JPH0831453A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH0831453A
JPH0831453A JP6161118A JP16111894A JPH0831453A JP H0831453 A JPH0831453 A JP H0831453A JP 6161118 A JP6161118 A JP 6161118A JP 16111894 A JP16111894 A JP 16111894A JP H0831453 A JPH0831453 A JP H0831453A
Authority
JP
Japan
Prior art keywords
lithium
battery
positive electrode
secondary battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6161118A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kobayashi
義和 小林
Kenji Tsuchiya
謙二 土屋
Hirobumi Ohashi
博文 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6161118A priority Critical patent/JPH0831453A/en
Publication of JPH0831453A publication Critical patent/JPH0831453A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PURPOSE:To provide a nonaqueous solvent electrolyte battery of an excellent discharge cycle life by assembling a nonaqueous solvent secondary battery comprising specific positive and negative electrodes, and then applying a pre- discharge process to it. CONSTITUTION:For a nonaqueous secondary battery including a positive electrode including lithium manganese compound formed of lithium nitrate and manganese dioxide, and a negative electrode comprising lithium and carbon material as carrier for it, after the battery is assembled, a pre-discharge process for 10-30% the capacity of the positive electrode is applied. For the lithium carrier to be used in the negative electrode, carbon material obtained by baking organic high polymer compound such as phenol resin, polyacrylonitrile, or cellulose; carbon material obtained by baking cokes or pitch; or carbon material such as artificial graphite or natural graphite can be listed. For the capacity of the pre-discharge process, storage characteristics in high temperatures are not improved when it is less than 10%, and when it exceeds 30%, the initial discharge capacity is decreased largely, which are not favorable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水溶媒二次電池に関
し、さらに詳しくは、正極に硝酸リチウムと二酸化マン
ガンとを原料とするリチウムマンガン化合物、負極にリ
チウムとその担持体として炭素質材料を含む非水溶媒二
次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more specifically, a lithium manganese compound containing lithium nitrate and manganese dioxide as a raw material for a positive electrode and lithium and a carbonaceous material as a carrier thereof for a negative electrode. And a non-aqueous solvent secondary battery containing the same.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつ、エネルギー密度が高く、さらに繰り返し充放
電可能な二次電池の開発が要望されている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small and lightweight, has a high energy density, and can be repeatedly charged and discharged.

【0003】この種の二次電池としては、負極活物質と
してリチウムまたはリチウム合金を用い、正極活物質と
してモリブデン、バナジウム、チタン、ニオブなどの酸
化物、硫化物もしくはこれらのセレン化物などを用いた
ものが知られている。
In this type of secondary battery, lithium or a lithium alloy is used as the negative electrode active material, and oxides, sulfides or selenides of molybdenum, vanadium, titanium, niobium and the like are used as the positive electrode active material. Things are known.

【0004】しかし、負極活物質にリチウムまたはリチ
ウム合金を用いた電池系では、充放電を繰り返すと負極
上にリチウムのデンドライトが発生するため、充放電サ
イクル寿命が短いという問題があった。
However, in a battery system using lithium or a lithium alloy as the negative electrode active material, there is a problem that charge / discharge cycle life is short because dendrite of lithium is generated on the negative electrode when charge / discharge is repeated.

【0005】これに対しては、負極にリチウムとその担
持体として炭素質材料を用いることにより解決が図られ
ている。特に、正極に硝酸リチウムと二酸化マンガンと
を原料とするリチウムマンガン化合物、負極にリチウム
とその担持体として炭素質材料を用いた非水溶媒二次電
池は、作動電圧が高く、充放電サイクル寿命を大幅に向
上することが可能な電池として注目されている。
This has been solved by using lithium and a carbonaceous material as a carrier thereof for the negative electrode. In particular, a non-aqueous solvent secondary battery using a lithium manganese compound using lithium nitrate and manganese dioxide as raw materials for the positive electrode and lithium and a carbonaceous material as its support for the negative electrode has a high operating voltage and a long charge / discharge cycle life. It is attracting attention as a battery that can be greatly improved.

【0006】しかし、この正極に硝酸リチウムと二酸化
マンガンとを原料とするリチウムマンガン化合物、負極
にリチウムとその担持体として炭素質材料を用いた非水
溶媒二次電池では、満充電の状態において、正極に用い
た硝酸リチウムと二酸化マンガンとを原料とするリチウ
ムマンガン化合物の電位が高いため、電解液の分解など
が生じる。このため、高温雰囲気中に貯蔵した場合、貯
蔵後の放電容量が、貯蔵前に比較して低下してしまうと
いう問題があった。
However, in a non-aqueous solvent secondary battery in which a lithium manganese compound containing lithium nitrate and manganese dioxide as raw materials is used for the positive electrode and lithium and a carbonaceous material as its carrier are used for the negative electrode, a fully charged state Since the lithium manganese compound used as the positive electrode and made of lithium nitrate and manganese dioxide as a raw material has a high potential, decomposition of the electrolytic solution occurs. Therefore, when stored in a high temperature atmosphere, there is a problem that the discharge capacity after storage becomes lower than that before storage.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
問題を解決し、充放電サイクル寿命の優れた非水溶媒二
次電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a non-aqueous solvent secondary battery having excellent charge / discharge cycle life.

【0008】[0008]

【課題を解決するための手段】本発明は、硝酸リチウム
と二酸化マンガンとを原料とするリチウムマンガン化合
物を含む正極、ならびにリチウムおよびその担持体とし
て炭素質材料からなる負極を含む非水溶媒二次電池であ
って、電池を組み立てた後、前記正極容量の10〜30
%が予備放電処理されていることを特徴とする非水溶媒
二次電池である。
The present invention is directed to a non-aqueous solvent secondary containing a positive electrode containing a lithium manganese compound prepared from lithium nitrate and manganese dioxide as a raw material, and a negative electrode containing lithium and a carbonaceous material as its carrier. A battery, the battery having a positive electrode capacity of 10 to 30 after assembling the battery.
% Of the secondary battery is a non-aqueous solvent secondary battery.

【0009】本発明は、前記正極容量の10〜30%を
予備放電することにより、高温貯蔵時における電池の放
電容量の劣化を抑制できることに基づいてなされたもの
である。
The present invention is based on the fact that by pre-discharging 10 to 30% of the positive electrode capacity, deterioration of the discharge capacity of the battery during high temperature storage can be suppressed.

【0010】本発明に用いる正極としては、硝酸リチウ
ムと二酸化マンガンとを原料とするリチウムマンガン化
合物を活物質とし、これにアセチレンブラックをはじめ
とするカーボンブラック、ニッケル粉末などの導電性材
料、およびポリテトラフルオロエチレン、ポリエチレ
ン、ポリプロピレン、ポリ(メタ)アクリル酸、ポリ
(メタ)アクリル酸塩、ポリ(メタ)アクリル酸エステ
ルならびに(メタ)アクリル酸および/または(メタ)
アクリル酸エステルと他のコモノマーとの共重合体など
の結着剤を配合し、例えばペレット状に成形したものを
用いることができる。
As the positive electrode used in the present invention, a lithium manganese compound obtained by using lithium nitrate and manganese dioxide as raw materials is used as an active material, and carbon black such as acetylene black, a conductive material such as nickel powder, and a poly material. Tetrafluoroethylene, polyethylene, polypropylene, poly (meth) acrylic acid, poly (meth) acrylic acid salt, poly (meth) acrylic acid ester and (meth) acrylic acid and / or (meth)
A binder such as a copolymer of an acrylate ester and another comonomer may be blended and molded into pellets, for example.

【0011】本発明の負極に用いるリチウム担持体とし
ては、フェノール樹脂、ポリアクリロニトリル、セルロ
ースなどの有機高分子化合物を焼成して得られる炭素質
材料;コークス、ピッチ等を焼成して得られる炭素質材
料;および人造グラファイト、天然グラファイトなどの
炭素質材料を挙げることができる。
The lithium carrier used in the negative electrode of the present invention is a carbonaceous material obtained by firing an organic polymer compound such as phenol resin, polyacrylonitrile, or cellulose; a carbonaceous material obtained by firing coke, pitch or the like. Materials; and carbonaceous materials such as artificial graphite and natural graphite.

【0012】負極の作製は以下のように行う。例えば、
前記高分子化合物をアルゴン、窒素等の不活性ガス雰囲
気中において、500〜3,000℃の温度および常圧
もしくは減圧下の条件に焼成した炭素質材料に、正極に
用いたのと同じ上記結着剤を添加・混合し、例えばペレ
ット状などに成形した成形体に、電解含浸法によりリチ
ウムを含有させるものである。
The negative electrode is manufactured as follows. For example,
A carbonaceous material obtained by firing the polymer compound in an atmosphere of an inert gas such as argon or nitrogen under the conditions of a temperature of 500 to 3,000 ° C. and normal pressure or reduced pressure, and the same binder as used for the positive electrode. This is to add lithium to a molded body obtained by adding and mixing a binder and molding it into, for example, a pellet shape by an electrolytic impregnation method.

【0013】セパレータには、例えばポリエチレン、ポ
リプロピレンなどのポリオレフィン系樹脂の不織布や、
これらの多孔膜などを用いることができる。電解液とし
ては、例えばエチレンカーボネート、プロピレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネートなどから選ばれる一種以
上の非水溶媒に、六フッ化リン酸リチウム(LiPF
6 )、過塩素酸リチウム(LiClO4 )、ホウフッ化
リチウム(LiBF4 )などの電解質を0.2〜1.5
mol/l の濃度で溶解させたものを用いることができる。
The separator includes, for example, a non-woven fabric of polyolefin resin such as polyethylene or polypropylene,
These porous films and the like can be used. As the electrolytic solution, for example, one or more non-aqueous solvents selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc., and lithium hexafluorophosphate (LiPF
6 ), an electrolyte such as lithium perchlorate (LiClO 4 ) and lithium borofluoride (LiBF 4 ) in an amount of 0.2 to 1.5.
It is possible to use the one dissolved at a concentration of mol / l.

【0014】上記の電池構成要素を含む試験用電池を組
み立て、以下に示すように、予備放電を含む処理を行
う。
A test battery including the above-mentioned battery components is assembled and, as shown below, a treatment including preliminary discharge is performed.

【0015】(1)室温において7〜14日間予備貯蔵
後、正極容量に対して所定の放電深度が得られるまで、
定電流または定抵抗で予備放電を行う。(2)次いで、
室温において3〜20日間貯蔵する。(3)さらに20
〜60℃の温度で20〜60日間貯蔵する。
(1) After preliminary storage at room temperature for 7 to 14 days, until a predetermined discharge depth with respect to the positive electrode capacity is obtained,
Pre-discharge with constant current or constant resistance. (2) Then,
Store at room temperature for 3-20 days. (3) 20 more
Store at a temperature of ~ 60 ° C for 20-60 days.

【0016】なお、貯蔵前に予備放電処理する容量(放
電深度)は、正極容量に対して10〜30%、好ましく
は15〜30%の範囲である。正極容量に対する放電深
度の割合が10%未満では高温における貯蔵特性が改善
されず、30%を越えると初期の放電容量が大きく減少
してしまうので好ましくない。
The capacity of the pre-discharge treatment (discharge depth) before storage is in the range of 10 to 30%, preferably 15 to 30% of the capacity of the positive electrode. If the ratio of the depth of discharge to the positive electrode capacity is less than 10%, the storage characteristics at high temperatures are not improved, and if it exceeds 30%, the initial discharge capacity is greatly reduced, which is not preferable.

【0017】[0017]

【発明の効果】本発明により、高温貯蔵に伴う電池の放
電容量の劣化を抑制することができ、その結果、充放電
サイクル寿命の長い非水溶媒二次電池を提供することが
できる。
According to the present invention, it is possible to suppress deterioration of the discharge capacity of a battery due to high temperature storage, and as a result, it is possible to provide a non-aqueous solvent secondary battery having a long charge / discharge cycle life.

【0018】[0018]

【実施例】以下、本願発明を実施例に基づいてさらに詳
細に説明する。
EXAMPLES The present invention will now be described in more detail based on examples.

【0019】(1)正極の作製 活物質として硝酸リチウムと二酸化マンガンを原料とす
るリチウムマンガン化合物、導電性材料として人造黒鉛
および結着剤としてポリテトラフルオロエチレンを、活
物質、導電性材料および結着剤の重量比が90:10:
5になるように混合・混練し、この混合物を加圧プレス
機を用いて2ton/cm2 の圧力で、直径19mm、厚さ0.
91mmのペレット状に加圧成形して正極とした。
(1) Preparation of Positive Electrode A lithium manganese compound prepared from lithium nitrate and manganese dioxide as an active material, artificial graphite as a conductive material and polytetrafluoroethylene as a binder, an active material, a conductive material and a binder. The weight ratio of the adhesive is 90:10:
The mixture was mixed and kneaded so that the mixture had a diameter of 19 mm and a thickness of 0.1 mm by using a pressure press at a pressure of 2 ton / cm 2 .
A 91 mm pellet was pressure-molded to obtain a positive electrode.

【0020】(2)負極の作製 メンフェーズピッチを原料とするピッチ系炭素繊維を細
かく粉砕し、2800℃の温度で焼成して、炭素質粉末
を得た。この粉末に結着剤としてブタジエン−スチレン
ラバーを95:5の重量比で混合・混練し、この混合物
を加圧プレス機を用いて2ton/cm2 の圧力で、直径19
mm、厚さ1.19mmのペレット状に加圧成形した。次い
で、このペレット成形体に、電解含浸法によってリチウ
ムを含有させて負極とした。
(2) Preparation of Negative Electrode Pitch-based carbon fibers made of menphatic pitch as a raw material were finely pulverized and fired at a temperature of 2800 ° C. to obtain a carbonaceous powder. Butadiene-styrene rubber as a binder was mixed and kneaded with this powder at a weight ratio of 95: 5, and the mixture was pressurized at a pressure of 2 ton / cm 2 and a diameter of 19
mm and a thickness of 1.19 mm was pressed into a pellet. Next, this pellet molded body was made to contain lithium by an electrolytic impregnation method to obtain a negative electrode.

【0021】(3)電池の組み立て 図1は、本発明にかかる非水溶媒二次電池の断面図であ
る。該非水溶媒二次電池を、以下のようにして組み立て
た。 ステンレス鋼からなる正極容器(1)の内面に、直径
12mm、厚さ0.1mmのステンレス製エキスパンドメタ
ルからなる正極集電体(3)を介して、正極(2)を収
納した。 エチレンカーボネートおよびジエチルカーボネートを
体積比で1:1に混合した溶媒に、過塩素酸リチウムを
1mol/L の濃度になるように溶解した電解液を、ポリプ
ロピレン不織布に含浸させたセパレータ(4)を、前記
正極(2)上に載置した。 ステンレス鋼からなる負極容器(5)の内面に、直径
12mm、厚さ0.1mmのニッケル製エキスパンドメタル
からなる負極集電体(6)を介して、負極(7)を着設
した。 最後に、前記正極容器(1)の開口部に、絶縁ガスケ
ット(8)を介して、前記負極容器(5)を嵌合し、正
極容器(1)をかしめ加工して、正極容器(1)と負極
容器(5)内に、正極(2)、セパレータ(4)および
負極(7)を密閉して、外径24.5mm、厚さ3.0mm
のコイン形非水溶媒二次電池を組み立てた。
(3) Assembly of Battery FIG. 1 is a sectional view of a non-aqueous solvent secondary battery according to the present invention. The non-aqueous solvent secondary battery was assembled as follows. The positive electrode (2) was housed on the inner surface of the positive electrode container (1) made of stainless steel via the positive electrode current collector (3) made of stainless expanded metal having a diameter of 12 mm and a thickness of 0.1 mm. A separator (4) in which a polypropylene nonwoven fabric is impregnated with an electrolytic solution in which lithium perchlorate is dissolved in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1 to a concentration of 1 mol / L, It was placed on the positive electrode (2). A negative electrode (7) was attached to the inner surface of a negative electrode container (5) made of stainless steel via a negative electrode current collector (6) made of nickel expanded metal having a diameter of 12 mm and a thickness of 0.1 mm. Finally, the negative electrode container (5) is fitted into the opening of the positive electrode container (1) via the insulating gasket (8), and the positive electrode container (1) is caulked to form the positive electrode container (1). The positive electrode (2), the separator (4) and the negative electrode (7) are hermetically sealed in the negative electrode container (5) to have an outer diameter of 24.5 mm and a thickness of 3.0 mm.
The coin type non-aqueous solvent secondary battery of was assembled.

【0022】(4)予備放電処理と電池特性の測定 上記のようにして電池を組み立て、室温で7〜14日間
予備貯蔵した後、2mAの定電流で、放電深度が正極容量
に対して5,10,15,20および30%になるよう
に予備放電を行い、それぞれの電池をA,B,C,D,
Eとした。うち、B〜Eは本発明による電池、Aは比較
のための電池である。また、予備放電を行わない電池F
を、同じく比較のための電池として、以下の実験に供し
た。予備放電後、4日間室温に貯蔵後、電池の開回路電
圧を測定した。その結果を図2に示す。その後、電池A
〜Fを60℃雰囲気中に20,40,60日間それぞれ
貯蔵した。貯蔵後、電池を取り出し、室温で8時間以上
放置した。その後、15kΩで定抵抗放電を行って2.
0Vまでの放電容量を測定し、初期放電容量に対する貯
蔵後の容量維持率をそれぞれ求めた。その結果を図3に
示す。
(4) Pre-discharge treatment and measurement of battery characteristics After assembling the battery as described above and pre-storing at room temperature for 7 to 14 days, the discharge depth was 5 against the positive electrode capacity at a constant current of 2 mA. The battery was pre-discharged to 10, 15, 20 and 30%, and each battery was charged with A, B, C, D,
It was set to E. Among them, B to E are batteries according to the present invention, and A is a battery for comparison. In addition, the battery F that does not perform the preliminary discharge
Was also subjected to the following experiment as a battery for comparison. After the preliminary discharge, the battery was stored at room temperature for 4 days and then the open circuit voltage of the battery was measured. The result is shown in FIG. After that, battery A
~ F were stored in a 60 ° C atmosphere for 20, 40, and 60 days, respectively. After storage, the battery was taken out and left at room temperature for 8 hours or more. After that, constant resistance discharge was performed at 15 kΩ to 2.
The discharge capacity up to 0 V was measured, and the capacity retention rate after storage with respect to the initial discharge capacity was obtained. The result is shown in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイン形非水溶媒二次電池の縦断面図
である。
FIG. 1 is a vertical cross-sectional view of a coin type non-aqueous solvent secondary battery of the present invention.

【図2】予備放電深度と電池の開回路電圧の関係を示す
図である。
FIG. 2 is a diagram showing a relationship between a preliminary discharge depth and an open circuit voltage of a battery.

【図3】予備放電深度と高温貯蔵後の放電容量維持率の
関係を示す図である。
FIG. 3 is a diagram showing a relationship between a preliminary discharge depth and a discharge capacity retention rate after high temperature storage.

【符号の説明】[Explanation of symbols]

1 正極容器 2 正極 3 正極集電体 4 セパレータ 5 負極容器 6 負極集電体 7 負極 8 絶縁ガスケット A 予備放電深度5%の電池A B 予備放電深度10%の電池B C 予備放電深度15%の電池C D 予備放電深度20%の電池D E 予備放電深度30%の電池E F 予備放電深度をしていない電池F DESCRIPTION OF SYMBOLS 1 Positive electrode container 2 Positive electrode 3 Positive electrode current collector 4 Separator 5 Negative electrode container 6 Negative electrode current collector 7 Negative electrode 8 Insulating gasket A Battery with 5% preliminary discharge depth A B Battery with 10% preliminary discharge depth B C 15% preliminary discharge depth Battery C D Battery with pre-discharge depth of 20% D E Battery with pre-discharge depth of 30% E F Battery with no pre-discharge depth F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硝酸リチウムと二酸化マンガンとを原料
とするリチウムマンガン化合物を含む正極、ならびにリ
チウムおよびその担持体として炭素質材料からなる負極
を含む非水溶媒二次電池であって、電池を組み立てた
後、前記正極容量の10〜30%が予備放電処理されて
いることを特徴とする非水溶媒二次電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode containing a lithium manganese compound made from lithium nitrate and manganese dioxide as a raw material, and a negative electrode made of a carbonaceous material as a lithium and a carrier thereof. After that, 10 to 30% of the positive electrode capacity is subjected to a pre-discharge treatment, the non-aqueous solvent secondary battery.
JP6161118A 1994-07-13 1994-07-13 Nonaqueous solvent secondary battery Pending JPH0831453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161118A JPH0831453A (en) 1994-07-13 1994-07-13 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161118A JPH0831453A (en) 1994-07-13 1994-07-13 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH0831453A true JPH0831453A (en) 1996-02-02

Family

ID=15728949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161118A Pending JPH0831453A (en) 1994-07-13 1994-07-13 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH0831453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098131A (en) * 2006-09-13 2008-04-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098131A (en) * 2006-09-13 2008-04-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
CN101515640B (en) Cathode and lithium ion secondary battery containing same
JP3428750B2 (en) Non-aqueous solvent secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
EP1439596B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JPH09115546A (en) Secondary battery provided with non-aqueous solvent
JP3232636B2 (en) Non-aqueous electrolyte battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JP2000149986A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH07335221A (en) Coin type nonelectrolytic secondary battery
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JPH0831453A (en) Nonaqueous solvent secondary battery
JPH07142092A (en) Nonaqueous solvent secondary battery
JPH08162096A (en) Lithium secondary battery
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JP3558751B2 (en) Non-aqueous solvent secondary battery
JPH1083837A (en) Lithium secondary battery
JP3394020B2 (en) Lithium ion secondary battery
JP4015837B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery