JP4626020B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4626020B2
JP4626020B2 JP2000206469A JP2000206469A JP4626020B2 JP 4626020 B2 JP4626020 B2 JP 4626020B2 JP 2000206469 A JP2000206469 A JP 2000206469A JP 2000206469 A JP2000206469 A JP 2000206469A JP 4626020 B2 JP4626020 B2 JP 4626020B2
Authority
JP
Japan
Prior art keywords
positive electrode
carbonate
aqueous electrolyte
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000206469A
Other languages
Japanese (ja)
Other versions
JP2002025611A (en
Inventor
祐之 村井
幸重 稲葉
清美 加藤
豊次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000206469A priority Critical patent/JP4626020B2/en
Publication of JP2002025611A publication Critical patent/JP2002025611A/en
Application granted granted Critical
Publication of JP4626020B2 publication Critical patent/JP4626020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池の、とくにその正極活物質及び電解液に関するものである。
【0002】
【従来の技術】
リチウムまたはリチウム化合物を負極とする非水電解液二次電池は高電圧で高エネルギー密度が期待され、盛んに研究がなされている。
【0003】
特に、より高エネルギー密度を有する4ボルト級の非水電解液二次電池の正極活物質としてLiMn24、LiCoO2、LiNiO2、LiFeO2などが注目され、LiCoO2はリチウムイオン電池の正極活物質として広く用いられている。
【0004】
一方、負極としては安全性やレート特性などの点から金属リチウムに代わり、リチウムを吸蔵、放出可能な炭素材料、とくに黒鉛材料が広く用いられている。特に、黒鉛化度の進んだ黒鉛粉末は、高容量で、放電電位が金属リチウムに比べ約0.1V貴であり、電池電圧の低下が少ないという特徴を有しており、盛んに研究がなされてきた。
【0005】
このような非水電解液二次電池の電解液の溶媒としては例えばエチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネートなどが研究されてきたが、黒鉛系負極を用いた非水電解液二次電池においてはプロピレンカーボネートを主溶媒に使用すると黒鉛表面で溶媒の分解が激しく進行し、黒鉛系負極への円滑なリチウムの吸蔵、放出が不可能となる。
【0006】
一方エチレンカーボネートはこのような分解がないことから黒鉛系負極を用いた非水電解液二次電池の主溶媒にはエチレンカーボネートが主溶媒として使用されている。エチレンカーボネートはプロピレンカーボネートに比べ、凝固点が36.4度と高いために単独ではなく鎖状カーボネートなどの低粘性溶媒と混合して用いられる。
【0007】
しかしながら、これらの鎖状カーボネートを含有する電解液を用いた際、電解液の分解に起因すると思われる保存特性やサイクル特性の低下により初期の特性が維持できないという問題もある。
【0008】
【発明が解決しようとする課題】
本発明は、これらの従来技術の問題点を解決することを目的としている。すなわち本発明は、非水電解液二次電池の電解液の分解および電解液組成の変化を最小限に抑え、保存特性、サイクル特性に優れた高エネルギー密度の非水電解液二次電池を得ることを目的としている。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の非水電解液二次電池は、リチウムを吸蔵、放出することが可能な活物質を用いた正、負極と非水電解液を備え、前記正極活物質粒子の比表面積が0.25〜0.75m 2 /gであり、かつ前記非水電解液が(化1)に示すエチレンサルファイトと(化2)に示すビニレンカーボネートを含み、前記非水電解液総量に対してエチレンサルファイトが1.0重量%以上2.0重量%以下であり、かつビニレンカーボネートが0.5重量%以上3.0重量%以下であり、前記非水電解液がエチレンカーボネートおよび非対称鎖状カーボネートを含む。
【0010】
【発明の実施の形態】
本発明の請求項1に記載の発明は、リチウムを吸蔵、放出することが可能な活物質を用いた正、負極と非水電解液を備え、前記正極活物質粒子の比表面積が0.25〜0.75m 2 /gであり、かつ前記非水電解液が(化1)に示すエチレンサルファイトと(化2)に示すビニレンカーボネートを含み、前記非水電解液総量に対してエチレンサルファイトが1.0重量%以上2.0重量%以下であり、かつビニレンカーボネートが0.5重量%以上3.0重量%以下であり、前記非水電解液がエチレンカーボネートおよび非対称鎖状カーボネートを含むことを特徴とする。
【0011】
また、正極活物質としてはLiCoO2やLiNiO2、LiMn24を用いることができ、これらの正極活物質の比表面積は0.25〜0.75m2/gとする。正極の形状は必要に応じて結着剤および導電剤とともに混合したのちアルミニウム箔などの集電体に塗布したシート状電極およびプレス成形をしたペレット電極が使用可能である。
【0012】
一方、負極活物質としてはリチウムを吸蔵、放出可能な炭素材料を用いることができ、とくにX線回折における格子面(002)面のd値が0.335〜0.340nmの範囲であることが好ましい。
【0013】
また、非水電解液は溶媒としてエチレンサルファイトとビニレンカーボネートを含有し、さらにエチレンカーボネートとジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートから選ばれる少なくとも1つを混合した混合溶媒を用いることが好ましく、非水電解液中のエチレンサルファイトとビニレンカーボネートの含有量はそれぞれ0.5〜2.0重量%、0.5〜3.0重量%の範囲が好ましい。
【0014】
【実施例】
次に本発明の実施例を図面を参照しながら説明する。
【0015】
(実施例1)
図1は本発明の非水電解液二次電池の縦断面図を示したものである。
【0016】
電池を以下の手順により作製した。正極活物質であるLiCoO2はLi2CO3とCo34とをCo/Liモル比で0.97〜1.04の範囲で混合し、900℃で加熱することによって合成した。LiCoO2の比表面積はこのCo/Liモル比を変化させることにより0.23〜1.25m2/gの範囲で任意にえることができた。さらに、これを100メッシュ以下に分級したものを正極活物質とした。
【0017】
正極活物質1000gに対して導電剤としてアセチレンブラック粉末を100g、結着剤としてのポリ4フッ化エチレンディスパージョンを100gと1%のメチルセルロース粉末を純水に溶解した粘性水溶液を350g加え、混練してペースト状にし、アルミニウムの芯材に塗布し、乾燥、圧延して正極を得た。
【0018】
負極としては負極活物質であるリチウムを吸蔵、放出可能な黒鉛粉末1000gに対して100gのポリ4フッ化エチレンディスパージョンと水を加え、ペースト状にし、これを銅の芯材に塗布、乾燥し、圧延して得た。
【0019】
図1に示すように極板群は正極リード4を有する正極板1と負極リード5を有する負極板2間に両極板より幅の広い帯状の多孔性ポリエチレン製セパレータ3を介して全体を渦巻状に捲回して構成した。
【0020】
さらに、この極板群の上下にはそれぞれにポリプロピレン樹脂製の上部絶縁板6、下部絶縁板7を配して電池ケース8に挿入した。次に、電池ケース8の上部に段部を形成させた後、非水電解液を注入し、封口板9で密閉して電池とした。
【0021】
非水電解液としてはエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合物(1:1:1容積比)にエチレンサルファイト(ES)1重量%およびビニレンカーボネート(VC)2重量%添加した溶媒に、溶質としてLiPF6を1モル/リットル溶解して調整した。
【0022】
(比較例)
溶媒としてエチレンサルファイトとビニレンカーボネートを含有しない電解液を用いる以外は、実施例1と同様の方法で比較例の電池を作製した。
【0023】
(実施例2)
実施例2では比表面積が0.49m2/gである正極活物質を用い、電解液中に含有するエチレンサルファイトとビニレンカーボネートの最適化を行った結果を示す。
【0024】
エチレンサルファイトおよびビニレンカーボネートの含有量をそれぞれ0.2、0.5、1.0、2.0、3.0、5.0重量%とした電解液を作成し、実施例1と同様の方法で電池を作成した。
【0025】
これらの実施例1、2および比較例の電池を20度において放電電流1Aで放電試験を行った。また、充電状態の電池を60度で20日間保存し、保存前と保存後の容量比率を比較した。さらに45度においてサイクル試験を行った。
【0026】
図2に実施例1および比較例の電池の保存前後の電池容量比および45度サイクルにおける100サイクル時点の放電容量維持率を示す。正極の比表面積が0.75m2/g以下の範囲ではエチレンサルファイトとビニレンカーボネート両者を含有する電池は含有しないものに比較して優れた保存特性、サイクル特性を有していることがわかる。特性が向上する理由としては、含有したエチレンサルファイトとビニレンカーボネートが正極の表面で分解され、適度な被膜が形成されることにより、電解液の主溶媒と電極表面が直接接触することがなくなり、電解液の分解を抑制するためであると考えている。
【0027】
しかし、正極活物質の比表面積が1m2/gを越える場合、エチレンサルファイトおよびビニレンカーボネートが共存しても、保存特性が低下することがわかった。これは正極活物質の比表面積が大きくなると、含有したエチレンサルファイトあるいはビニレンカーボネートが正極表面上で過剰に分解され、正極表面上に不動態被膜を形成してしまうためであると思われる。
【0028】
(表1)に実施例2にて作製した電池の60℃保存前後の容量維持率を、(表2)には45度サイクル試験の100サイクル時点での容量維持率をエチレンサルファイト(ES)とビニレンカーボネート(VC)の含有量とともに示す。
【0029】
【表1】

Figure 0004626020
【0030】
【表2】
Figure 0004626020
【0031】
これらの表から、ビニレンカーボネートの最適範囲としては0.5〜3%が最適であることがわかる。またエチレンサルファイトの最適範囲は0.5〜2重量%であった。
【0032】
上記実施例では電解液として、1モル/リットルの六フッ化リン酸リチウムを溶解したエチレンカーボネートとジエチルカーボネートの等比体積混合溶液の場合について説明したが、溶媒としてはこの他に、プロピレンカーボネート、エチレンカーボネート、ジエトキシカーボネートなどのカーボネート類、ガンマーブチロラクトン、酢酸メチルなどのエステル類を単独あるいは1つ以上を混合して用い、溶質として過塩素酸リチウム、ホウフッ化リチウム、六フッ化リン酸リチウムを用いた場合でも、同様の結果を得た。
【0033】
また、実施例では正極活物質としてLiCoO2を用いて説明したが、正極活物質としてはこの他に、LiMn24、LiNiO2などを用いても同様の結果が得られることはいうまでもない。
【0034】
【発明の効果】
以上のように、本発明では、正極活物質粒子の比表面積が0.25〜0.75m2/gであり、かつ非水電解液が溶媒としてエチレンサルファイトとビニレンカーボネートを含むため、保存特性とサイクル特性に優れた非水電解液二次電池を得ることができ、非水電解液二次電池の高性能化に寄与することができる。
【図面の簡単な説明】
【図1】本発明の円筒型非水電解液二次電池の縦断面図
【図2】実施例1と比較の電池の60℃保存特性およびサイクル特性を示した図
【符号の説明】
1 正極板
2 負極板
3 セパレータ
4 正極端子
5 負極端子
6 上部絶縁板
7 下部絶縁板
8 電池ケース
9 封口板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, in particular, a positive electrode active material and an electrolyte.
[0002]
[Prior art]
Nonaqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high voltage and high energy density, and are actively studied.
[0003]
In particular, higher energy density LiMn 2 O 4 as a positive electrode active material of nonaqueous electrolyte secondary battery of 4 V class with, LiCoO 2, LiNiO 2, etc. LiFeO 2 is noted, LiCoO 2 is of lithium-ion battery cathode Widely used as an active material.
[0004]
On the other hand, as a negative electrode, a carbon material capable of occluding and releasing lithium, particularly a graphite material, is widely used instead of metallic lithium from the viewpoint of safety and rate characteristics. In particular, graphite powder with a high degree of graphitization has the characteristics that it has a high capacity, a discharge potential of about 0.1 V noble compared with metallic lithium, and a decrease in battery voltage is small. I came.
[0005]
For example, ethylene carbonate, propylene carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, and the like have been studied as solvents for the electrolyte solution of such a non-aqueous electrolyte secondary battery, but non-aqueous electrolysis using a graphite-based negative electrode. In a liquid secondary battery, when propylene carbonate is used as a main solvent, the decomposition of the solvent proceeds violently on the graphite surface, making it impossible to smoothly occlude and release lithium into the graphite negative electrode.
[0006]
On the other hand, since ethylene carbonate does not have such decomposition, ethylene carbonate is used as a main solvent for a main solvent of a non-aqueous electrolyte secondary battery using a graphite negative electrode. Since ethylene carbonate has a high freezing point of 36.4 degrees compared to propylene carbonate, it is not used alone but is mixed with a low viscosity solvent such as chain carbonate.
[0007]
However, when an electrolytic solution containing these chain carbonates is used, there is a problem that the initial characteristics cannot be maintained due to a decrease in storage characteristics and cycle characteristics that are considered to be caused by decomposition of the electrolytic solution.
[0008]
[Problems to be solved by the invention]
The object of the present invention is to solve these problems of the prior art. That is, the present invention provides a high-energy density non-aqueous electrolyte secondary battery that has excellent storage characteristics and cycle characteristics while minimizing the decomposition of the electrolyte and the change in the electrolyte composition of the non-aqueous electrolyte secondary battery. The purpose is that.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte using an active material capable of occluding and releasing lithium, and the positive electrode active material The specific surface area of the particles is 0.25 to 0.75 m 2 / g, and the non-aqueous electrolyte contains ethylene sulfite represented by (Chemical Formula 1) and vinylene carbonate represented by (Chemical Formula 2), The ethylene sulfite is 1.0 wt% or more and 2.0 wt% or less with respect to the total amount of the liquid, the vinylene carbonate is 0.5 wt% or more and 3.0 wt% or less, and the non-aqueous electrolyte is ethylene Includes carbonates and asymmetric chain carbonates.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte using an active material capable of occluding and releasing lithium, and the positive electrode active material particles have a specific surface area of 0.25. -0.75 m 2 / g, and the non-aqueous electrolyte contains ethylene sulfite shown in (Chemical Formula 1) and vinylene carbonate shown in (Chemical Formula 2 ), and ethylene sulfite with respect to the total amount of the non-aqueous electrolyte. Is 1.0 wt% or more and 2.0 wt% or less, vinylene carbonate is 0.5 wt% or more and 3.0 wt% or less, and the non-aqueous electrolyte contains ethylene carbonate and asymmetric chain carbonate It is characterized by that.
[0011]
As the positive electrode active material can be used LiCoO 2 and LiNiO 2, LiMn 2 O 4, the specific surface area of these positive active material and 0.25~0.75m 2 / g. As the shape of the positive electrode, a sheet electrode applied to a current collector such as an aluminum foil and a press-molded pellet electrode can be used after mixing with a binder and a conductive agent as necessary.
[0012]
On the other hand, a carbon material capable of inserting and extracting lithium can be used as the negative electrode active material, and in particular, the d value of the lattice plane (002) plane in X-ray diffraction is in the range of 0.335 to 0.340 nm. preferable.
[0013]
The nonaqueous electrolytic solution preferably contains ethylene sulfite and vinylene carbonate as a solvent, and further uses a mixed solvent in which at least one selected from ethylene carbonate and dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate is mixed. The contents of ethylene sulfite and vinylene carbonate in the aqueous electrolyte are preferably 0.5 to 2.0% by weight and 0.5 to 3.0% by weight, respectively.
[0014]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
[0015]
Example 1
FIG. 1 shows a longitudinal sectional view of a nonaqueous electrolyte secondary battery of the present invention.
[0016]
A battery was prepared by the following procedure. LiCoO 2 as a positive electrode active material was synthesized by mixing Li 2 CO 3 and Co 3 O 4 in a Co / Li molar ratio of 0.97 to 1.04 and heating at 900 ° C. The specific surface area of LiCoO 2 could be arbitrarily obtained in the range of 0.23 to 1.25 m 2 / g by changing the Co / Li molar ratio. Furthermore, what classify | categorized this to 100 mesh or less was made into the positive electrode active material.
[0017]
Add 100 g of acetylene black powder as a conductive agent to 1000 g of the positive electrode active material, add 100 g of polytetrafluoroethylene dispersion as a binder and 350 g of a viscous aqueous solution obtained by dissolving 1% methylcellulose powder in pure water, and knead. Thus, a paste was formed, applied to an aluminum core, dried and rolled to obtain a positive electrode.
[0018]
As a negative electrode, 100 g of polytetrafluoroethylene dispersion and water are added to 1000 g of graphite powder capable of occluding and releasing lithium as a negative electrode active material to form a paste, which is applied to a copper core and dried. Obtained by rolling.
[0019]
As shown in FIG. 1, the electrode plate group is entirely spiral between a positive electrode plate 1 having a positive electrode lead 4 and a negative electrode plate 2 having a negative electrode lead 5 via a strip-shaped porous polyethylene separator 3 wider than both electrode plates. It was composed by winding around.
[0020]
Further, an upper insulating plate 6 and a lower insulating plate 7 made of polypropylene resin were arranged above and below the electrode plate group and inserted into the battery case 8. Next, after a step was formed on the upper part of the battery case 8, a non-aqueous electrolyte was injected and sealed with a sealing plate 9 to obtain a battery.
[0021]
As a non-aqueous electrolyte, a solvent obtained by adding 1% by weight of ethylene sulfite (ES) and 2% by weight of vinylene carbonate (VC) to a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (1: 1: 1 volume ratio), LiPF 6 was dissolved at 1 mol / liter as a solute and adjusted.
[0022]
(Comparative example)
A battery of a comparative example was produced in the same manner as in Example 1 except that an electrolytic solution containing neither ethylene sulfite nor vinylene carbonate was used as a solvent.
[0023]
(Example 2)
Example 2 shows the result of optimization of ethylene sulfite and vinylene carbonate contained in the electrolytic solution using a positive electrode active material having a specific surface area of 0.49 m 2 / g.
[0024]
Electrolyte solutions with ethylene sulfite and vinylene carbonate content of 0.2, 0.5, 1.0, 2.0, 3.0, 5.0% by weight, respectively, were prepared. The battery was made by the method.
[0025]
The batteries of Examples 1 and 2 and the comparative example were subjected to a discharge test at a discharge current of 1 A at 20 degrees. The charged batteries were stored at 60 degrees for 20 days, and the capacity ratios before and after storage were compared. Further, a cycle test was conducted at 45 degrees.
[0026]
FIG. 2 shows the battery capacity ratio before and after storage of the batteries of Example 1 and the comparative example, and the discharge capacity maintenance rate at the 100th cycle in the 45 degree cycle. It can be seen that when the specific surface area of the positive electrode is in the range of 0.75 m 2 / g or less, the battery containing both ethylene sulfite and vinylene carbonate has excellent storage characteristics and cycle characteristics as compared with those not containing. The reason why the characteristics are improved is that the contained ethylene sulfite and vinylene carbonate are decomposed on the surface of the positive electrode, and an appropriate film is formed, so that the main solvent of the electrolytic solution and the electrode surface are not in direct contact, This is considered to suppress the decomposition of the electrolytic solution.
[0027]
However, it has been found that when the specific surface area of the positive electrode active material exceeds 1 m 2 / g, the storage characteristics deteriorate even if ethylene sulfite and vinylene carbonate coexist. This seems to be because when the specific surface area of the positive electrode active material increases, the contained ethylene sulfite or vinylene carbonate is excessively decomposed on the surface of the positive electrode to form a passive film on the surface of the positive electrode.
[0028]
(Table 1) shows the capacity retention ratio of the battery prepared in Example 2 before and after storage at 60 ° C., and (Table 2) shows the capacity maintenance ratio at the 100th cycle of the 45 ° cycle test in ethylene sulfite (ES). And vinylene carbonate (VC) content.
[0029]
[Table 1]
Figure 0004626020
[0030]
[Table 2]
Figure 0004626020
[0031]
From these tables, it can be seen that the optimum range of vinylene carbonate is 0.5 to 3%. The optimum range of ethylene sulfite was 0.5 to 2% by weight.
[0032]
In the above-mentioned examples, the case of an equivalent volume mixed solution of ethylene carbonate and diethyl carbonate in which 1 mol / liter of lithium hexafluorophosphate was dissolved was described as the electrolytic solution, but as the solvent, propylene carbonate, Use carbonates such as ethylene carbonate and diethoxy carbonate, esters such as gamma-butyrolactone and methyl acetate alone or in combination, and use lithium perchlorate, lithium borofluoride, lithium hexafluorophosphate as solutes. Similar results were obtained when used.
[0033]
In the examples, LiCoO 2 was used as the positive electrode active material, but it is needless to say that similar results can be obtained by using LiMn 2 O 4 , LiNiO 2 or the like as the positive electrode active material. Absent.
[0034]
【The invention's effect】
As described above, in the present invention, the specific surface area of the positive electrode active material particles is 0.25 to 0.75 m 2 / g, and the non-aqueous electrolyte contains ethylene sulfite and vinylene carbonate as a solvent, so In addition, a non-aqueous electrolyte secondary battery excellent in cycle characteristics can be obtained, which can contribute to high performance of the non-aqueous electrolyte secondary battery.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery of the present invention. FIG. 2 is a diagram showing 60 ° C. storage characteristics and cycle characteristics of a battery compared with Example 1.
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode terminal 5 Negative electrode terminal 6 Upper insulating plate 7 Lower insulating plate 8 Battery case 9 Sealing plate

Claims (2)

リチウムを吸蔵、放出することが可能な活物質を用いた正、負極と非水電解液を備え、前記正極活物質粒子の比表面積が0.25〜0.75m2/gであり、かつ前記非水電解液が(化1)に示すエチレンサルファイトと(化2)に示すビニレンカーボネートを含み、前記非水電解液総量に対してエチレンサルファイトが1.0重量%以上2.0重量%以下であり、かつビニレンカーボネートが0.5重量%以上3.0重量%以下であり、前記非水電解液がエチレンカーボネートおよび非対称鎖状カーボネートを含む非水電解液二次電池。
Figure 0004626020
Figure 0004626020
A positive electrode, a negative electrode, and a non-aqueous electrolyte using an active material capable of occluding and releasing lithium, wherein the positive electrode active material particles have a specific surface area of 0.25 to 0.75 m 2 / g, and nonaqueous electrolyte seen contains vinylene carbonate shown in (Formula 1) in ethylene sulfite showing the (Formula 2), 2.0 weight the nonaqueous ethylene sulfite 1.0% by weight or more with respect to the electrolyte total % Non-aqueous electrolyte secondary battery in which vinylene carbonate is 0.5 wt% or more and 3.0 wt% or less, and the non-aqueous electrolyte contains ethylene carbonate and asymmetric chain carbonate .
Figure 0004626020
Figure 0004626020
正極活物質がLiCoOThe positive electrode active material is LiCoO 22 、LiNiOLiNiO 22 、LiMn, LiMn 22 O 4Four より選ばれる少なくとも1つである請求項1記載の非水電解液二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is at least one selected from the above.
JP2000206469A 2000-07-07 2000-07-07 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4626020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206469A JP4626020B2 (en) 2000-07-07 2000-07-07 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000206469A JP4626020B2 (en) 2000-07-07 2000-07-07 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002025611A JP2002025611A (en) 2002-01-25
JP4626020B2 true JP4626020B2 (en) 2011-02-02

Family

ID=18703389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206469A Expired - Fee Related JP4626020B2 (en) 2000-07-07 2000-07-07 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4626020B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492023B2 (en) * 2002-05-17 2010-06-30 三菱化学株式会社 Non-aqueous electrolyte secondary battery
KR101111365B1 (en) 2002-07-15 2012-03-09 우베 고산 가부시키가이샤 Non-aqueous electrolytic solution and lithium battery
JP4056346B2 (en) * 2002-09-30 2008-03-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4315705B2 (en) * 2003-02-27 2009-08-19 三洋電機株式会社 Non-aqueous lithium secondary battery
JP2004281218A (en) * 2003-03-14 2004-10-07 Yuasa Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
US20070072086A1 (en) * 2003-05-15 2007-03-29 Yuasa Corporation Nonaqueous electrolyte cell
RU2335044C1 (en) 2005-02-15 2008-09-27 Эл Джи Кем, Лтд. Lithium secondary storage battery with electrolyte containing ammonium compounds
JP5063948B2 (en) * 2005-07-21 2012-10-31 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20090142663A1 (en) * 2005-07-21 2009-06-04 Takashi Takeuchi Nonaqueous electrolyte secondary battery and method of producing the same
US8568932B2 (en) 2005-08-18 2013-10-29 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
KR101082152B1 (en) 2006-06-20 2011-11-09 주식회사 엘지화학 Electrolyte for improving life characteristics at a high temperature and lithium secondary battery comprising the same
ES2545779T3 (en) 2007-11-09 2015-09-15 Lg Chem, Ltd. Secondary lithium battery containing additives for enhanced high temperature characteristics
JP5261208B2 (en) * 2009-01-21 2013-08-14 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2010120947A (en) * 2009-12-24 2010-06-03 Ube Ind Ltd Nonaqueous electrolyte, and lithium battery
WO2013188594A2 (en) * 2012-06-12 2013-12-19 A123 Systems, LLC Non-aqueous electrolytic rechargeable batteries for extended temperature range operation
KR20160055084A (en) * 2014-11-07 2016-05-17 에이일이삼 시스템즈, 엘엘씨 Non-aqueous electrolytic rechargeable batteries for extended temperature range operation
WO2017190364A1 (en) * 2016-05-06 2017-11-09 深圳先进技术研究院 Secondary battery and preparation method therefor
JP2016181937A (en) * 2016-07-08 2016-10-13 カシオ計算機株式会社 Terminal device and program
US20220328863A1 (en) * 2018-05-22 2022-10-13 Shenzhen Institutes Of Advanced Technology Secondary battery and preparation method therefor
CN115939520A (en) 2019-09-13 2023-04-07 旭化成株式会社 Nonaqueous electrolyte solution and nonaqueous secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249073A (en) * 1991-02-05 1992-09-04 Sony Corp Non-aqueous electrolyte secondary battery
JPH10162830A (en) * 1996-11-29 1998-06-19 Dowa Mining Co Ltd Positive electrode active material for lithium secondary battery, and secondary battery using same
JPH11121032A (en) * 1997-10-13 1999-04-30 Mitsubishi Chemical Corp Nonaqueous electrolyte secondary battery
JP2000149986A (en) * 1998-09-03 2000-05-30 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249073A (en) * 1991-02-05 1992-09-04 Sony Corp Non-aqueous electrolyte secondary battery
JPH10162830A (en) * 1996-11-29 1998-06-19 Dowa Mining Co Ltd Positive electrode active material for lithium secondary battery, and secondary battery using same
JPH11121032A (en) * 1997-10-13 1999-04-30 Mitsubishi Chemical Corp Nonaqueous electrolyte secondary battery
JP2000149986A (en) * 1998-09-03 2000-05-30 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using it

Also Published As

Publication number Publication date
JP2002025611A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
JP4151060B2 (en) Non-aqueous secondary battery
JP4703203B2 (en) Nonaqueous electrolyte secondary battery
US8029934B2 (en) Lithium secondary battery
JP2007207699A (en) Nonaqueous electrolyte secondary battery
JP2006216378A5 (en)
JPH09147913A (en) Nonaqueous electrolyte battery
KR101052377B1 (en) Nonaqueous Electrolyte Secondary Battery
JPH08236155A (en) Lithium secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
JP4202009B2 (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP4172175B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4176435B2 (en) Non-aqueous electrolyte battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
WO2021260274A1 (en) Improved electrolyte for electrochemical cell
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2003331847A (en) Nonaqueous secondary battery and method for manufacturing paint of positive electrode
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JP2000268880A (en) Lithium secondary battery
JP2005078799A (en) Nonaqueous electrolyte battery
JP2000188127A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141119

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees