JP2000149986A - Nonaqueous electrolytic solution and lithium secondary battery using it - Google Patents

Nonaqueous electrolytic solution and lithium secondary battery using it

Info

Publication number
JP2000149986A
JP2000149986A JP11091496A JP9149699A JP2000149986A JP 2000149986 A JP2000149986 A JP 2000149986A JP 11091496 A JP11091496 A JP 11091496A JP 9149699 A JP9149699 A JP 9149699A JP 2000149986 A JP2000149986 A JP 2000149986A
Authority
JP
Japan
Prior art keywords
group
solvent
battery
electrolyte
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11091496A
Other languages
Japanese (ja)
Other versions
JP4042082B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Koji Abe
浩司 安部
Tsutomu Takai
勉 高井
Yasuo Matsumori
保男 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP09149699A priority Critical patent/JP4042082B2/en
Publication of JP2000149986A publication Critical patent/JP2000149986A/en
Priority to US10/383,790 priority patent/US7691539B2/en
Application granted granted Critical
Publication of JP4042082B2 publication Critical patent/JP4042082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cycle characteristic of a battery, its electric capacity and storage characteristic in a charged state by including a disulfide derivative in a nonaqueous electrolytic solution prepared by dissolving an electrolyte in a nonaqueous solvent. SOLUTION: This nonaqueous electrolytic solution wherein an electrolyte such as LiPF6 is dissolved in a mixed solvent at a predetermined volume ratio of a solvent having a high dielectric constant such as ethylene carbonate and a solvent having a low viscosity such as dimethyl carbonate contains preferably 0.001-2 wt.% of disulfide derivative expressed by the formula. Thereby, the degradation of battery performance based on the decomposition of the solvent due to oxidation and reduction at charging or the like on the interface between a positive electrode material or the highly- crystallized carbon material of a negative electrode, and the nonaqueous electrolyte solution. This battery is provided with the nonaqueous electrolytic solution, the positive electrode containing an active material such as LiCoO2, and the negative electrode containing an active material such as Li or carbon having a graphite type crystal structure. In the formula, R1 and R2 are each a benzyl group, toryl group, pyridyl group, pyrimidyl group, 1-12C alkyl group or a 3-6C cycloalkyl group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池のサイクル特
性や電気容量、保存特性などの電池特性にも優れたリチ
ウム二次電池を提供することができる非水電解液、およ
びそれを用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte capable of providing a lithium secondary battery having excellent battery characteristics such as cycle characteristics, electric capacity and storage characteristics of a battery, and lithium using the same. Related to secondary batteries.

【0002】[0002]

【従来の技術】近年、リチウム二次電池は小型電子機器
などの駆動用電源として広く使用されている。リチウム
二次電池は、主に正極、非水電解液及び負極から構成さ
れており、特に、LiCoO2などのリチウム複合酸化
物を正極とし、炭素材料又はリチウム金属を負極とした
リチウム二次電池が好適に使用されている。そして、そ
のリチウム二次電池用の非水電解液としては、エチレン
カーボネート(EC)、プロピレンカーボネート(P
C)などのカーボネート類が好適に使用されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as power sources for driving small electronic devices and the like. Lithium secondary batteries are mainly composed of a positive electrode, a non-aqueous electrolyte, and a negative electrode. In particular, lithium secondary batteries using a lithium composite oxide such as LiCoO 2 as a positive electrode and a carbon material or lithium metal as a negative electrode are known. It is preferably used. As the non-aqueous electrolyte for the lithium secondary battery, ethylene carbonate (EC), propylene carbonate (P
Carbonates such as C) are preferably used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電池の
サイクル特性および電気容量などの電池特性について、
さらに優れた特性を有する二次電池が求められている。
正極として、例えばLiCoO2、LiMn24、Li
NiO2などを用いたリチウム二次電池は、非水電解液
中の溶媒が充電時に局部的に一部酸化分解することによ
り、該分解物が電池の望ましい電気化学的反応を阻害す
るために電池性能の低下を生じる。これは正極材料と非
水電解液との界面における溶媒の電気化学的酸化に起因
するものと思われる。また、負極として例えば天然黒鉛
や人造黒鉛などの高結晶化した炭素材料を用いたリチウ
ム二次電池は、非水電解液中の溶媒が充電時に負極表面
で還元分解し、非水電解液溶媒として一般に広く使用さ
れているECにおいても充放電を繰り返す間に一部還元
分解が起こり、電池性能の低下が起こる。このため、電
池のサイクル特性および電気容量などの電池特性は必ず
しも満足なものではないのが現状である。
However, regarding the battery characteristics such as the cycle characteristics and the electric capacity of the battery,
There is a demand for a secondary battery having more excellent characteristics.
As the positive electrode, for example, LiCoO 2 , LiMn 2 O 4 , Li
Lithium secondary batteries using NiO 2 or the like have a problem in that the solvent in the non-aqueous electrolyte partially oxidizes and decomposes at the time of charging, and the decomposition products hinder a desirable electrochemical reaction of the battery. This results in reduced performance. This is thought to be due to electrochemical oxidation of the solvent at the interface between the positive electrode material and the non-aqueous electrolyte. In addition, in a lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite as the negative electrode, the solvent in the nonaqueous electrolyte is reductively decomposed on the surface of the negative electrode during charging, and as a nonaqueous electrolyte solvent Even in ECs that are generally widely used, reductive decomposition occurs partially during repetition of charge / discharge, and battery performance deteriorates. Therefore, at present, the battery characteristics such as the cycle characteristics and the electric capacity of the battery are not always satisfactory.

【0004】本発明は、前記のようなリチウム二次電池
用非水電解液に関する課題を解決し、電池のサイクル特
性に優れ、さらに電気容量や充電状態での保存特性など
の電池特性にも優れたリチウム二次電池を構成すること
ができるリチウム二次電池用の非水電解液、およびそれ
を用いたリチウム二次電池を提供することを目的とす
る。
The present invention solves the above-mentioned problems relating to the non-aqueous electrolyte for a lithium secondary battery, and is excellent in battery cycle characteristics, and is also excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. It is an object of the present invention to provide a non-aqueous electrolyte for a lithium secondary battery that can constitute a lithium secondary battery, and a lithium secondary battery using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、非水溶媒に電
解質が溶解されている非水電解液において、該非水電解
液中に下記一般式(I) R1−S−S−R2 (I) (式中、R1、R2はそれぞれ独立して、ベンジル基、ト
リル基、ピリジル基、ピリミジル基、炭素数1〜12の
アルキル基、炭素数3〜6のシクロアルキル基を示
す。)で表されるジスルフィド誘導体が含有されている
ことを特徴とする非水電解液に関する。また、本発明
は、正極と負極および非水溶媒に電解質が溶解されてい
る非水電解液からなるリチウム二次電池において、該非
水電解液中に下記一般式(I) R1−S−S−R2 (I) (式中、R1、R2はそれぞれ独立して、ベンジル基、ト
リル基、ピリジル基、ピリミジル基、炭素数1〜12の
アルキル基、炭素数3〜6のシクロアルキル基を示
す。)で表されるジスルフィド誘導体が含有されている
ことを特徴とするリチウム二次電池に関する。
According to the present invention, there is provided a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte has the following general formula (I): R 1 -S-S-R 2 (I) (wherein, R 1 and R 2 each independently represent a benzyl group, a tolyl group, a pyridyl group, a pyrimidyl group, an alkyl group having 1 to 12 carbon atoms, and a cycloalkyl group having 3 to 6 carbon atoms) The present invention relates to a non-aqueous electrolyte solution containing a disulfide derivative represented by the formula (1): Further, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following general formula (I) R 1 -SS —R 2 (I) (wherein, R 1 and R 2 are each independently a benzyl group, a tolyl group, a pyridyl group, a pyrimidyl group, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms) The present invention also relates to a lithium secondary battery containing a disulfide derivative represented by the following formula:

【0006】本発明の非水電解液は、リチウム二次電池
の構成部材として使用される。二次電池を構成する非水
電解液以外の構成部材については特に限定されず、従来
使用されている種々の構成部材を使用できる。
The non-aqueous electrolyte of the present invention is used as a component of a lithium secondary battery. The constituent members other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various constituent members conventionally used can be used.

【0007】[0007]

【発明の実施の形態】非水溶媒に電解質が溶解されてい
る非水電解液に含有される前記一般式(I)で表される
ジスルフィド誘導体において、R1、R2はそれぞれ独立
して、ベンジル基、トリル基、ピリジル基またはピリミ
ジル基のような複素環の置換基、炭素数1〜12のアル
キル基、炭素数3〜6のシクロアルキル基のような置換
基である。
BEST MODE FOR CARRYING OUT THE INVENTION In a disulfide derivative represented by the general formula (I) contained in a nonaqueous electrolyte in which an electrolyte is dissolved in a nonaqueous solvent, R 1 and R 2 are each independently A heterocyclic substituent such as a benzyl group, a tolyl group, a pyridyl group or a pyrimidyl group; a substituent such as an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms.

【0008】前記一般式(I)で表されるジスルフィド
誘導体の具体例としては、例えば、ジベンジルジスルフ
ィド、ジ−p−トリルジスルフィド、2,2’−ジピリ
ジルジスルフィド、5,5’−ジピリジルジスルフィ
ド、2,2’−ジピリミジルジスルフィド、ジ−n−ブ
チルジスルフィド、ジ−iso−ブチルジスルフィド、
ジ−tert−ブチルジスルフィド、ジシクロヘキシル
ジスルフィドなどが挙げられる。
Specific examples of the disulfide derivative represented by the general formula (I) include, for example, dibenzyl disulfide, di-p-tolyl disulfide, 2,2'-dipyridyl disulfide, 5,5'-dipyridyl disulfide, 2,2′-dipyrimidyl disulfide, di-n-butyl disulfide, di-iso-butyl disulfide,
Di-tert-butyl disulfide, dicyclohexyl disulfide and the like.

【0009】非水電解液中に含有される前記一般式
(I)で表されるジスルフィド誘導体の含有量は、過度
に多いと電池性能が低下することがあり、また、過度に
少ないと期待した十分な電池性能が得られない。したが
って、その含有量は非水電解液の重量に対して0.00
1〜2重量%、特に0.01〜0.5重量%の範囲がサ
イクル特性が向上するので好ましい。
When the content of the disulfide derivative represented by the general formula (I) contained in the nonaqueous electrolyte is excessively large, battery performance may be reduced, and it is expected that the content is excessively small. Sufficient battery performance cannot be obtained. Therefore, its content is 0.00% based on the weight of the non-aqueous electrolyte.
The range of 1 to 2% by weight, particularly 0.01 to 0.5% by weight is preferable because the cycle characteristics are improved.

【0010】本発明で使用される非水溶媒としては、高
誘電率溶媒と低粘度溶媒とからなるものが好ましい。高
誘電率溶媒としては、例えば、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)、ブチレン
カーボネート(BC)などの環状カーボネート類が好適
に挙げられる。これらの高誘電率溶媒は、一種類で使用
してもよく、また二種類以上組み合わせて使用してもよ
い。
The non-aqueous solvent used in the present invention is preferably a solvent composed of a high dielectric constant solvent and a low viscosity solvent. Preferred examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more.

【0011】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジエチルカーボネート(DEC)などの鎖状カ
ーボネート類、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、1,2−ジブト
キシエタンなどのエーテル類、γ−ブチロラクトンなど
のラクトン類、アセトニトリルなどのニトリル類、プロ
ピオン酸メチルなどのエステル類、ジメチルホルムアミ
ドなどのアミド類が挙げられる。これらの低粘度溶媒は
一種類で使用してもよく、また二種類以上組み合わせて
使用してもよい。高誘電率溶媒と低粘度溶媒とはそれぞ
れ任意に選択され組み合わせて使用される。なお、前記
の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率
溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは
1:4〜7:3の割合で使用される。
As the low-viscosity solvent, for example, dimethyl carbonate (DMC), methyl ethyl carbonate (M
EC), chain carbonates such as diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane And lactones such as γ-butyrolactone, nitriles such as acetonitrile, esters such as methyl propionate, and amides such as dimethylformamide. These low-viscosity solvents may be used alone or in combination of two or more. The high dielectric constant solvent and the low viscosity solvent are arbitrarily selected and used in combination. The high dielectric constant solvent and the low viscosity solvent are used in a volume ratio (high dielectric constant solvent: low viscosity solvent) of usually 1: 9 to 4: 1, preferably 1: 4 to 7: 3. You.

【0012】本発明で使用される電解質としては、例え
ば、LiPF6 、LiBF4 、LiClO4、LiN
(SO2CF32、LiN(SO2252、LiC
(SO2CF33などが挙げられる。これらの電解質
は、一種類で使用してもよく、二種類以上組み合わせて
使用してもよい。これら電解質は、前記の非水溶媒に通
常0.1〜3M、好ましくは0.5〜1.5Mの濃度で
溶解されて使用される。
The electrolyte used in the present invention includes, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN
(SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC
(SO 2 CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are used after being dissolved in the above non-aqueous solvent at a concentration of usually 0.1 to 3M, preferably 0.5 to 1.5M.

【0013】本発明の非水電解液は、例えば、前記の高
誘電率溶媒や低粘度溶媒を混合し、これに前記の電解質
を溶解し、前記一般式(I)で表されるジスルフィド誘
導体を溶解することにより得られる。
The non-aqueous electrolyte solution of the present invention is prepared, for example, by mixing the above-mentioned high-dielectric solvent or low-viscosity solvent, dissolving the above-mentioned electrolyte, and adding the disulfide derivative represented by the above-mentioned general formula (I). Obtained by dissolving.

【0014】例えば、正極活物質としてはコバルト、マ
ンガン、ニッケル、クロム、鉄およびバナジウムからな
る群より選ばれる少なくとも一種類の金属とリチウムと
の複合金属酸化物が使用される。このような複合金属酸
化物としては、例えば、LiCoO2、LiMn24
LiNiO2などが挙げられる。
For example, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used as the positive electrode active material. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 ,
LiNiO 2 and the like.

【0015】正極は、前記の正極活物質をアセチレンブ
ラック、カーボンブラックなどの導電剤、ポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)などの結着剤および溶剤と混練して正極合
剤とした後、この正極材料を集電体としてのアルミニウ
ム箔やステンレス製のラス板に塗布して、乾燥、加圧成
型後、50℃〜250℃程度の温度で2時間程度真空下
で加熱処理することにより作製される。
The positive electrode is prepared by kneading the positive electrode active material with a conductive agent such as acetylene black or carbon black, a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) and a solvent, and mixing the mixture with a solvent. After that, this positive electrode material is applied to an aluminum foil or a stainless steel lath plate as a current collector, dried and pressed, and then heat-treated under a vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It is produced by doing.

【0016】負極活物質としては、リチウム金属やリチ
ウム合金、およびリチウムを吸蔵・放出可能な黒鉛型結
晶構造を有する炭素材料〔熱分解炭素類、コークス類、
グラファイト類(人造黒鉛、天然黒鉛など)、有機高分
子化合物燃焼体、炭素繊維〕や複合スズ酸化物などの物
質が使用される。特に、格子面(002)の面間隔(d
002)が3.35〜3.40Å(オングストローム)で
ある黒鉛型結晶構造を有する炭素材料を使用することが
好ましい。なお、炭素材料のような粉末材料はエチレン
プロピレンジエンターポリマー(EPDM)、ポリテト
ラフルオロエチレン(PTFE)、ポリフッ化ビニリデ
ン(PVDF)などの結着剤と混練して負極合剤として
使用される。
Examples of the negative electrode active material include lithium metal, lithium alloy, and carbon materials having a graphite type crystal structure capable of inserting and extracting lithium (pyrolytic carbons, cokes,
Materials such as graphites (artificial graphite, natural graphite, etc.), organic polymer compound burners, carbon fibers] and composite tin oxide are used. In particular, the spacing (d) of the lattice plane (002)
It is preferable to use a carbon material having a graphite type crystal structure in which ( 002 ) is 3.35 to 3.40 ° (angstrom). A powder material such as a carbon material is kneaded with a binder such as ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF) and used as a negative electrode mixture.

【0017】リチウム二次電池の構造は特に限定される
ものではなく、正極、負極および単層又は複層のセパレ
ータを有するコイン型電池、さらに、正極、負極および
ロール状のセパレータを有する円筒型電池や角型電池な
どが一例として挙げられる。なお、セパレータとしては
公知のポリオレフィンの微多孔膜、織布、不織布などが
使用される。
The structure of the lithium secondary battery is not particularly limited. A coin-type battery having a positive electrode, a negative electrode and a single-layer or multi-layer separator, and a cylindrical battery having a positive electrode, a negative electrode and a roll-shaped separator And a prismatic battery. As the separator, a known microporous polyolefin membrane, woven fabric, nonwoven fabric, or the like is used.

【0018】[0018]

【実施例】次に、実施例および比較例を挙げて、本発明
を具体的に説明する。 実施例1 〔非水電解液の調製〕EC:DMC(容量比)=1:2
の非水溶媒を調製し、これにLiPF6を1Mの濃度に
なるように溶解して非水電解液を調製した後、さらにジ
スルフィド誘導体(添加剤)としてジ−p−トリルジス
ルフィド[R1=R2=p−トリル基]を非水電解液に対
して0.1重量%となるように加えた。
Next, the present invention will be specifically described with reference to examples and comparative examples. Example 1 [Preparation of non-aqueous electrolyte] EC: DMC (volume ratio) = 1: 2
Was prepared and a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 to a concentration of 1 M, and then di-p-tolyl disulfide [R 1 = as a disulfide derivative (additive). R 2 = p-tolyl group] was added so as to be 0.1% by weight based on the non-aqueous electrolyte.

【0019】〔リチウム二次電池の作製および電池特性
の測定〕LiCoO2(正極活物質)を80重量%、ア
セチレンブラック(導電剤)を10重量%、ポリフッ化
ビニリデン(結着剤)を10重量%の割合で混合し、こ
れに1−メチル−2−ピロリドン溶剤を加えて混合した
ものをアルミニウム箔上に塗布し、乾燥、加圧成型、加
熱処理して正極を調製した。天然黒鉛(負極活物質)を
90重量%、ポリフッ化ビニリデン(結着剤)を10重
量%の割合で混合し、これに1−メチル−2−ピロリド
ン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、
加圧成型、加熱処理して負極を調製した。そして、ポリ
プロピレン微多孔性フィルムのセパレータを用い、上記
の非水電解液を注入させてコイン電池(直径20mm、
厚さ3.2mm)を作製した。このコイン電池を用い
て、室温(20℃)下、0.8mAの定電流及び定電圧
で、終止電圧4.2Vまで5時間充電し、次に0.8m
Aの定電流下、終止電圧2.7Vまで放電し、この充放
電を繰り返した。初期充放電容量は、EC−DMC(1
/2)を非水電解液として用いた場合(比較例1)とほ
ぼ同等であり、50サイクル後の電池特性を測定したと
ころ、初期放電容量を100%としたときの放電容量維
持率は92.4%であった。また、低温特性も良好であ
った。コイン電池の作製条件および電池特性を表1に示
す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] 80% by weight of LiCoO 2 (cathode active material), 10% by weight of acetylene black (conductive agent), and 10% by weight of polyvinylidene fluoride (binder) % Of the mixture, a 1-methyl-2-pyrrolidone solvent was added to the mixture, and the mixture was applied onto an aluminum foil, dried, press-molded, and heat-treated to prepare a positive electrode. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were added, and a 1-methyl-2-pyrrolidone solvent was added thereto. Applied, dried,
A negative electrode was prepared by pressure molding and heat treatment. Then, using a separator made of a polypropylene microporous film, the above non-aqueous electrolyte was injected, and a coin battery (20 mm in diameter,
(Thickness: 3.2 mm). Using this coin battery, the battery was charged to a final voltage of 4.2 V for 5 hours at a constant current and a constant voltage of 0.8 mA at room temperature (20 ° C.).
Under the constant current of A, the battery was discharged to a final voltage of 2.7 V, and the charging and discharging were repeated. The initial charge / discharge capacity is EC-DMC (1
/ 2) as the non-aqueous electrolyte solution (Comparative Example 1), and the battery characteristics after 50 cycles were measured. The discharge capacity retention ratio when the initial discharge capacity was 100% was 92%. 0.4%. Also, the low-temperature characteristics were good. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0020】実施例2 添加剤として、ジ−n−ブチルジスルフィド[R1=R2
=n−ブチル基]を非水電解液に対して0.1重量%使
用したほかは実施例1と同様に非水電解液を調製してコ
イン電池を作製し、50サイクル後の電池特性を測定し
たところ、放電容量維持率は92.1%であった。コイ
ン電池の作製条件および電池特性を表1に示す。
Example 2 As an additive, di-n-butyl disulfide [R 1 = R 2
= N-butyl group] was used in the same manner as in Example 1 except that 0.1% by weight of the non-aqueous electrolyte was used to prepare a non-aqueous electrolyte and a coin battery was manufactured. As a result of the measurement, the discharge capacity retention was 92.1%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0021】実施例3 添加剤として、2,2’−ジピリジルジスルフィド[R
1=R2=2−ピリジル基]を非水電解液に対して0.1
重量%使用したほかは実施例1と同様に非水電解液を調
製してコイン電池を作製し、50サイクル後の電池特性
を測定したところ、放電容量維持率は89.3%であっ
た。コイン電池の作製条件および電池特性を表1に示
す。
Example 3 As an additive, 2,2'-dipyridyl disulfide [R
1 = R 2 = 2-pyridyl group] with respect to the non-aqueous electrolyte
A non-aqueous electrolyte solution was prepared in the same manner as in Example 1 to prepare a coin battery, except that the weight% was used, and the battery characteristics after 50 cycles were measured. As a result, the discharge capacity retention ratio was 89.3%. Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0022】比較例1 EC:DMC(容量比)=1:2の非水溶媒を調製し、
これにLiPF6を1Mの濃度になるように溶解した。
このときジスルフィド誘導体は全く添加しなかった。こ
の非水電解液を使用して実施例1と同様にコイン電池を
作製し、電池特性を測定した。初期放電容量に対し、5
0サイクル後の放電容量維持率は83.8%であった。
コイン電池の作製条件および電池特性を表1に示す。
Comparative Example 1 A non-aqueous solvent of EC: DMC (volume ratio) = 1: 2 was prepared.
LiPF 6 was dissolved therein to a concentration of 1M.
At this time, no disulfide derivative was added. Using this non-aqueous electrolyte, a coin battery was produced in the same manner as in Example 1, and the battery characteristics were measured. 5 for the initial discharge capacity
The discharge capacity retention rate after 0 cycles was 83.8%.
Table 1 shows the manufacturing conditions and battery characteristics of the coin battery.

【0023】[0023]

【表1】 [Table 1]

【0024】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に類推可能な様々な組み合わせ
が可能である。特に、上記実施例の溶媒の組み合わせは
限定されるものではない。更には、上記実施例はコイン
電池に関するものであるが、本発明は円筒形、角柱形の
電池にも適用される。
It should be noted that the present invention is not limited to the embodiments described above, and various combinations that can be easily inferred from the gist of the invention are possible. In particular, the combinations of the solvents in the above examples are not limited. Further, while the above embodiments relate to coin batteries, the present invention is also applicable to cylindrical and prismatic batteries.

【0025】[0025]

【発明の効果】本発明によれば、電池のサイクル特性、
電気容量、保存特性などの電池特性に優れたリチウム二
次電池を提供することができる。
According to the present invention, the cycle characteristics of the battery,
A lithium secondary battery having excellent battery characteristics such as electric capacity and storage characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松森 保男 山口県宇部市大字小串1978番地の5 宇部 興産株式会社宇部研究所内 Fターム(参考) 5H029 AJ03 AJ04 AJ05 AK03 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ03 DJ09 HJ01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuo Matsumori 5F, 1978 Kogushi, Ube City, Ube City, Yamaguchi Prefecture F-term in the Ube Research Laboratory, Ube Industries, Ltd. 5H029 AJ03 AJ04 AJ05 AK03 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ03 DJ09 HJ01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非水溶媒に電解質が溶解されている非水
電解液において、該非水電解液中に下記一般式(I) R1−S−S−R2 (I) (式中、R1、R2はそれぞれ独立して、ベンジル基、ト
リル基、ピリジル基、ピリミジル基、炭素数1〜12の
アルキル基、炭素数3〜6のシクロアルキル基を示
す。)で表されるジスルフィド誘導体が含有されている
ことを特徴とする非水電解液。
In a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, the following general formula (I) R 1 -SSR 2 (I) 1 and R 2 each independently represent a benzyl group, a tolyl group, a pyridyl group, a pyrimidyl group, an alkyl group having 1 to 12 carbon atoms, and a cycloalkyl group having 3 to 6 carbon atoms.) A non-aqueous electrolyte solution comprising:
【請求項2】 非水電解液中にジスルフィド誘導体が
0.001〜2重量%含有されていることを特徴とする
請求項1記載の非水電解液。
2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte contains 0.001 to 2% by weight of a disulfide derivative.
【請求項3】 正極、負極および非水溶媒に電解質が溶
解されている非水電解液からなるリチウム二次電池にお
いて、該非水電解液中に下記一般式(I) R1−S−S−R2 (I) (式中、R1、R2はそれぞれ独立して、ベンジル基、ト
リル基、ピリジル基、ピリミジル基、炭素数1〜12の
アルキル基、炭素数3〜6のシクロアルキル基を示
す。)で表されるジスルフィド誘導体が含有されている
ことを特徴とするリチウム二次電池。
3. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains the following general formula (I): R 1 -S-S- R 2 (I) (wherein, R 1 and R 2 are each independently a benzyl group, a tolyl group, a pyridyl group, a pyrimidyl group, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms) The lithium secondary battery contains a disulfide derivative represented by the following formula:
【請求項4】 非水電解液中にジスルフィド誘導体が
0.001〜2重量%含有されていることを特徴とする
請求項3記載のリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the non-aqueous electrolyte contains 0.001 to 2% by weight of a disulfide derivative.
JP09149699A 1998-09-03 1999-03-31 Nonaqueous electrolyte and lithium secondary battery using the same Expired - Lifetime JP4042082B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP09149699A JP4042082B2 (en) 1998-09-03 1999-03-31 Nonaqueous electrolyte and lithium secondary battery using the same
US10/383,790 US7691539B2 (en) 1998-09-03 2003-03-06 Non-aqueous secondary battery having increased discharge capacity retention

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-248975 1998-09-03
JP24897598 1998-09-03
JP09149699A JP4042082B2 (en) 1998-09-03 1999-03-31 Nonaqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000149986A true JP2000149986A (en) 2000-05-30
JP4042082B2 JP4042082B2 (en) 2008-02-06

Family

ID=26432933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09149699A Expired - Lifetime JP4042082B2 (en) 1998-09-03 1999-03-31 Nonaqueous electrolyte and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4042082B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025611A (en) * 2000-07-07 2002-01-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003077533A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous electrolyte
EP1304758A1 (en) * 2000-06-26 2003-04-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
JP2005353582A (en) * 2004-05-11 2005-12-22 Sony Corp Electrolytic solution and battery
KR100558842B1 (en) * 2001-05-16 2006-03-10 에스케이씨 주식회사 Organic electrolytic solution and lithium battery adopting the same
JPWO2005048391A1 (en) * 2003-11-13 2007-05-31 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery
WO2012029653A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JP2016021289A (en) * 2014-07-11 2016-02-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102034810B1 (en) * 2015-09-30 2019-11-08 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304758A1 (en) * 2000-06-26 2003-04-23 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
EP1304758A4 (en) * 2000-06-26 2006-03-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
US7132199B2 (en) 2000-06-26 2006-11-07 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4626020B2 (en) * 2000-07-07 2011-02-02 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP2002025611A (en) * 2000-07-07 2002-01-25 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100558842B1 (en) * 2001-05-16 2006-03-10 에스케이씨 주식회사 Organic electrolytic solution and lithium battery adopting the same
JP2003077533A (en) * 2001-08-31 2003-03-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous electrolyte
JP4765629B2 (en) * 2003-11-13 2011-09-07 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery
JPWO2005048391A1 (en) * 2003-11-13 2007-05-31 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery
JP2005353582A (en) * 2004-05-11 2005-12-22 Sony Corp Electrolytic solution and battery
WO2012029653A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
JP2016021289A (en) * 2014-07-11 2016-02-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4042082B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3951486B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2001313071A (en) Nonaqueous electrolyte and lithium secondary cell using it
JP2001313072A (en) Electrolyte for lithium secondary cell and lithium secondary cell using it
JP4710116B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633269B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3663897B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4045644B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP3610948B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000149986A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP4075416B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP5110057B2 (en) Lithium secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000195546A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2009283473A5 (en)
JPH11126631A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20191122

Year of fee payment: 12

EXPY Cancellation because of completion of term