JPH08162153A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH08162153A
JPH08162153A JP6304729A JP30472994A JPH08162153A JP H08162153 A JPH08162153 A JP H08162153A JP 6304729 A JP6304729 A JP 6304729A JP 30472994 A JP30472994 A JP 30472994A JP H08162153 A JPH08162153 A JP H08162153A
Authority
JP
Japan
Prior art keywords
carbonate
secondary battery
lithium
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6304729A
Other languages
Japanese (ja)
Other versions
JP3428750B2 (en
Inventor
Yoshikazu Kobayashi
義和 小林
Aiichiro Fujiwara
愛一郎 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP30472994A priority Critical patent/JP3428750B2/en
Publication of JPH08162153A publication Critical patent/JPH08162153A/en
Application granted granted Critical
Publication of JP3428750B2 publication Critical patent/JP3428750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To eliminate the decrease in discharge capacity at a low temperature and after continuous charging at a high temperature. CONSTITUTION: This nonaqueous solvent secondary battery has a positive electrode, a negative electrode consisting of a carbonaceous material capable of storing and releasing lithium ion and an nonaqueous electrolyte. The nonaqueous electrolyte contains a mixed solvent consisting of ethylmethyl carbonate, diethyl carbonate, dimethyl carbonate and ethylene carbonate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水溶媒二次電池に関
し、さらに詳しくは特定種類の溶媒を含む非水電解液を
用いた非水溶媒二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery using a non-aqueous electrolyte containing a specific type of solvent.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつエネルギー密度が高く、さらに繰返し充放電可
能な二次電池の開発が要望されている。このような二次
電池としては負極活物質としてリチウムまたはリチウム
合金を用い、正極活物質としてモリブデン、バナジウ
ム、チタン、ニオブなどの酸化物、硫化物もしくはこれ
らのセレン化物などを用いたものが知られている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As such a secondary battery, it is known to use lithium or a lithium alloy as a negative electrode active material and use oxides, sulfides or selenides thereof such as molybdenum, vanadium, titanium and niobium as a positive electrode active material. ing.

【0003】しかし、負極活物質にリチウムまたはリチ
ウム合金を用いた電池は、充放電を繰返すと負極上にリ
チウムのデンドライトが発生するため、充放電サイクル
寿命が短いという問題がある。
However, a battery using lithium or a lithium alloy as the negative electrode active material has a problem of short charge / discharge cycle life because dendrite of lithium is generated on the negative electrode when charging / discharging is repeated.

【0004】この問題に対しては、負極にリチウムとそ
の担持体として炭素質材料を用いることにより解決が図
られている。特に、正極にリチウム塩と二酸化マンガン
を原料とするリチウムマンガン複合酸化物、負極のリチ
ウム担持体として有機高分子化合物を焼成して得られる
炭素質材料を用いたリチウム二次電池は、作動電圧が高
く、充放電サイクル寿命を大幅に向上させることが可能
な電池として注目されている。
This problem has been solved by using lithium and a carbonaceous material as a carrier thereof for the negative electrode. In particular, a lithium secondary battery using a lithium manganese composite oxide using lithium salt and manganese dioxide as a raw material for the positive electrode and a carbonaceous material obtained by firing an organic polymer compound as a lithium carrier for the negative electrode has an operating voltage of It is high in price and is attracting attention as a battery that can significantly improve the charge / discharge cycle life.

【0005】しかし、このような二次電池においては、
電解液に用いる溶媒の種類によって、放電容量などの電
池性能が影響を受けるため、溶媒の選択が極めて重要で
ある。例えば、溶媒として炭酸ジエチルと炭酸エチレン
との混合溶媒などを用いた場合には、低温における放電
容量の低下や、高温における連続充電後の放電容量の著
しい低下を招くという問題がある。
However, in such a secondary battery,
Since the battery performance such as discharge capacity is affected by the type of solvent used for the electrolytic solution, selection of the solvent is extremely important. For example, when a mixed solvent of diethyl carbonate and ethylene carbonate is used as the solvent, there is a problem that the discharge capacity at a low temperature is lowered and the discharge capacity after a continuous charge at a high temperature is significantly reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題を解決し、常温に比べて低温における放電容量の低
下、ならびに常温における充電に比べて高温における連
続充電後の放電容量の低下がほとんどない非水溶媒二次
電池を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems and to reduce the discharge capacity at low temperature as compared with room temperature and the discharge capacity after continuous charging at high temperature as compared with charging at room temperature. It is to provide a non-aqueous solvent secondary battery which is almost non-existent.

【0007】[0007]

【課題を解決するための手段】本発明は、正極;リチウ
ムイオンを吸蔵・放出可能な炭素質材料からなる負極;
および非水電解液を備える非水溶媒二次電池において、
前記非水電解液が、炭酸エチルメチル、炭酸ジエチル、
炭酸ジメチルおよび炭酸エチレンからなる混合溶媒を含
むことを特徴とする非水溶媒二次電池に関する。
The present invention provides a positive electrode; a negative electrode made of a carbonaceous material capable of inserting and extracting lithium ions;
And in a non-aqueous solvent secondary battery comprising a non-aqueous electrolyte,
The non-aqueous electrolyte is ethyl methyl carbonate, diethyl carbonate,
The present invention relates to a non-aqueous solvent secondary battery containing a mixed solvent of dimethyl carbonate and ethylene carbonate.

【0008】本発明者らは、非水電解液に用いる溶媒
が、放電容量に及ぼす影響について検討した結果、炭酸
エチルメチル、炭酸ジエチル、炭酸ジメチル及び炭酸エ
チレンからなる混合溶媒を用いた場合に、低温における
放電または高温における連続充電を行った際の放電容量
の低下が著しく低減されることを見出した。この理由は
明らかではないが、電池組立後に、上記混合溶媒が、活
物質であるリチウムによってごく微量分解され、これに
より発生するエチレンガスが負極中および負極表面に存
在するリチウムの失活を防止し、その結果、放電容量の
低下が低減されるものと考えられる。
The present inventors have studied the effect of the solvent used in the non-aqueous electrolyte solution on the discharge capacity. As a result, when a mixed solvent of ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate and ethylene carbonate is used, It was found that the decrease in discharge capacity during discharge at low temperature or continuous charge at high temperature is significantly reduced. The reason for this is not clear, but after the battery is assembled, the above mixed solvent is decomposed by a very small amount by the active material lithium, and the resulting ethylene gas prevents deactivation of lithium existing in the negative electrode and on the negative electrode surface. As a result, it is considered that the decrease in discharge capacity is reduced.

【0009】用いる混合溶媒の組成は、特に限定される
ものではないが、好ましい組成は、炭酸エチルメチル3
5〜60容量%、炭酸ジエチル20〜40容量%、炭酸
ジメチル5〜25容量%および炭酸エチレン5〜25容
量%であり、より好ましくは、炭酸エチルメチル40〜
50容量%、炭酸ジエチル25〜35容量%、炭酸ジメ
チル10〜20容量%および炭酸エチレン10〜20容
量%である。
The composition of the mixed solvent used is not particularly limited, but a preferred composition is ethylmethyl carbonate 3
5 to 60% by volume, diethyl carbonate 20 to 40% by volume, dimethyl carbonate 5 to 25% by volume, and ethylene carbonate 5 to 25% by volume, and more preferably ethyl methyl carbonate 40 to
50% by volume, 25-35% by volume diethyl carbonate, 10-20% by volume dimethyl carbonate and 10-20% by volume ethylene carbonate.

【0010】非水電解液の電解質としては、ヘキサフル
オロリン酸リチウム(LiPF6)、テトラフルオロホウ
酸リチウム(LiBF4)、過塩素酸リチウム(LiCl
4)などが挙げられ、これらの電解質を上記混合溶媒に
0.2〜1.5mol/l の濃度で溶解した非水電解液を用
いる。
As the electrolyte of the non-aqueous electrolytic solution, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiCl 6 ).
O 4 ), etc., and a nonaqueous electrolytic solution in which these electrolytes are dissolved in the above mixed solvent at a concentration of 0.2 to 1.5 mol / l is used.

【0011】本発明に用いる正極としては、例えばリチ
ウム塩と二酸化マンガンを原料とするリチウムマンガン
複合酸化物からなる活物質;アセチレンブラックをはじ
めとするカーボンブラック、ニッケル粉末などの導電性
材料;ポリテトラフルオロエチレン、ポリエチレン、ポ
リプロピレン、ポリ(メタ)アクリル酸、ポリ(メタ)
アクリル酸塩、ポリ(メタ)アクリル酸エステルならび
に(メタ)アクリル酸および/または(メタ)アクリル
酸エステルと他のモノマーとの共重合体などの結着剤を
活物質、導電性材料および結着剤の重量比が90:1
0:3となるように配合して、例えばペレット状に成形
したものを用いることができる。
The positive electrode used in the present invention includes, for example, an active material composed of a lithium manganese composite oxide prepared from a lithium salt and manganese dioxide; a conductive material such as carbon black including acetylene black and nickel powder; Fluoroethylene, polyethylene, polypropylene, poly (meth) acrylic acid, poly (meth)
A binder such as an acrylate, a poly (meth) acrylic acid ester and a copolymer of (meth) acrylic acid and / or (meth) acrylic acid ester with another monomer is used as an active material, a conductive material and a binder. Agent weight ratio is 90: 1
It is possible to use, for example, those which are blended so as to be 0: 3 and formed into pellets.

【0012】本発明の負極に用いるリチウム担持体とし
ては、フェノール樹脂、ポリアクリロニトリル、セルロ
ースなどの有機高分子化合物を焼成して得られる炭素質
材料;コークス、ピッチなどを焼成して得られる炭素質
材料;および人造グラファイト、天然グラファイトなど
の炭素質材料を挙げることができる。負極の作製は以下
のように行う。例えば、前記高分子化合物をアルゴン、
窒素などの不活性ガス雰囲気中において、500〜3,
000℃の温度および常圧もしくは減圧下の条件で焼成
した炭素質材料に、正極に用いたのと同じ上記結着剤を
炭素質材料と結着剤の重量比が95:5となるように混
合し、例えばペレット状に成形した成形体に、電解含浸
法によりリチウムを含有させるものである。
The lithium carrier used in the negative electrode of the present invention is a carbonaceous material obtained by firing an organic polymer compound such as phenol resin, polyacrylonitrile, or cellulose; a carbonaceous material obtained by firing coke or pitch. Materials; and carbonaceous materials such as artificial graphite and natural graphite. The negative electrode is manufactured as follows. For example, the polymer compound is argon,
In an atmosphere of an inert gas such as nitrogen, 500 to 3,
The same binder as used for the positive electrode was added to the carbonaceous material calcined at a temperature of 000 ° C. and under normal pressure or reduced pressure so that the weight ratio of the carbonaceous material and the binder was 95: 5. A molded body that is mixed and molded into a pellet shape is made to contain lithium by an electrolytic impregnation method.

【0013】セパレータにはポリエチレン、ポリプロピ
レンなどのポリオレフィン系樹脂の不織布や、これらの
多孔膜などを用いることができる。
For the separator, a non-woven fabric of polyolefin resin such as polyethylene or polypropylene, or a porous film of these can be used.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明する。
The present invention will be described in more detail based on the following examples.

【0015】実施例1 (I)正極の作製 活物質として水酸化リチウムと二酸化マンガンを原料と
するリチウムマンガン複合酸化物、導電性材料として人
造黒鉛および結着剤としてポリテトラフルオロエチレン
を、活物質、導電性材料および結着剤の重量比が90:
10:3となるように混合・混練し、この混合物を加圧
プレス機を用いて2ton/cm2 の圧力で、直径15mm、厚
さ0.80mmのペレット状に加圧成形して正極(2)と
した。
Example 1 (I) Preparation of Positive Electrode Lithium hydroxide and manganese dioxide as raw materials, a lithium manganese composite oxide as an active material, artificial graphite as a conductive material, and polytetrafluoroethylene as a binder were used as an active material. The weight ratio of the conductive material and the binder is 90:
The mixture was mixed and kneaded so as to have a ratio of 10: 3, and this mixture was pressure-molded with a pressure press at a pressure of 2 ton / cm 2 into pellets having a diameter of 15 mm and a thickness of 0.80 mm, and the positive electrode (2 ).

【0016】(II)負極の作製 メソフェーズピッチを原料とするピッチ系炭素繊維を細
かく粉砕し、2,800℃の温度で焼成して炭素質粉末
を得た。この粉末に結着剤としてブタジエン−スチレン
ラバーを95:5の重量比で混合・混練し、この混合物
を加圧プレス機を用いて3ton/cm2 の圧力で、直径15
mm、厚さ0.96mmのペレット状に加圧成形した。次い
で、このペレット成形体に、電解含浸法によってリチウ
ムを含有させて負極(7)とした。
(II) Preparation of Negative Electrode Pitch-based carbon fibers made of mesophase pitch as a raw material were finely pulverized and fired at a temperature of 2,800 ° C. to obtain a carbonaceous powder. Butadiene-styrene rubber was mixed and kneaded at a weight ratio of 95: 5 as a binder with the powder, and the mixture was pressurized at a pressure of 3 ton / cm 2 with a pressure press machine to a diameter of 15
mm and a thickness of 0.96 mm were pressed into pellets. Next, this pellet molded body was made to contain lithium by an electrolytic impregnation method to obtain a negative electrode (7).

【0017】(III) 電池の組立て 図1は、本発明にかかるリチウム二次電池の断面図であ
る。該リチウム二次電池は、以下のようにして組立て
た。まず、ステンレス鋼からなる正極容器(1)の内面
にコロイダルカーボンからなる正極集電体(3)を介し
て正極(2)を収納した。炭酸エチルメチル、炭酸ジエ
チル、炭酸ジメチルおよび炭酸エチレンを容量%で4
5:35:10:10に混合した溶媒に過塩素酸リチウ
ムを1mol/L の濃度になるように溶解した電解液を、ポ
リプロピレン不織布に含浸させてセパレータ(4)と
し、前記正極(2)の上に載置した。ステンレス鋼から
なる負極容器(5)の内面に、直径12mm、厚さ0.5
mmのニッケル製エキスパンドメタルからなる負極集電体
(6)を介して負極(7)を着設した。最後に、前記正
極容器(1)の開口部に、絶縁ガスケット(8)を介し
て前記負極容器(5)を嵌合し、正極容器(1)をかし
め加工して正極容器(1)と負極容器(5)内に、正極
(2)、セパレータ(4)、および負極(7)を密閉し
て、外径20.0mm、厚さ2.5mmのコイン形非水溶媒
二次電池を組立てた。
(III) Assembly of Battery FIG. 1 is a sectional view of a lithium secondary battery according to the present invention. The lithium secondary battery was assembled as follows. First, the positive electrode (2) was housed in the inner surface of the positive electrode container (1) made of stainless steel via the positive electrode current collector (3) made of colloidal carbon. 4% by volume ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate and ethylene carbonate
A polypropylene non-woven fabric is impregnated with an electrolytic solution prepared by dissolving lithium perchlorate in a solvent mixed at 5: 35: 10: 10 to a concentration of 1 mol / L to form a separator (4), and the positive electrode (2) Placed on top. The inner surface of the negative electrode container (5) made of stainless steel has a diameter of 12 mm and a thickness of 0.5.
A negative electrode (7) was attached via a negative electrode current collector (6) made of expanded metal made of nickel of mm. Finally, the negative electrode container (5) is fitted into the opening of the positive electrode container (1) through an insulating gasket (8), and the positive electrode container (1) is caulked to form the positive electrode container (1) and the negative electrode. A positive electrode (2), a separator (4), and a negative electrode (7) were sealed in a container (5) to assemble a coin-shaped non-aqueous solvent secondary battery having an outer diameter of 20.0 mm and a thickness of 2.5 mm. .

【0018】(IV)3.4V充電後の放電容量の測定 上記のようにして電池を組立て、これを室温で7〜14
日間貯蔵した後、2.7kΩの定抵抗下に2.0Vまで
放電し、次いで、200Ωの保護抵抗下に3.4Vの電
圧で20℃で64時間充電した。この電池を20℃と−
20℃で15kΩの定抵抗下に放電し、2.0Vまでの
放電容量を測定した。結果を表1に示す。
(IV) Measurement of Discharge Capacity after Charging at 3.4 V A battery was assembled as described above, and this was stored at room temperature for 7 to 14 hours.
After storage for a day, the battery was discharged to 2.0 V under a constant resistance of 2.7 kΩ, and then charged at a voltage of 3.4 V under a protective resistance of 200 Ω at 20 ° C. for 64 hours. This battery at 20 ℃-
It was discharged at 20 ° C. under a constant resistance of 15 kΩ, and the discharge capacity up to 2.0 V was measured. The results are shown in Table 1.

【0019】(V)3.6Vの充電後の放電容量の測定 上記(IV)の測定において、充電電圧を3.6Vに代え
て充電後の放電容量を測定した。結果を同じく表1に示
す。
(V) Measurement of discharge capacity after charging at 3.6 V In the measurement of (IV) above, the discharge voltage after charging was measured by changing the charging voltage to 3.6 V. The results are also shown in Table 1.

【0020】(VI)3.4Vの連続充電後の放電容量の
測定 上記(III) のようにして電池を組立て、これを室温で7
〜14日間貯蔵した後、2.7kΩの定抵抗下に2.0
Vまで放電し、次いで、200Ωの保護抵抗下に3.4
Vの電圧で60℃の雰囲気中で20日間連続充電した。
連続充電後に電池を取り出し、20℃で8時間以上放置
した。その後、この電池を20℃で15kΩの定抵抗下
に放電し、2.0Vまでの放電容量を測定した。結果を
表2に示す。なお、比較のために上記(IV)で測定した
3.4Vで64時間充電後の20℃での放電容量の結果
も併せて示す。
(VI) Measurement of discharge capacity after continuous charge of 3.4 V A battery was assembled as described in (III) above, and was assembled at room temperature for 7 hours.
After storage for ~ 14 days, 2.0 under constant resistance of 2.7 kΩ.
Discharged to V, then 3.4 under a 200Ω protection resistor
It was continuously charged at a voltage of V for 20 days in an atmosphere of 60 ° C.
After continuous charging, the battery was taken out and left at 20 ° C. for 8 hours or more. Then, the battery was discharged at 20 ° C. under a constant resistance of 15 kΩ, and the discharge capacity up to 2.0 V was measured. Table 2 shows the results. For comparison, the result of discharge capacity at 20 ° C. after charging at 3.4 V for 64 hours measured in (IV) is also shown.

【0021】(VII)3.6Vの連続充電後の放電容量の
測定 上記(VI)の測定において、充電電圧を3.6Vに代え
て充電後の放電容量を測定した。結果を表2に示す。な
お、比較のために上記(V)で測定した3.6Vで64
時間充電後の20℃の放電容量の結果も併せて示す。
(VII) Measurement of discharge capacity after continuous charge of 3.6 V In the measurement of (VI) above, the discharge voltage after charge was measured in place of the charge voltage of 3.6 V. Table 2 shows the results. For comparison, 64 V at 3.6 V measured in (V) above
The result of the discharge capacity at 20 ° C. after the hourly charge is also shown.

【0022】非水電解液中のエチレンガスの測定 上記 (III)のようにして組立てた電池を、室温で7〜1
4日間貯蔵した後、この電池を分解しセパレータ(4)
に含まれる電解液を採取し、この中に溶解しているエチ
レンガスをガスクロマトグラフィー装置(島津社製、G
C14A型)によって分析して測定した。結果を表3に
示す。
Measurement of Ethylene Gas in Non-Aqueous Electrolyte The battery assembled as described in (III) above was used at room temperature for 7 to 1
After storing for 4 days, the battery was disassembled and the separator (4)
The electrolytic solution contained in is collected, and the ethylene gas dissolved therein is analyzed by a gas chromatography device (Shimadzu Corporation, G
C14A type). The results are shown in Table 3.

【0023】実施例2 実施例1で用いた混合溶媒に代えて、炭酸エチルメチ
ル、炭酸ジエチル、炭酸ジメチルおよび炭酸エチレンが
容量%で55:25:10:10である混合溶媒を用い
た以外は、実施例1と同様にして電池を組立て、同様の
測定を行った。結果を表1〜3に示す。
Example 2 Except that the mixed solvent used in Example 1 was replaced by a mixed solvent containing ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate and ethylene carbonate in a volume ratio of 55: 25: 10: 10. A battery was assembled in the same manner as in Example 1 and the same measurement was performed. The results are shown in Tables 1 to 3.

【0024】比較例1 実施例1で用いた混合溶媒に代えて、炭酸ジエチル、炭
酸エチレンが容量%で50:50である混合溶媒を用い
た以外は、実施例1と同様にして電池を組立て、同様の
測定を行った。結果を表1〜3に示す。
Comparative Example 1 A battery was assembled in the same manner as in Example 1 except that the mixed solvent used in Example 1 was replaced by a mixed solvent containing diethyl carbonate and ethylene carbonate in a volume ratio of 50:50. The same measurement was performed. The results are shown in Tables 1 to 3.

【0025】比較例2 実施例1で用いた混合溶媒に代えて、炭酸ジエチル、炭
酸エチレンおよび炭酸プロピレンが容量%で50:4
0:10である混合溶媒を用いた以外は、実施例1と同
様にして電池を組立て、同様の測定を行った。結果を表
1〜3に示す。
Comparative Example 2 In place of the mixed solvent used in Example 1, diethyl carbonate, ethylene carbonate and propylene carbonate were mixed at a volume ratio of 50: 4.
A battery was assembled in the same manner as in Example 1 except that the mixed solvent of 0:10 was used, and the same measurement was performed. The results are shown in Tables 1 to 3.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】本発明により、低温における放電容量の
低下、および高温における連続充電後の放電容量の低下
がほとんどないリチウム二次電池が得られる。
According to the present invention, it is possible to obtain a lithium secondary battery in which the discharge capacity at a low temperature is not lowered and the discharge capacity after a continuous charge at a high temperature is hardly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の断面図である。FIG. 1 is a cross-sectional view of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極容器 2 正極 3 正極集電体 4 セパレータ 5 負極容器 6 負極集電体 7 負極 8 絶縁ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode container 2 Positive electrode 3 Positive electrode current collector 4 Separator 5 Negative electrode container 6 Negative electrode current collector 7 Negative electrode 8 Insulation gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極;リチウムイオンを吸蔵・放出可能
な炭素質材料からなる負極;および非水電解液を備える
非水溶媒二次電池において、前記非水電解液が、炭酸エ
チルメチル、炭酸ジエチル、炭酸ジメチルおよび炭酸エ
チレンからなる混合溶媒を含むことを特徴とする非水溶
媒二次電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode; a negative electrode made of a carbonaceous material capable of inserting and extracting lithium ions; and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is ethyl methyl carbonate or diethyl carbonate. A non-aqueous solvent secondary battery comprising a mixed solvent of dimethyl carbonate and ethylene carbonate.
【請求項2】 前記混合溶媒の組成が、炭酸エチルメチ
ル35〜60容量%、炭酸ジエチル20〜40重量%、
炭酸ジメチル5〜25容量%および炭酸エチレン5〜2
5容量%である請求項1記載の非水溶媒二次電池。
2. The composition of the mixed solvent is ethyl methyl carbonate 35-60% by volume, diethyl carbonate 20-40% by weight,
Dimethyl carbonate 5 to 25% by volume and ethylene carbonate 5 to 2
The non-aqueous solvent secondary battery according to claim 1, which has a capacity of 5% by volume.
JP30472994A 1994-12-08 1994-12-08 Non-aqueous solvent secondary battery Expired - Lifetime JP3428750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30472994A JP3428750B2 (en) 1994-12-08 1994-12-08 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30472994A JP3428750B2 (en) 1994-12-08 1994-12-08 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH08162153A true JPH08162153A (en) 1996-06-21
JP3428750B2 JP3428750B2 (en) 2003-07-22

Family

ID=17936515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30472994A Expired - Lifetime JP3428750B2 (en) 1994-12-08 1994-12-08 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3428750B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980108A1 (en) * 1998-08-13 2000-02-16 Wilson Greatbatch Limited Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
EP0989623A1 (en) * 1998-09-21 2000-03-29 Wilson Greatbatch Ltd. Hermetically sealed lithium ion secondary electrochemical cell
EP0996187A1 (en) * 1998-10-22 2000-04-26 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte rechargeable cells
EP1022799A2 (en) * 1999-01-25 2000-07-26 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
EP1050916A1 (en) * 1999-05-03 2000-11-08 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6174629B1 (en) * 1999-09-10 2001-01-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte rechargeable cells
US6200701B1 (en) 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
EP1109244A2 (en) * 1999-12-13 2001-06-20 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
EP1213782A2 (en) * 2000-11-27 2002-06-12 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1215746A1 (en) * 2000-12-15 2002-06-19 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6492064B1 (en) * 1998-06-04 2002-12-10 California Institute Of Technology Organic solvents, electrolytes, and lithium ion cells with good low temperature performance
US6495285B2 (en) 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6511772B2 (en) 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6537698B2 (en) 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
US6605385B2 (en) 2001-03-22 2003-08-12 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a carbonate additive in the electrode active mixture
US6746804B2 (en) 1998-05-13 2004-06-08 Wilson Greatbatch Technologies, Inc. Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US6759170B2 (en) 1998-10-22 2004-07-06 Wilson Greatbatch Technologies, Inc. Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
JP2005183116A (en) * 2003-12-18 2005-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US6919141B2 (en) 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746804B2 (en) 1998-05-13 2004-06-08 Wilson Greatbatch Technologies, Inc. Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
US6492064B1 (en) * 1998-06-04 2002-12-10 California Institute Of Technology Organic solvents, electrolytes, and lithium ion cells with good low temperature performance
EP0980108A1 (en) * 1998-08-13 2000-02-16 Wilson Greatbatch Limited Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
EP0989623A1 (en) * 1998-09-21 2000-03-29 Wilson Greatbatch Ltd. Hermetically sealed lithium ion secondary electrochemical cell
US6203942B1 (en) 1998-10-22 2001-03-20 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6759170B2 (en) 1998-10-22 2004-07-06 Wilson Greatbatch Technologies, Inc. Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP0996187A1 (en) * 1998-10-22 2000-04-26 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte rechargeable cells
US6919141B2 (en) 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6200701B1 (en) 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6350542B1 (en) 1999-01-25 2002-02-26 Wilson Greatbatch Ltd. Sulfite additives for nonaqueous electrolyte rechargeable cells
EP1022799A3 (en) * 1999-01-25 2000-08-02 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
EP1022799A2 (en) * 1999-01-25 2000-07-26 Wilson Greatbatch Limited Sulfite additives for non-aqueous electrolyte rechargeable cells
US6495285B2 (en) 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
EP1050916A1 (en) * 1999-05-03 2000-11-08 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6174629B1 (en) * 1999-09-10 2001-01-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte rechargeable cells
EP1109244A2 (en) * 1999-12-13 2001-06-20 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
EP1109244A3 (en) * 1999-12-13 2002-07-24 Wilson Greatbatch Ltd. Sulfate additives for nonaqueous electrolyte rechargeable cells
EP1213782A3 (en) * 2000-11-27 2003-11-12 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1213782A2 (en) * 2000-11-27 2002-06-12 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1215746A1 (en) * 2000-12-15 2002-06-19 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6511772B2 (en) 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6537698B2 (en) 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
US6605385B2 (en) 2001-03-22 2003-08-12 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a carbonate additive in the electrode active mixture
JP2005183116A (en) * 2003-12-18 2005-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4651279B2 (en) * 2003-12-18 2011-03-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3428750B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3428750B2 (en) Non-aqueous solvent secondary battery
CA1311519C (en) Secondary battery
JP3187929B2 (en) Lithium secondary battery
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3435731B2 (en) Non-aqueous electrolyte secondary battery
JPH09115546A (en) Secondary battery provided with non-aqueous solvent
JPH0745304A (en) Organic electrolyte secondary battery
JP3232636B2 (en) Non-aqueous electrolyte battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH07335221A (en) Coin type nonelectrolytic secondary battery
WO1998008263A1 (en) Lithium ion secondary cell and its cathode
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH07142092A (en) Nonaqueous solvent secondary battery
JP3558751B2 (en) Non-aqueous solvent secondary battery
JPH1083837A (en) Lithium secondary battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JP3979428B2 (en) Lithium secondary battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JPH0831453A (en) Nonaqueous solvent secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

EXPY Cancellation because of completion of term