパシタ容量の確保という要請から、
キャパシタ絶縁膜は可能な範囲で薄く形成されるが、上
述した理由により溝掘り型キャパシタではそのコーナ一
部でキャパシタ絶縁膜が極端に薄くなる。一方、溝掘り
型キャパシタの絶縁膜に電界がかかった時、凹部或いは
凸部のコーナーには電界が集中し易い。このためこのコ
ーナ一部での酸化膜が極端に簿いと、この部分に所謂F
 owler−N ordheim 機構による大きい
トンネル電流が流れ、平面キャパシタに比べて絶縁特性
が著しく悪いものとなる。これは、dRAMのデータ保
持特性を大きく低下させる。
Due to the demands for miniaturization of elements and securing capacitor capacity,
The capacitor insulating film is formed as thin as possible, but for the reasons mentioned above, the capacitor insulating film becomes extremely thin at some corners of the trench type capacitor. On the other hand, when an electric field is applied to the insulating film of a grooved capacitor, the electric field tends to concentrate at the corners of the concave or convex portions. For this reason, if the oxide film in a part of this corner is extremely thin, the so-called F
A large tunneling current due to the Owler-N ordheim mechanism flows, and the insulation properties are significantly worse than that of a planar capacitor. This greatly degrades the data retention characteristics of dRAM.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、凹凸を有するシリコン層表面
に形成される熱酸化膜の絶縁特性の向上を図り、もって
dRAMなどの素子特性の向上を可能とした半導体装置
の製造方法を提供することを目的とする。
In view of the above points, the present invention aims to improve the insulation properties of a thermal oxide film formed on the surface of a silicon layer having unevenness, thereby providing a method for manufacturing a semiconductor device that makes it possible to improve the properties of devices such as dRAM. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は、凹凸が形成されたシリコン層表面に化学的気
相成長法(CVD法)により第1の酸化膜を堆積し、こ
の第1の酸化膜により覆われた状態で熱酸化を行って第
1の酸化膜下のシリコン層表面に第2の酸化膜を形成し
た後、これら第1および第2の酸化膜をエツチング除去
し、露出したシリコン層表面に改めて熱酸化により第3
の酸化膜を形成する。
In the present invention, a first oxide film is deposited by chemical vapor deposition (CVD) on the surface of a silicon layer on which unevenness is formed, and thermal oxidation is performed while covered with this first oxide film. After forming a second oxide film on the surface of the silicon layer under the first oxide film, the first and second oxide films are removed by etching, and a third oxide film is formed on the exposed silicon layer surface by thermal oxidation.
oxide film is formed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CVD酸化膜のある状態で熱酸化を行
うことによって、異方性ドライエツチングにより形成さ
れたシリコン層表面の凹凸部の曲率半径の小さいコーナ
ーに効果的に丸みを付けることができる。この結果、こ
の後に形成される熱酸化膜はコーナーでの膜厚の減少が
抑制される。
According to the present invention, by performing thermal oxidation in the presence of a CVD oxide film, it is possible to effectively round corners with a small radius of curvature of the irregularities on the surface of the silicon layer formed by anisotropic dry etching. can. As a result, the thickness of the thermal oxide film formed subsequently is suppressed from decreasing at the corners.

従って本発明によれば、凹凸を有するシリコン層表面に
膜厚の均一な絶縁性に優れた熱酸化膜を形成することが
でき、同時にコーナ一部での電界集中を緩和することが
でき、溝掘り型キャパシタを有する高集積dRAM等の
信頼性向上を図ることができる。
Therefore, according to the present invention, it is possible to form a thermally oxidized film with a uniform thickness and excellent insulating properties on the surface of a silicon layer having unevenness, and at the same time, it is possible to alleviate electric field concentration at a part of the corner. It is possible to improve the reliability of a highly integrated dRAM having a sunken capacitor.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図(a)〜(9)は溝掘りキャパシタを有するdR
AMに適用した実施例の製造工程を示す断面図である。
Figures 1(a) to (9) show dR with grooved capacitors.
FIG. 3 is a cross-sectional view showing the manufacturing process of an example applied to AM.

第1図(a)に示すように、例えば比抵抗5〜50Ω・
crsのp型(100)シリコン基板1を用意し、フィ
ールド絶縁膜2を形成した後、全面に0.8μm程度の
CVD酸化膜3を堆積し、通常の写真食刻工程を経てキ
ャパシタ形成領域内に窓を形成する。次に第1図(b)
に示すように、CVDI化11化合13クとして反応性
イオンエツチング(RIE)を行い、垂直壁を有する深
さ2μm程度の溝4を形成する。この後酸化lI3を除
去し、第1図(C)に示すように改めてCVDによる酸
化膜(第1の酸化膜)5を堆積する。このCVD酸化膜
5は好ましくは200Å以上の膜厚とする。そしてこの
CVD酸化M5が堆積された状態で熱酸化を行って、第
1図(d)に示すようにCVD酸化膜5下のシリコン基
板1表面に熱酸化Ml(第2の酸化膜)6を形成する。
As shown in Figure 1(a), for example, the specific resistance is 5 to 50Ω.
After preparing a CRS p-type (100) silicon substrate 1 and forming a field insulating film 2, a CVD oxide film 3 with a thickness of about 0.8 μm is deposited on the entire surface. form a window. Next, Figure 1(b)
As shown in FIG. 3, reactive ion etching (RIE) is performed on the CVDI compound 11 to form a groove 4 having a depth of about 2 μm and having vertical walls. Thereafter, the oxide lI3 is removed, and an oxide film (first oxide film) 5 is deposited again by CVD as shown in FIG. 1(C). This CVD oxide film 5 preferably has a thickness of 200 Å or more. Then, thermal oxidation is performed in the state where this CVD oxide M5 is deposited, and thermal oxidation Ml (second oxide film) 6 is formed on the surface of the silicon substrate 1 under the CVD oxide film 5, as shown in FIG. 1(d). Form.

この熱酸化膜6は好ましくは100Å以上とする。The thermal oxide film 6 preferably has a thickness of 100 Å or more.

第2図(a>、(b)は、以上の工程でシリコン基板1
の凹凸部コーナーA、Bに丸みが形成される様子を拡大
して示している。凹部コーナーAでは、熱酸化時の応力
集中により酸化速度が低下する結果、形成される熱酸化
膜6とシリコン基板1の界面は第2図(a)に示すよう
に丸みを帯びる。一方、凸部コーナーBでは同様に応力
集中が生じるが、この部分ではCVDl1I化膜5中を
拡散してシリコン基板に供給される酸素量が平坦部より
多いために酸化速度低下の効果が補償される。
FIG. 2 (a>, (b) shows the silicon substrate 1 formed by the above steps.
This is an enlarged view of how roundness is formed at the corners A and B of the uneven portion. At the concave corner A, the oxidation rate decreases due to stress concentration during thermal oxidation, and as a result, the interface between the formed thermal oxide film 6 and the silicon substrate 1 becomes rounded as shown in FIG. 2(a). On the other hand, stress concentration similarly occurs at the convex corner B, but since the amount of oxygen diffused through the CVDl1I film 5 and supplied to the silicon substrate in this part is larger than that in the flat part, the effect of lowering the oxidation rate is compensated for. Ru.

従ってこのコーナーBでは第2図(b)に示すように熱
酸化膜6は厚くなり、効果的に丸みが形成されることに
なる。CvDrli化膜5を200Å以上とし、熱酸化
m6が平坦部で100人程度以上形成されるように熱酸
化を行うと、コーナーA。
Therefore, at this corner B, the thermal oxide film 6 becomes thicker, as shown in FIG. 2(b), and is effectively rounded. When the CvDrli film 5 is set to a thickness of 200 Å or more and thermal oxidation is performed so that about 100 or more thermally oxidized m6 are formed on the flat part, corner A is formed.

Bともに曲率半径50Å以上の丸みが形成される。Both B are rounded with a radius of curvature of 50 Å or more.

この後、第1図(e)に示すようにCVD酸化膜5およ
び熱酸化膜6をエツチング除去する。そして露出したシ
リコン基板1表面に、第1図(f)に示すようにn−型
層9を形成し、改めて熱酸化を行ってキャパシタ絶縁膜
となる熱酸化II!(第3の酸化膜)7を形成し、続い
て第1層多結晶シリコン膜を堆積、パターニングしてキ
ャパシタ電極8を形成する。熱酸化膜7は50Å以上5
00Å以下の厚さをもって形成される。次いで第1図(
Q)に示すように、キャパシタ領域に隣接する位置にゲ
ート絶縁膜となる熱酸化jlIOを形成し、第2層多結
晶シリコン膜の堆積、パターニングによりゲート電極1
1を形成し、例えばAsイオン注入によりソース、ドレ
インとなるn+型層12゜13を形成してスイッチング
MOSトランジスタを形成する。この後は図示しないが
、全面にCVDIII化膜を堆積し、コンタクト孔を開
けてへλ配線を形成して、dRAMを完成する。
Thereafter, as shown in FIG. 1(e), the CVD oxide film 5 and the thermal oxide film 6 are removed by etching. Then, as shown in FIG. 1(f), an n-type layer 9 is formed on the exposed surface of the silicon substrate 1, and thermal oxidation is performed again to form a capacitor insulating film. (Third oxide film) 7 is formed, and then a first layer polycrystalline silicon film is deposited and patterned to form a capacitor electrode 8. Thermal oxide film 7 has a thickness of 50 Å or more5
It is formed with a thickness of 00 Å or less. Next, Figure 1 (
As shown in Q), thermally oxidized jlIO, which will become a gate insulating film, is formed at a position adjacent to the capacitor region, and the gate electrode 1 is formed by depositing and patterning a second layer polycrystalline silicon film.
A switching MOS transistor is formed by forming n+ type layers 12 and 13 which become a source and a drain by, for example, As ion implantation. After this, although not shown, a CVD III film is deposited on the entire surface, contact holes are opened, and λ wiring is formed to complete the dRAM.

この実施例によれば、RIEにより形成されたキャパシ
タ溝のコーナーに効果的に丸みを与えることができ、キ
ャパシタ絶縁膜となる熱酸化膜のコーナ一部での薄膜化
が防止される。またコーナ一部に丸みを与えることによ
り、電界集中を緩和することができる。従ってこの実施
例によれば、信頼性の高い高集積化(JRAMを得るこ
とができる。
According to this embodiment, the corners of the capacitor groove formed by RIE can be effectively rounded, and thinning of the thermal oxide film, which becomes the capacitor insulating film, at a part of the corner can be prevented. Further, by rounding a portion of the corner, electric field concentration can be alleviated. Therefore, according to this embodiment, a highly reliable and highly integrated JRAM can be obtained.

本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.

例えば以上では専ら溝掘り型d RA Mについて説明
したが、dRAMに限らず凹凸を有するシリコン表面に
熱酸化膜を形成する工程を必要とするあらゆる素子に本
発明を適用することができる。
For example, although the trench-type dRAM has been described above, the present invention is applicable not only to dRAM but also to any device that requires a step of forming a thermal oxide film on a silicon surface having unevenness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(Q)は本発明をdRAMl、:適用し
た一実施例の製造工程を示す断面図、第2図(a)、(
b)はそれぞれ第1図(d)のコーナーA、B部の拡大
断面図である。 1・・・シリコン基板、2・・・フィールド絶縁膜、3
・・・CVD酸化膜、4・・・溝、5・・・CVDll
1化膜(第1の酸化jり、6・・・熱酸化膜(第2の酸
化膜)、7・・・熱酸化膜 (第3の酸化膜、キャパシ
タ絶縁膜)、8・・・キャパシタ電極、9・・・n−型
層、10・・・熱酸化膜(ゲート絶縁膜〉、11・・・
ゲート電極、12.13・・・n+型層。 出願人代理人 弁理士 鈴江武彦 第1図 ^                       −
−ζ句              、O ヘヘ ^^ υ           で νν
FIGS. 1(a) to (Q) are cross-sectional views showing the manufacturing process of an embodiment in which the present invention is applied to dRAMl, and FIGS. 2(a) to (Q) are
b) is an enlarged sectional view of corners A and B in FIG. 1(d), respectively. 1... Silicon substrate, 2... Field insulating film, 3
...CVD oxide film, 4...groove, 5...CVDll
1-oxide film (first oxide layer), 6... thermal oxide film (second oxide film), 7... thermal oxide film (third oxide film, capacitor insulating film), 8... capacitor Electrode, 9... n-type layer, 10... thermal oxide film (gate insulating film), 11...
Gate electrode, 12.13...n+ type layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 ^ −
−ζ phrase, O hehe ^^ υ in νν

Claims (5)

【特許請求の範囲】[Claims] (1)凹凸を有するシリコン層表面に化学的気相成長法
により第1の酸化膜を堆積する工程と、前記第1の酸化
膜が堆積された状態でその下のシリコン層表面に熱酸化
により第2の酸化膜を形成する工程と、前記第1および
第2の酸化膜をエッチング除去して露出したシリコン層
表面に熱酸化により第3の酸化膜を形成する工程とを備
えたことを特徴とする半導体装置の製造方法。
(1) A step of depositing a first oxide film on the surface of the silicon layer having irregularities by chemical vapor deposition; It is characterized by comprising a step of forming a second oxide film, and a step of forming a third oxide film by thermal oxidation on the surface of the silicon layer exposed by etching away the first and second oxide films. A method for manufacturing a semiconductor device.
(2)前記シリコン層表面の凹凸は、異方性ドライエッ
チング法により形成されたものである特許請求の範囲第
1項記載の半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the unevenness on the surface of the silicon layer is formed by an anisotropic dry etching method.
(3)前記シリコン層表面の凹部はダイナミックRAM
セルのキャパシタ領域に形成された溝であり、前記第3
の酸化膜はキャパシタ絶縁膜である特許請求の範囲第1
項記載の半導体装置の製造方法。
(3) The recess on the surface of the silicon layer is a dynamic RAM.
a groove formed in the capacitor region of the cell;
Claim 1, wherein the oxide film is a capacitor insulating film.
A method for manufacturing a semiconductor device according to section 1.
(4)前記第1の酸化膜は200Å以上の厚さをもつて
形成され、前記第2の酸化膜は100Å以上の厚さをも
って形成される特許請求の範囲第1項記載の半導体装置
の製造方法。
(4) Manufacturing a semiconductor device according to claim 1, wherein the first oxide film is formed to have a thickness of 200 Å or more, and the second oxide film is formed to have a thickness of 100 Å or more. Method.
(5)前記第3の酸化膜は50Å以上500Å以下の厚
さをもって形成される特許請求の範囲第1項記載の半導
体装置の製造方法。
(5) The method of manufacturing a semiconductor device according to claim 1, wherein the third oxide film is formed to have a thickness of 50 Å or more and 500 Å or less.
JP61003104A 1985-05-31 1986-01-10 Manufacture of semiconductor device Pending JPS62160731A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61003104A JPS62160731A (en) 1986-01-10 1986-01-10 Manufacture of semiconductor device
US06/866,310 US4735824A (en) 1985-05-31 1986-05-23 Method of manufacturing an MOS capacitor
KR1019860004247A KR900000064B1 (en) 1985-05-31 1986-05-29 Method of manufacturing of capacity
DE19863618128 DE3618128A1 (en) 1985-05-31 1986-05-30 METHOD FOR PRODUCING A MOS CONDENSER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61003104A JPS62160731A (en) 1986-01-10 1986-01-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62160731A true JPS62160731A (en) 1987-07-16

Family

ID=11548040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61003104A Pending JPS62160731A (en) 1985-05-31 1986-01-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62160731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482701B1 (en) 1999-08-04 2002-11-19 Denso Corporation Integrated gate bipolar transistor and method of manufacturing the same
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482701B1 (en) 1999-08-04 2002-11-19 Denso Corporation Integrated gate bipolar transistor and method of manufacturing the same
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
US7354829B2 (en) 2000-01-14 2008-04-08 Denso Corporation Trench-gate transistor with ono gate dielectric and fabrication process therefor
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device

Similar Documents

Publication Publication Date Title
US4742018A (en) Process for producing memory cell having stacked capacitor
KR100242352B1 (en) Method of fabricating a self-aligned contact hole for a semiconductor device
JPH0216763A (en) Manufacture of semiconductor device
JPH0294554A (en) Semiconductor storage device and manufacture thereof
JPS62286270A (en) Semiconductor memory
JP2680376B2 (en) Semiconductor memory device and method of manufacturing the same
JPS6156445A (en) Semiconductor device
JPS62160731A (en) Manufacture of semiconductor device
JP2519216B2 (en) Semiconductor memory device
JPS60224260A (en) Semiconductor memory device
JPS61276356A (en) Manufacture of semiconductor device
JPH06120446A (en) Semiconductor storage device and manufacture thereof
US5121175A (en) Semiconductor device having a side wall film
JPH02129956A (en) Manufacture of semiconductor memory device
JPH0379072A (en) Semiconductor memory device and manufacturing method
JPH0344068A (en) Manufacture of semiconductor device
JPH04107858A (en) Dynamic type semiconductor memory and manufacturing method thereof
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JPS62219659A (en) Mos type semiconductor memory
JPS63197370A (en) Semiconductor device and its manufacture
JP2827377B2 (en) Semiconductor integrated circuit
JPH02135776A (en) Semiconductor storage device
JPH0196949A (en) Semiconductor device
JPH0266967A (en) Cell structure of dynamic random-access memory