JPS62150668A - Electrorytic solution composition - Google Patents

Electrorytic solution composition

Info

Publication number
JPS62150668A
JPS62150668A JP60291146A JP29114685A JPS62150668A JP S62150668 A JPS62150668 A JP S62150668A JP 60291146 A JP60291146 A JP 60291146A JP 29114685 A JP29114685 A JP 29114685A JP S62150668 A JPS62150668 A JP S62150668A
Authority
JP
Japan
Prior art keywords
lithium
dioxolan
positive electrode
lithium salt
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291146A
Other languages
Japanese (ja)
Inventor
Osamu Kawabata
河端 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neos Co Ltd
Original Assignee
Neos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neos Co Ltd filed Critical Neos Co Ltd
Priority to JP60291146A priority Critical patent/JPS62150668A/en
Publication of JPS62150668A publication Critical patent/JPS62150668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the fall of the characteristics of a cell caused by chemical change at a time of charge or discharge by containing a specific 1,3-dioxolan-2- on derivative and a lithium salt. CONSTITUTION:A 1,3-dioxolan-2-on derivative and a lithium salt shown by the expression are contained. In the expression, R indicates an alkyl group of atomic member 1-4. Among compounds shown by the expression, the especially preferable one is 4-methoxymethyl-1, 3-dioxolan-2-on. The especially preferable one as the lithium salt is lithium perchlorate, or lithium borofluoride, or lithium phosphofluoride. The concentration of the lithium salt is preferably 0.5-2mol/l.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解液組成物、特にリチウム電池に適した電解
液組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to electrolyte compositions, particularly electrolyte compositions suitable for lithium batteries.

従来の技術 および リチウム電池はエネルギー密度や放電電圧が高い等の特
性を有しているが、リチウムの高い反応性と放電電圧に
起因して電解液組成物が不安定となって電池特性が損わ
れるという欠点も有している。この傾向は特に二次電池
の場合に著るしく、例えば従来からリチウム電池に用い
られているプロピレンカーボネートにリチウム塩を溶解
させた電解液組成物は充放電時に化学変化を起こして電
池的特性を低下させる。
Conventional technology and lithium batteries have characteristics such as high energy density and high discharge voltage, but due to the high reactivity and discharge voltage of lithium, the electrolyte composition becomes unstable and battery characteristics are impaired. It also has the disadvantage of being exposed. This tendency is particularly remarkable in the case of secondary batteries; for example, the electrolyte composition that has been traditionally used in lithium batteries, in which lithium salt is dissolved in propylene carbonate, undergoes chemical changes during charging and discharging, causing a change in battery characteristics. lower.

本発明はこのような問題点を解決するためになされたも
のである。
The present invention has been made to solve these problems.

問題点を解決するための手段 即ち本発明は、一般式(I): (式中、kは炭素原子数1〜4のアルキル基を示す) で表わされる1、3−ジオキソラン−2−オン誘導体お
よびリチウム塩を含有する電解液組成物に関する。
Means for solving the problem, that is, the present invention provides a 1,3-dioxolan-2-one derivative represented by the general formula (I): (wherein k represents an alkyl group having 1 to 4 carbon atoms) and an electrolyte composition containing a lithium salt.

一般式(I)において、艮は炭素原子数1〜4の直鎖状
または分枝鎖状のアルキル基、即ちメチル基、エチル基
、プロピル基、イソプロピル基、ブチル基、イソブチル
基等を示す。
In the general formula (I), the term "a" represents a linear or branched alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and the like.

式(I)で表わされる化合物のうち、特に好ましいもの
は4−メトキシメチル−1,3−ジオキソラン−2−オ
ンである。
Among the compounds represented by formula (I), 4-methoxymethyl-1,3-dioxolan-2-one is particularly preferred.

一般式(I)で表わされる化合物は、例えば、グリンド
ールと炭素原子数1〜4の低級アルコールとの付加反応
によって得られる3−アルコキシ−1,2−プロパンジ
オールに、ジエチルカーボネート、クロロギ酸アルキル
またはホスゲンを反応させることによって容易に製造す
ることができる。
The compound represented by the general formula (I) is, for example, 3-alkoxy-1,2-propanediol obtained by the addition reaction of Grindol and a lower alcohol having 1 to 4 carbon atoms, diethyl carbonate, alkyl chloroformate, etc. Alternatively, it can be easily produced by reacting phosgene.

リチウム塩としては、有機溶媒型リチウム電池に従来か
ら使用されているリチウム塩はいずれも本発明に使用す
ることができる。このようなリチウム塩としては過塩素
酸リチウム、ホウフッ化リチウム、ヒ素フッ化リチウム
、リンフッ化リチウム、ハロゲン化リチウム、塩化アル
ミン酸リチウム等が例示されるが、特に好適なものは過
塩素酸リチウム、ホウフッ化リチウムおよびリンフッ化
リチウムである。
As the lithium salt, any lithium salt conventionally used in organic solvent type lithium batteries can be used in the present invention. Examples of such lithium salts include lithium perchlorate, lithium borofluoride, lithium arsenic fluoride, lithium phosphorus fluoride, lithium halides, and lithium chloroaluminate. Particularly preferred are lithium perchlorate, These are lithium borofluoride and lithium phosphorus fluoride.

リチウム塩の濃度は通常的0.1〜3モル/C1好まし
くは0.5〜2モル/lでアル。
The concentration of the lithium salt is usually 0.1 to 3 mol/C1, preferably 0.5 to 2 mol/L.

本発明による電解液組成物をこは上記の1.3−ジオキ
ソラン−2−オン誘導体およびリチウム塩以外に、さら
に所望により、従来の有機溶媒型リチウム電池に使用さ
れている他の有機溶媒、例えばプロピレンカーボネート
、ジメトキシエタン、ジメトキシテトラヒドロフラン等
のエーテル類、およびγ−ブチロラクトン等のエステル
類を、本発明の所期の目的が達成できる範囲内において
、適宜配合してもよい。この場合、1,3−ジオキソラ
ン−2−オン誘導体の量は、有機溶媒の全量に基ついて
通常約5容量%以上とする。
In addition to the above-mentioned 1,3-dioxolan-2-one derivative and lithium salt, the electrolyte composition according to the present invention may optionally contain other organic solvents used in conventional organic solvent type lithium batteries, such as Ethers such as propylene carbonate, dimethoxyethane, and dimethoxytetrahydrofuran, and esters such as γ-butyrolactone may be appropriately blended within the range in which the intended purpose of the present invention can be achieved. In this case, the amount of 1,3-dioxolan-2-one derivative is usually about 5% by volume or more based on the total amount of organic solvent.

1.3−ジオキソラン−2−オン誘導体およびリチウム
塩を含有するイオン伝導性組成物を得る方法は、1.3
−ジオキソラン−2−オン誘導体および所望による他の
有機溶媒に溶解させる方法ならいずれであってもよく、
特に限定的ではない。
1. A method for obtaining an ionically conductive composition containing a 3-dioxolan-2-one derivative and a lithium salt is as follows:
- Any method may be used as long as it is dissolved in the dioxolan-2-one derivative and other organic solvent as desired,
It is not particularly limited.

本発明の電解液組成物はリチウム電池用に適した電解液
組成物であり、通常の有機電解液型リチウム電池に用い
られる電解液と同様に用いられる。
The electrolyte composition of the present invention is an electrolyte composition suitable for lithium batteries, and can be used in the same manner as electrolytes used in ordinary organic electrolyte type lithium batteries.

たとえば本発明の電解液組成物は単独のまま、または支
持体(織布、不織布、フィルムなど)に塗布または含浸
もしくは浸漬することによって含ませた形で使用するこ
とができる。
For example, the electrolyte composition of the present invention can be used alone or in the form of being impregnated with a support (woven fabric, nonwoven fabric, film, etc.) by coating, impregnating, or dipping.

本発明の電解液組成物を用いてリチウム電池を構成する
ことができる。この場合電解液組成物以外は通常と同様
に構成することができる。たとえばこの電池は正極集電
体と負極集電体を有し、正極活物質および負極活物質を
使用し、正極活物質と負極活物質とを本発明の電解液組
成物を介在させて接触させて構成することができる。
A lithium battery can be constructed using the electrolyte composition of the present invention. In this case, components other than the electrolyte composition can be configured in the same manner as usual. For example, this battery has a positive electrode current collector and a negative electrode current collector, uses a positive electrode active material and a negative electrode active material, and contacts the positive electrode active material and the negative electrode active material with the electrolyte composition of the present invention interposed therebetween. It can be configured as follows.

正極または負極集電体としては通常のもの、たとえばス
テンレス、カーボンなどの導電体があげられる。形状と
しては網状、板状、棒状などがあげられ網状が好ましい
The positive electrode or negative electrode current collector may be a conventional one, such as a conductor such as stainless steel or carbon. The shape may be a net shape, a plate shape, a rod shape, etc., and a net shape is preferable.

負極活物質としてはリチウム、リチウムを主体とする合
金(リチウム−アルミニウム合金など)があげられる。
Examples of negative electrode active materials include lithium and lithium-based alloys (such as lithium-aluminum alloys).

その形状としては箔状、板状、棒状などがあげられるが
、箔状が好ましい。
Its shape includes foil, plate, rod, etc., but foil is preferred.

正極活物質としては遷移金属酸化物(二酸化マンガン、
五酸化バナジウム、酸化モリブデン、酸化銅など)、フ
ッ化カーボン、遷移金属カルコゲン化合物(硫化鉄、硫
化チタンなど)があげられる。正極活物質は一般には上
記正極活物質を合成樹脂(ポリエチレン、テフロン、ポ
リスチレンなと)の粉末とともに金型内で加圧、焼結、
成型したものが用いられる。
Transition metal oxides (manganese dioxide,
Examples include vanadium pentoxide, molybdenum oxide, copper oxide, etc.), carbon fluoride, and transition metal chalcogen compounds (iron sulfide, titanium sulfide, etc.). The positive electrode active material is generally produced by pressurizing the above positive electrode active material together with powder of synthetic resin (polyethylene, Teflon, polystyrene, etc.) in a mold, sintering it,
A molded version is used.

本発明の電解液組成物を用いたリチウム電池の1例を第
1図により説明する。図において(I)は正極缶(正極
集電体) 、(2)は集電用金属製ネット、(3)は正
極活物質、(4)はセパレーター、(5)は吸液材、(
6)はL字状のガスケット、(7)は負極活物質、(3
)は負極缶、(9)は集電用金属製ネットである。正極
缶(I)の底面に集電用金属製ネット(2)を置き、そ
の上に成型体とした正極活物質(3)を圧着する。次に
正極活物質(3)上に多孔性またはメツシュ状のセパレ
ータ=(ポリエチレン製など)(4)を載置し、セパレ
ーター(4)上に合成樹脂製吸液材(5)を置き、本発
明の電解液組成物を注入した後、L字状のガスケット(
6)を正極缶(I)の壁面に沿って挿入する。一方負極
活物質(7)を負極缶(8)に集電用金属製ネット(9
)を介在させて密着させた後、本発明の電解液組成物を
含有保持した吸液材(5)上に載置し、正極缶(I)の
開口端部分を内方に折曲し封口する。
An example of a lithium battery using the electrolyte composition of the present invention will be explained with reference to FIG. In the figure, (I) is a positive electrode can (positive electrode current collector), (2) is a metal net for current collection, (3) is a positive electrode active material, (4) is a separator, (5) is a liquid absorbing material, (
6) is an L-shaped gasket, (7) is a negative electrode active material, and (3) is an L-shaped gasket.
) is a negative electrode can, and (9) is a metal net for current collection. A current collecting metal net (2) is placed on the bottom of the positive electrode can (I), and a molded positive electrode active material (3) is pressure-bonded thereon. Next, a porous or mesh-like separator (made of polyethylene, etc.) (4) is placed on the positive electrode active material (3), a synthetic resin absorbent material (5) is placed on the separator (4), and the book is placed on the positive electrode active material (3). After injecting the electrolyte composition of the invention, an L-shaped gasket (
6) is inserted along the wall of the positive electrode can (I). On the other hand, the negative electrode active material (7) is placed in the negative electrode can (8) with a current collecting metal net (9).
), the positive electrode can (I) is placed on a liquid-absorbent material (5) containing and holding the electrolyte composition of the present invention, and the open end of the positive electrode can (I) is bent inward and sealed. do.

本発明の電解液組成物は高いイオン伝導性を有し、しか
も充放電時にほとんど化学変化することなく安定な電解
液である。この電解液を使用したリチウム−次電池およ
び二次電池、とくに二次電池は長時間に亘り十分な電池
特性を有する電池である。
The electrolytic solution composition of the present invention has high ionic conductivity and is a stable electrolytic solution with almost no chemical changes during charging and discharging. Lithium secondary batteries and secondary batteries, especially secondary batteries, using this electrolyte have sufficient battery characteristics over a long period of time.

以下、実施例、参考例および参考比較例により本発明を
さら≦こ説明するが、本発明はこれに限定されるもので
はない。
The present invention will be further explained below with reference to Examples, Reference Examples, and Reference Comparative Examples, but the present invention is not limited thereto.

実施例1 4−メトキシメチル−1,3−ジオキンラン−2−オン
に過塩素酸リチウムを1モル/lの割合で溶解させ、本
発明の電解液組成物を得た。
Example 1 Lithium perchlorate was dissolved in 4-methoxymethyl-1,3-dioquinlan-2-one at a ratio of 1 mol/l to obtain an electrolytic solution composition of the present invention.

五酸化バナジウム、アセチレンブラックおよびポリエチ
レン粉末を混合して加圧成型して作成した正極活物質成
型体をステンレス製正極缶の底面に置いたニッケル製ネ
ット上に圧着した。次に前記成型体上にポリプロピレン
製セバレーターヲ載置した後、実施例1の本発明の電解
液組成物を注入しガスケットを挿入した。その後リチウ
ム箔を密着させたステンレス製負極缶をセパレーター上
に載置し、正極缶の開口端部分を内方へ折曲し封口部分
をガラスハーメチックシールして電池を作成した。
A molded positive electrode active material prepared by mixing vanadium pentoxide, acetylene black, and polyethylene powder and molding under pressure was pressure-bonded onto a nickel net placed on the bottom of a stainless steel positive electrode can. Next, a polypropylene separator was placed on the molded body, and then the electrolyte composition of the present invention of Example 1 was injected and a gasket was inserted. Thereafter, a stainless steel negative electrode can with lithium foil adhered thereto was placed on a separator, the open end of the positive electrode can was bent inward, and the sealed part was hermetically sealed with glass to produce a battery.

参考比較例として4−メトキシメチル−1,3−ジオキ
ソラン−2−オンの代わりにプロピレンカーボネートを
用いて同様に電池を作成した。
As a reference comparative example, a battery was similarly prepared using propylene carbonate instead of 4-methoxymethyl-1,3-dioxolan-2-one.

なお両電池の形状は2.5Hx23mxφのコイン型電
池である。
Note that both batteries are coin-shaped batteries with dimensions of 2.5H x 23m x φ.

1mAの定電流で放電深度が30%になるまで放電し、
その容量分を充電する充放電試験を行い結果を表−1に
示す。
Discharge at a constant current of 1 mA until the depth of discharge reaches 30%,
A charge/discharge test was conducted to charge the battery to that capacity, and the results are shown in Table 1.

実施例2 4−メトキシメチル−1,3−ジオキソラン−2−オン
にホウフッ化リチウムを0.5モル/4の割合で溶解さ
せ、本発明の電解液組成物を得た。
Example 2 Lithium borofluoride was dissolved in 4-methoxymethyl-1,3-dioxolan-2-one at a ratio of 0.5 mol/4 to obtain an electrolytic solution composition of the present invention.

二酸化マンカン、アセチレンブラックおよびポリエチレ
ン粉末を混合し、加圧成型して作成した正極活物質成型
体をステンレス製ネットに圧着して作成した正極、リチ
ウム箔をステンレス製ネットに密着させて作成した負極
、実施例2の本発明の電解液組成物をそれぞれガラス製
容器に装着し密封して電池を組みたてた。
A positive electrode made by pressing a positive electrode active material molded body made by mixing mankan dioxide, acetylene black and polyethylene powder and press-molding it onto a stainless steel net, a negative electrode made by adhering lithium foil to a stainless steel net, Each of the electrolyte compositions of the present invention of Example 2 was placed in a glass container and sealed to assemble a battery.

参考比較例として4−メトキシメチル−1,3−ジオキ
ソラン−2−オンの代りにプロピレンカーボネートを用
いて同様に電池を作成した。
As a reference comparative example, a battery was similarly prepared using propylene carbonate instead of 4-methoxymethyl-1,3-dioxolan-2-one.

Q、5mAの定電流で充電を行った場合の電池の電圧特
性を第2図に示す。図中■は本発明、■は比較例である
。またO15mAの定電流で放電深度が16%になるま
で放電しその容量分を充電した場合の電池の内部抵抗変
化を第3図に示す。図中■は本発明、■は比較例である
Figure 2 shows the voltage characteristics of the battery when charging is performed with a constant current of Q, 5mA. In the figure, ■ indicates the present invention, and ■ indicates a comparative example. Further, FIG. 3 shows the change in internal resistance of the battery when the battery was discharged at a constant current of 15 mA until the depth of discharge reached 16% and then charged to that capacity. In the figure, ■ indicates the present invention, and ■ indicates a comparative example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による組成物を用いたリチウム電池の模
式的な断面図である。第2図は充電時間と電池電圧との
関係を示す図である。第3図は充電時間とサイクル数の
関係を示す図である。 (3)・・・正極活物質、(4)・・・セパレーター、
(5)・・・吸液材、(7)・・・負極活物質。 第1図 第3図      充電時[t−Aルノサイクル数ζ回
FIG. 1 is a schematic cross-sectional view of a lithium battery using the composition according to the present invention. FIG. 2 is a diagram showing the relationship between charging time and battery voltage. FIG. 3 is a diagram showing the relationship between charging time and number of cycles. (3)... Positive electrode active material, (4)... Separator,
(5)...Liquid absorbing material, (7)...Negative electrode active material. Figure 1 Figure 3 Charging [t-A Runo cycle number ζ times]

Claims (1)

【特許請求の範囲】 1、一般式( I ): ▲数式、化学式、表等があります▼( I ) (式中、Rは炭素原子数1〜4のアルキル基を示す) で表わされる1、3−ジオキソラン−2−オン誘導体お
よびリチウム塩を含有する電解液組成物。 2、一般式( I )で表わされる化合物が4−メトキシ
メチル−1、3−ジオキソラン−2−オンである第1項
記載の電解液組成物。 3、リチウム塩の濃度が約0.1〜3モル/lである第
1項記載の電解液組成物。
[Claims] 1. General formula (I): ▲There are numerical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R represents an alkyl group having 1 to 4 carbon atoms) 1, An electrolytic solution composition containing a 3-dioxolan-2-one derivative and a lithium salt. 2. The electrolyte composition according to item 1, wherein the compound represented by formula (I) is 4-methoxymethyl-1,3-dioxolan-2-one. 3. The electrolytic solution composition according to item 1, wherein the concentration of the lithium salt is about 0.1 to 3 mol/l.
JP60291146A 1985-12-23 1985-12-23 Electrorytic solution composition Pending JPS62150668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291146A JPS62150668A (en) 1985-12-23 1985-12-23 Electrorytic solution composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291146A JPS62150668A (en) 1985-12-23 1985-12-23 Electrorytic solution composition

Publications (1)

Publication Number Publication Date
JPS62150668A true JPS62150668A (en) 1987-07-04

Family

ID=17765034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291146A Pending JPS62150668A (en) 1985-12-23 1985-12-23 Electrorytic solution composition

Country Status (1)

Country Link
JP (1) JPS62150668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848444A2 (en) * 1996-12-14 1998-06-17 VARTA Batterie Aktiengesellschaft Process for manufacturing polymer electrolytes
KR100483699B1 (en) * 2002-10-14 2005-04-19 주식회사 엘지화학 New additives for electrolyte and lithium ion secondary battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848444A2 (en) * 1996-12-14 1998-06-17 VARTA Batterie Aktiengesellschaft Process for manufacturing polymer electrolytes
EP0848444A3 (en) * 1996-12-14 2002-01-16 VARTA Gerätebatterie GmbH Process for manufacturing polymer electrolytes
KR100483699B1 (en) * 2002-10-14 2005-04-19 주식회사 엘지화학 New additives for electrolyte and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
JP2645609B2 (en) Method for producing lithium manganese oxide
CA2052317C (en) Nonaqueous electrolyte secondary battery
JP3187929B2 (en) Lithium secondary battery
JPH0128463B2 (en)
JPH08162153A (en) Nonaqueous solvent secondary battery
US3928067A (en) Polyalkylene glycol ethers in rechargeable lithium nonaqueous batteries
JPS6286673A (en) Electrolyte for lithium secondary battery
JP2778065B2 (en) Non-aqueous electrolyte secondary battery
JPS62290071A (en) Organic electrolyne secondary battery
JPS62150668A (en) Electrorytic solution composition
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JPS59154778A (en) Electrolyte composition
JP3094397B2 (en) Organic electrolyte secondary battery
JPS63121268A (en) Lithium secondary battery
JPS62274555A (en) Nonaqueous solvent secondary battery
JPH0734367B2 (en) Non-aqueous electrolyte secondary battery
JPH08255635A (en) Organic electrolyte battery
JPH07220758A (en) Lithium battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPH03285271A (en) Battery
JPS614170A (en) Nonaqueous electrolyte secondary battery
JPS59205167A (en) Solvent for lithium secondary battery
JPH0719619B2 (en) Organic electrolyte secondary battery
JPS6089075A (en) Nonaqueous electrolyte secondary battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery