JP2778065B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2778065B2
JP2778065B2 JP63299840A JP29984088A JP2778065B2 JP 2778065 B2 JP2778065 B2 JP 2778065B2 JP 63299840 A JP63299840 A JP 63299840A JP 29984088 A JP29984088 A JP 29984088A JP 2778065 B2 JP2778065 B2 JP 2778065B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
lithium
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63299840A
Other languages
Japanese (ja)
Other versions
JPH02144860A (en
Inventor
信夫 江田
秀 越名
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63299840A priority Critical patent/JP2778065B2/en
Publication of JPH02144860A publication Critical patent/JPH02144860A/en
Application granted granted Critical
Publication of JP2778065B2 publication Critical patent/JP2778065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池に関するものである。Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

従来の技術 従来、この種の非水電解液電池は高電圧で、高エネル
ギー密度を有するため広く民生用電子機器の電源に用い
られている。最近ではこの電池を二次電池化しようとす
る試みが盛んである。現在、正極に二酸化マンガンを用
いた円筒形電池の発表などもされている。より高エネル
ギー密度化をめざすと金属リチウムを負極に用いること
になるが、この場合、金属リチウムと電解液つまり支持
塩や有機溶媒およびそれらに含まれる不純物との、化学
反応と充電時の電気化学的分解反応によるリチウム負極
の消耗を極力抑制することが求められる。現状の技術で
は上記の消耗が避けられないため、負極の容量は必然的
に正極の容量より3〜4倍大きい電池構成とせざるをえ
ない。
2. Description of the Related Art Conventionally, a non-aqueous electrolyte battery of this type has a high voltage and a high energy density, and thus has been widely used as a power source for consumer electronic devices. Recently, attempts to convert this battery into a secondary battery are active. At present, a cylindrical battery using manganese dioxide for the positive electrode has also been announced. In order to achieve higher energy density, lithium metal is used for the negative electrode. In this case, the chemical reaction between lithium metal and the electrolyte, that is, the supporting salt, the organic solvent, and the impurities contained therein, and the electrochemical reaction during charging It is required to minimize consumption of the lithium anode due to the thermal decomposition reaction. With the current technology, the above-mentioned consumption is inevitable, so that the capacity of the negative electrode is inevitably 3 to 4 times larger than the capacity of the positive electrode.

発明が解決しようとする課題 負極に金属リチウムを用い、充電により再使用を可能
としようとする非水電解液二次電池開発の課題の大半を
占めるものに、負極リチウムの充放電可逆性がある。そ
のためには、化学的に安定であり、可逆性をもたらす最
適な支持塩と有機溶媒の開発もしくは選択が不可欠であ
る。なかでも大きな影響を与える支持塩については、充
放電可逆性能を示す指標である充放電効率の点で最も優
れているものは六フッ化ヒ酸リチウム(LiAsF6)で、ほ
ぼ同等の水準にあるものに過塩素酸リチウム(LiCl
O4)、ついでトリフルオロメタンスルホン酸リチウム
(LiCF3SO3)と六フッ化リン酸リチウム(LiPF6)とな
る。一方、高温貯蔵性についてはLiAsF6とLiClO4が優れ
ており、やや下位に属するものにLiPF6とLiCF3SO3があ
る。また、有機溶媒については分子の構造的安定性とそ
の後の反応生成物の堆積形態からエチレンカーボネート
(EC)が最も好ましいが、常温では固体であることを考
えて他の比較的安定な溶媒との混合溶媒とすることで課
題のほとんどは解決できる。
Problems to be Solved by the Invention Lithium metal is used for the negative electrode, and charging / discharging reversibility of the negative electrode lithium is one of the major issues in the development of non-aqueous electrolyte secondary batteries that attempt to be reusable by charging. . For that purpose, it is essential to develop or select an optimal supporting salt and an organic solvent which are chemically stable and provide reversibility. Of the support salts that have the greatest impact, lithium arsenate (LiAsF 6 ), which has the best charge-discharge efficiency, which is an indicator of charge-discharge reversibility, is almost at the same level. Lithium perchlorate (LiCl
O 4 ), followed by lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and lithium hexafluorophosphate (LiPF 6 ). On the other hand, LiAsF 6 and LiClO 4 are superior in terms of high-temperature storability, and LiPF 6 and LiCF 3 SO 3 belong to lower ranks. Ethylene carbonate (EC) is most preferable as the organic solvent in view of the structural stability of the molecule and the deposition form of the subsequent reaction product. However, considering that it is a solid at room temperature, it is difficult to use ethylene carbonate (EC) with other relatively stable solvents. Most problems can be solved by using a mixed solvent.

上記支持塩については、さらにヒ素(AS)を含有する
ものは環境保全性の点で、LiClO4は電池にしたときに過
放電や転極後の安全性とそれぞれ問題があり、実用には
供し難い。残るLiCF3SO3については、イオン導電性と溶
解性にもとづく分極特性およびコストの点から実用的で
はない。最後のLiPF6は高温貯蔵特性を改善することが
電池を実用化するための課題である。
Among the above supporting salts, those containing arsenic (AS) further have problems in terms of environmental preservation, and LiClO 4 has problems in terms of safety after overdischarge and reversal when converted into a battery. hard. The remaining LiCF 3 SO 3 is not practical in terms of cost and polarization characteristics based on ionic conductivity and solubility. Finally, improving the high-temperature storage characteristics of LiPF 6 is an issue for putting batteries to practical use.

本発明は、上記の課題を解決するもので、充放電効率
および高温貯蔵性にすぐれた非水電解液を有する二次電
池を得ることを目的とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to obtain a secondary battery having a non-aqueous electrolyte having excellent charge / discharge efficiency and high-temperature storability.

課題を解決するための手段 上記の支持塩であるLiPF6を安定かつ高純度に製造す
る際に用いられるフッ化水素(HF)の製品中の残留量を
規制することにあり、ECと一緒に用いるとき、その量を
500ppm以下にするものである。
Means to solve the problem It is to regulate the residual amount of hydrogen fluoride (HF) used in the stable and high-purity production of LiPF 6 as the above supporting salt, together with EC. When used, the amount
It should be less than 500ppm.

作 用 LiPF6中に残留するHFが、電池の中ではセパレータな
どの部品や正極などに残存した水分によりフッ化水素酸
となり、この酸が電解液中の有機溶媒を分解せしめるた
めに高温貯蔵特性を低下せしめるものと考えられる。こ
のことから、LiPF6中のHFの量を規制することで電解液
の分解が抑制され、高温貯蔵特性にすぐれた非水電解液
二次電池を得ることができる。
Action HF remaining in LiPF 6 becomes hydrofluoric acid in the battery due to water remaining in components such as the separator and the positive electrode, and this acid decomposes the organic solvent in the electrolyte. It is thought that this will reduce the From this, by limiting the amount of HF in LiPF 6 , decomposition of the electrolytic solution is suppressed, and a nonaqueous electrolytic solution secondary battery having excellent high-temperature storage characteristics can be obtained.

実施例 以下、図面とともに本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

実施例1 第1図は、実施例に用いたコイン形の非水電解液二次
電池を示す。図において、1は耐食性ステンレス製ケー
ス、2は同材質の封口板、3は封口板の内面にスポット
溶接した120メッシュのステンレンス製ネットの集電
体、4は厚さ80μm,直径15.0mmのリチウム負極であり3
の集電体に圧着してあり、容量は26.5mAhである。5は
ポリプロピレン製の微孔質フィルムのセパレータであ
る。6は正極で、化学合成二酸化マンガンを大気中で38
0℃にて120時間焼成したものの70重量部に、カーボンブ
ラック10重量部およびフッ素樹脂結着剤20重量部を加え
混合したものの100mgを直径15mm,厚さ0.9mmに成型した
ものであり、電気容量約22mAhである。
Example 1 FIG. 1 shows a coin-shaped non-aqueous electrolyte secondary battery used in Examples. In the figure, 1 is a corrosion-resistant stainless steel case, 2 is a sealing plate of the same material, 3 is a current collector made of a 120 mesh stainless steel net spot-welded to the inner surface of the sealing plate, 4 is lithium having a thickness of 80 μm and a diameter of 15.0 mm. Negative electrode 3
With a capacity of 26.5 mAh. Reference numeral 5 denotes a polypropylene microporous film separator. Reference numeral 6 denotes a positive electrode, which is made of chemically synthesized manganese dioxide in the atmosphere.
100 mg of a mixture obtained by adding 10 parts by weight of carbon black and 20 parts by weight of a fluorocarbon resin binder to 70 parts by weight of the substance baked at 0 ° C. for 120 hours and molding the mixture to a diameter of 15 mm and a thickness of 0.9 mm. The capacity is about 22mAh.

電解液の溶媒は、上記に示したエチレンカーボネート
(EC)とプロピレンカーボネート(PC)の等体積混合溶
媒を用い、支持塩にはLiPF6で、その中の残留フッ化水
素(HF)の量は、表1に示したように、1000,750,500,2
50,100ppmのものを用い、通常用いられる1モル/濃
度とした。
The solvent of the electrolytic solution was a mixed solvent of the same volume of ethylene carbonate (EC) and propylene carbonate (PC) shown above. LiPF 6 was used as the supporting salt, and the amount of residual hydrogen fluoride (HF) was , As shown in Table 1, 1000,750,500,2
A concentration of 50,100 ppm was used, and the concentration was usually used as 1 mol / concentration.

また比較のため支持塩にLiAsF6を用いた同一組成、濃
度の電解液を準備した。上記電解液の100μを封口板
内に注液後、5,6のセパレータと正極を載置し、7のガ
スケットとともにカシメ封口した。これらの電池は直径
20mm,総高1.6mmであり、電池番号と電解液の内容を表1
に示した。これらの電池を1mAで5時間予備放電して負
極リチウムの表面を清浄化させたのち、70℃で40日間貯
蔵した。つぎに、これらの開路電圧に±5mVの,10KHzか
ら1Hzまでの周波数をもつ正弦波交流電圧を印加し、そ
の応答電流から電池の複素平面解析を行ない、1KHzでの
インピーダンス,電荷移動抵抗,界面容量,接触抵抗を
測定した。第2図A,Bには上記インピーダンス値と電池
の中で起った反応の結果として表われたリチウム負極へ
の影響度を示す電荷移動抵抗値をそれぞれ示す。図にお
いて、貯蔵性にすぐれるLiAsF6との比較から電池C,D,E
つまりLiPF6中の残留HFの量は500ppm以下であることが
貯蔵安定化の条件であることがわかる。
For comparison, an electrolytic solution having the same composition and concentration using LiAsF 6 as a supporting salt was prepared. After injecting 100 μl of the above electrolyte into the sealing plate, the separators 5 and 6 and the positive electrode were placed, and the container was sealed with a gasket 7 by caulking. These batteries have a diameter
20mm, total height 1.6mm, Table 1 shows the battery number and electrolyte content
It was shown to. These batteries were pre-discharged at 1 mA for 5 hours to clean the surface of the negative electrode lithium, and then stored at 70 ° C. for 40 days. Next, a sine-wave AC voltage having a frequency of 10 KHz to 1 Hz of ± 5 mV is applied to these open-circuit voltages, and a complex plane analysis of the battery is performed from the response current. The impedance at 1 KHz, the charge transfer resistance, and the interface The capacitance and contact resistance were measured. FIGS. 2A and 2B show the impedance value and the charge transfer resistance value indicating the degree of influence on the lithium negative electrode as a result of the reaction occurring in the battery, respectively. In the figure, the battery C from a comparison of the LiAsF 6 excellent in storability, D, E
That is, it is understood that the condition for storage stabilization is that the amount of residual HF in LiPF 6 is 500 ppm or less.

実施例2 実施例1と同じ材料および構成条件で電池を試作し
た。ただし、電解液は同じくエチレンカーボネートとジ
メトキシエタン(DME)の等体積混合溶媒に、支持塩と
して同じく1000,750,500,250と100ppmの残留HFの量をも
つLiPF6を使用し、通常用いられている1モル/濃度
に調整したものを用いた。ここでも比較のためにLiAsF6
を用いた同一組成,濃度の電解液を用いた(表2)。
Example 2 A battery was prototyped using the same materials and the same conditions as in Example 1. However, the electrolyte solution is the same volume mixed solvent of ethylene carbonate and dimethoxyethane (DME), and the supporting salt is LiPF 6 having the same amount of residual HF of 1000, 750, 500, 250 and 100 ppm. / Concentration adjusted. Again, LiAsF 6 for comparison
An electrolytic solution having the same composition and concentration as above was used (Table 2).

貯蔵特性は、実施例1と同じ予備放電条件ののち、60
℃にて60日間保存後に測定した。第3図A,Bには、イン
ピーダンス値と電荷移動抵抗値を示した。図から、貯蔵
性にすぐれるLiAsF6との比較から電池C′,D′,E′つま
りLiPF6中の残留HFの量は500ppm以下であることが望ま
しいことがわかる。
After the same pre-discharge conditions as in Example 1, the storage characteristics were 60
Measured after storage at 60 ° C for 60 days. FIGS. 3A and 3B show the impedance value and the charge transfer resistance value. From the figure, it can be seen from the comparison with LiAsF 6 having excellent storage properties that the amount of residual HF in the batteries C ′, D ′, E ′, that is, LiPF 6 is desirably 500 ppm or less.

発明の効果 以上のように本発明によれば、非水電解液二次電池に
おいて、エチレンカーボネートを含んだ溶媒と六フッ化
リン酸リチウムを支持塩とする電解液では、六フッ化リ
ン酸リチウムに含まれる残留フッ化水素の量を500ppm以
下にすることにより高温貯蔵特性にすぐれた効果が得ら
れる。
Effects of the Invention As described above, according to the present invention, in a non-aqueous electrolyte secondary battery, lithium hexafluorophosphate is used in an electrolyte containing a solvent containing ethylene carbonate and lithium hexafluorophosphate as a supporting salt. By setting the amount of residual hydrogen fluoride contained in the steel to 500 ppm or less, an effect excellent in high-temperature storage characteristics can be obtained.

なお、実施例では正極に二酸化マンガンを用いたが、
他の材料でもよい。また、電解液の溶媒にPCとDMEを用
いたが他の溶媒でもよい。
In the examples, manganese dioxide was used for the positive electrode.
Other materials may be used. Although PC and DME were used as the solvent for the electrolytic solution, other solvents may be used.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例におけるコイン形電池の断面
図、第2図A,Bおよび第3図A,Bはそれぞれ実施例におけ
る電池の高温貯蔵後のインピーダンス値と電荷移動抵抗
値を示す図である。 1……ケース、2……封口板、2……リチウム負極、5
……正極。
FIG. 1 is a cross-sectional view of a coin-type battery according to an embodiment of the present invention, and FIGS. 2A and 2B and FIGS. FIG. 1 ... case, 2 ... sealing plate, 2 ... lithium negative electrode, 5
... Positive electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−219475(JP,A) 特開 昭59−81870(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 H01M 6/16────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-219475 (JP, A) JP-A-59-81870 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/40 H01M 6/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軽金属を活物質とする負極と、非水電解液
と、充放電可逆性のある正極とからなる二次電池であっ
て、上記非水電解液は、エチレンカーボネートを含んだ
溶媒と残留フッ化水素の量が500ppm以下である六フッ化
リン酸リチウムを支持塩としたものであることを特徴と
する非水電解液二次電池。
1. A secondary battery comprising a negative electrode containing a light metal as an active material, a non-aqueous electrolyte, and a positive electrode having charge / discharge reversibility, wherein the non-aqueous electrolyte is a solvent containing ethylene carbonate. A non-aqueous electrolyte secondary battery characterized by using lithium hexafluorophosphate having an amount of residual hydrogen fluoride of 500 ppm or less as a supporting salt.
JP63299840A 1988-11-28 1988-11-28 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2778065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299840A JP2778065B2 (en) 1988-11-28 1988-11-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299840A JP2778065B2 (en) 1988-11-28 1988-11-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH02144860A JPH02144860A (en) 1990-06-04
JP2778065B2 true JP2778065B2 (en) 1998-07-23

Family

ID=17877563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299840A Expired - Lifetime JP2778065B2 (en) 1988-11-28 1988-11-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2778065B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680685B2 (en) * 1989-06-01 1997-11-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPH07254415A (en) * 1993-12-20 1995-10-03 Wilson Greatbatch Ltd Electrochemical battery and method of reducing its voltage delay
JPH07302613A (en) * 1994-04-28 1995-11-14 Zenichiro Takehara Lithium system secondary battery
JPH11260416A (en) * 1998-03-11 1999-09-24 Ngk Insulators Ltd Lithium secondary battery
US6117591A (en) * 1998-05-27 2000-09-12 Wilson Greatbatch Ltd. Hydrogen fluoride additive for nonaqueous electrolyte in alkali metal electrochemical cells
WO2002061872A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A multi-layered polymer electrolyte and lithium secondary battery comprising the same
US7097943B2 (en) * 2001-01-31 2006-08-29 Korea Institute Of Science And Technology UV-cured multi-component polymer blend electrolyte, lithium secondary battery and their fabrication method
US7135254B2 (en) * 2001-01-31 2006-11-14 Korea Institute Of Science And Technologies Multi-layered, UV-cured polymer electrolyte and lithium secondary battery comprising the same
JP2012238524A (en) * 2011-05-13 2012-12-06 Tosoh F-Tech Inc METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981870A (en) * 1982-11-01 1984-05-11 Hitachi Maxell Ltd Manufacture of solute for nonaqueous electrolyte
JPS62219475A (en) * 1986-03-20 1987-09-26 Nippon Telegr & Teleph Corp <Ntt> Secondary cell of lithium

Also Published As

Publication number Publication date
JPH02144860A (en) 1990-06-04

Similar Documents

Publication Publication Date Title
JP3187929B2 (en) Lithium secondary battery
CA2052317C (en) Nonaqueous electrolyte secondary battery
US20090053594A1 (en) Rechargeable air battery and manufacturing method
JP3417054B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0750165A (en) Non-aqueous electrolyte battery
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
JP2778065B2 (en) Non-aqueous electrolyte secondary battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH11283667A (en) Lithium ion battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP2940015B2 (en) Organic electrolyte secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JPH0636370B2 (en) Electrolyte for lithium secondary battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JPH09204933A (en) Lithium secondary battery
JPH08138741A (en) Organic electrolyte secondary battery
JPH04104468A (en) Nonaqueous electrolyte battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2712428B2 (en) Non-aqueous electrolyte secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery
EP1406336A1 (en) Electrolyte composition having improved aluminium anticorrosive properties
JP2004071340A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11