JPS62150524A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62150524A
JPS62150524A JP29546585A JP29546585A JPS62150524A JP S62150524 A JPS62150524 A JP S62150524A JP 29546585 A JP29546585 A JP 29546585A JP 29546585 A JP29546585 A JP 29546585A JP S62150524 A JPS62150524 A JP S62150524A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thickness
magnetic layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29546585A
Other languages
Japanese (ja)
Inventor
Keiji Okubo
大久保 恵司
Hisashi Yamazaki
山崎 恒
Ikuo Nagasawa
永沢 郁郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29546585A priority Critical patent/JPS62150524A/en
Publication of JPS62150524A publication Critical patent/JPS62150524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and corrosion resistance by consisting a magnetic layer of a Co-Ni alloy contg. 0.5-5at% Nd and consisting of a nonmagnetic metallic underlying layer of W. CONSTITUTION:A nonmagnetic substrate 2 is formed by using a disk-shaped aluminum plate finished to <=20mum surface in both circumferential and radial directions, forming an electroless plating film of the Ni-P alloy thereon to about 30mum thickness and finishing the plating film to a specular surface up to 0.02mum average surface roughness and 15mum thickness. The nonmagnetic metallic underlying layer 3 is then formed on the substrate 2 by sputtering W. The magnetic layer 4 is formed by sputtering onto the W underlying layer 3 to about 500Angstrom thickness with the same sputtering vessel immediately after the formation of the layer 3. The Co-30at%Ni alloy contg. 2.8at% Nd is used as the magnetic layer to determine the thickness of the W film. The time for sputtering is thus shortened by using the thin W film for the nonmagnetic metal lic underlying layer and the magnetic layer made of the compsn. exhibiting the good magnetic characteristics is obtd. Excellent corrosion resistance is obtd. as well.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は磁気記録装置に用いられる磁気ディスクなどの
磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.

〔従来技術とその問題点〕[Prior art and its problems]

近年磁気記録装置に用いられる磁気ディスクなどの磁気
記録媒体はますます高記録密度となる傾向にあり、これ
に伴い磁気記録媒体の磁性層の膜厚を従来の約1μ工程
度から01μm以下まで薄<シ7、保磁力(Hc)もよ
り高くする必要がある。そのため磁気記録媒体の製造方
法もサブミクロンオーダでは磁性層の膜厚が不均一にな
るスピンコード法に代って、均一な薄膜を容易に形成す
ることが可能なスパッタ法やメッキ法が注目されるとと
もに、従来の鉄酸化物例えばr −Fe 203の磁性
層は、その磁気特性、特に残留磁束密度が小さく出力が
低いということから、磁性層として、スパッタ法によっ
て形成されるコバル)(Co)系合金、例えはコバルト
−ニッケル(Ni )合金磁性薄膜が使用されるように
なった。この合金のNi含有址v)範囲は20〜30a
t%がよいことが知られている。
In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have tended to have higher and higher recording densities, and with this trend, the thickness of the magnetic layer of magnetic recording media has been reduced from the conventional process of about 1 μm to less than 0.1 μm. <C7. It is also necessary to increase the coercive force (Hc). For this reason, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention as a manufacturing method for magnetic recording media, as they can easily form a uniform thin film, instead of the spin code method, which results in non-uniform magnetic layer thickness on the submicron order. In addition, the magnetic layer of conventional iron oxide such as r-Fe 203 has a small magnetic property, especially a residual magnetic flux density, and a low output. Magnetic thin films of alloys such as cobalt-nickel (Ni) alloys have come into use. The Ni content of this alloy ranges from 20 to 30a.
It is known that t% is good.

第5図に例えばCo−Ni合金磁性薄膜の磁性層を備え
たディスク状磁気記録媒体の安岸)構成断面図を示す。
FIG. 5 shows a cross-sectional view of the structure of a disk-shaped magnetic recording medium provided with a magnetic layer of, for example, a Co--Ni alloy magnetic thin film.

第5図の磁気記録媒体は合金基板1上に非磁性基体層2
を被覆17、この非磁性基体層2の上にさらに非磁性金
属下地層3aを介l、てCo−Ni合金薄膜の磁性層4
aを被覆し7、磁性層・la上に保護層5aとその上に
潤滑層5bを形成したものである。
The magnetic recording medium shown in FIG. 5 has a non-magnetic base layer 2 on an alloy substrate 1.
A magnetic layer 4 of a Co--Ni alloy thin film is coated on the non-magnetic base layer 2 with a non-magnetic metal underlayer 3a interposed therebetween.
7, a protective layer 5a is formed on the magnetic layer la, and a lubricating layer 5b is formed thereon.

このように構成された磁気記録媒体の合金基板lKはア
ルミニウム合金が多用されているが、場合によってはプ
ラスチックを用いてもよく、所定の面粗さ、平行度およ
び平面度に仕上げられる。
Aluminum alloy is often used for the alloy substrate IK of the magnetic recording medium constructed in this way, but plastic may also be used in some cases, and the substrate is finished to a predetermined surface roughness, parallelism, and flatness.

非磁性基体層2はニッケルーりん(Ni−P)合金を無
電解メッキしたもの、もしくは基板1目体をアルマイト
処理し7て得たものがよく、いずれも所定の硬さを必要
とし、表面は機械的研磨により鏡面仕上げを行なう。非
磁性金属下地層体i3aは通常主としてクロム(Cr 
)などが用(狛りれ3000′A程度の膜厚にスパッタ
法などにより形成される。
The non-magnetic base layer 2 is preferably one obtained by electroless plating of a nickel-phosphorus (Ni-P) alloy, or one obtained by alumite treatment of the substrate 1. Both require a certain hardness, and the surface is A mirror finish is achieved by mechanical polishing. The non-magnetic metal underlayer i3a is usually mainly composed of chromium (Cr).
) etc. are formed by sputtering or the like to a film thickness of about 3000'A.

磁性N4aとし7ては、Co −20・−30at%N
i合金薄膜を、スパッタ法により形成した磁気記録媒体
が良好な磁気特性を示すという点で有効であるが、この
Co−Ni合金薄膜について、その後の研究が進むにつ
れて、初期の磁気特性はすぐれていても、薄膜磁性層自
体の耐食性が十分でないために、磁気記録媒体の使用さ
れる環境によっては遂には磁気特性の劣化を起こすこと
が判明l7、そのため本発明者らは鋭意研究の結果、従
来相反関係にあるとみなされていた磁気特性と耐食性の
問題を克服し7て、ネオジウム(Nd)を含むC020
〜30at%Ni合金が磁性層4aとt2て磁気特性と
耐食性の双方を兼備するものであることを見出し、この
磁気記録媒体を同一出願人により提案している。
As magnetic N4a 7, Co -20・-30at%N
Co-Ni alloy thin films are effective in that magnetic recording media formed by sputtering exhibit good magnetic properties, but as further research has progressed on this Co-Ni alloy thin film, it has become clear that the initial magnetic properties are not excellent. However, due to the insufficient corrosion resistance of the thin magnetic layer itself, it was found that depending on the environment in which the magnetic recording medium is used, the magnetic properties may eventually deteriorate17.As a result of intensive research, the present inventors have found that C020 containing neodymium (Nd) has overcome the problems of magnetic properties and corrosion resistance, which were considered to be in a contradictory relationship.
It has been discovered that a ~30 at% Ni alloy has both magnetic properties and corrosion resistance in the magnetic layers 4a and t2, and this magnetic recording medium has been proposed by the same applicant.

磁性層4aの上にはC【もし7くはCr酸化物(Cr2
03)などの保護層5aと、さらにカーボンもしくは二
酸化珪素(5iOz )などの潤滑層5bがいずれも連
続してスパッタにより設けられる。媒体によっては保@
 j@ 5 aと潤滑層5bとの二ノーにすることな(
、カーボンもしくは5i02の薄膜を保膿潤滑層として
一層のみ形成するものもあるが、CrやCr酸化物層を
設けるのは磁性層4の耐食性を配慮しているからである
On the magnetic layer 4a, C [or Cr oxide (Cr2
A protective layer 5a such as 03) and a lubricating layer 5b such as carbon or silicon dioxide (5iOz) are successively provided by sputtering. Depending on the medium, @
j @ 5 Don't make it a two-way between a and the lubricating layer 5b (
In some cases, a thin film of carbon or 5i02 is formed as a purulent lubricant layer, but a Cr or Cr oxide layer is provided in consideration of the corrosion resistance of the magnetic layer 4.

ここで再び非磁性金属下地層3aについて述べる。Here, the nonmagnetic metal underlayer 3a will be described again.

非磁性金属下地層3aはCo−Ni合金薄膜磁性層4a
の保磁力(Hc)を高める作用をもつものであり、下地
層3aの厚さによっても磁性層4aの保磁力が変化する
。下地層3aは膜厚の増加とともに磁性層4aの保磁力
を飽和させる領内にあり、その保磁力を飽和させる下地
層3aの膜厚は材料によって大きく異なる。また第5図
のように下地層3a上に磁性層4aとし7て前述したN
dを含むCo−Ni合金薄膜をスパッタにより形成した
後、引続きCriたはCr2O3などの保護層5aとさ
らにカーボンまたは8102などの潤滑Wi5bを連続
スパッタ被覆して構成しまた磁気記録媒体は、磁性7m
4aが良好な磁気特性と耐食性とをもっている上に、保
護層5aを設けであるから、−)91耐食性が強化され
たすぐれたものとなる。
The non-magnetic metal underlayer 3a is a Co-Ni alloy thin film magnetic layer 4a.
This has the effect of increasing the coercive force (Hc) of the magnetic layer 4a, and the coercive force of the magnetic layer 4a also changes depending on the thickness of the underlayer 3a. The underlayer 3a is in a region where the coercive force of the magnetic layer 4a is saturated as the thickness increases, and the thickness of the underlayer 3a that saturates the coercive force varies greatly depending on the material. Further, as shown in FIG.
After forming a Co-Ni alloy thin film containing d by sputtering, a protective layer 5a such as Cri or Cr2O3 and a lubricating layer 5b such as carbon or 8102 are continuously coated by sputtering.
Since 4a has good magnetic properties and corrosion resistance, and the protective layer 5a is provided, the -)91 corrosion resistance is enhanced and excellent.

以上のことから、この磁気記録媒体は、保峡層5aの効
果を期待して、磁気特性を安定に保持l、たまま下地1
曽3aを用油な限り薄くし、スパッタ時間を短軸するこ
とができろという可能性をもっている。したかって従来
3000人程度の膜厚の下地層3aを形成していたCr
などに代り、さらに薄い膜厚の下地層とするための材料
を辿択すること、およびこの下地層と組み合わせて最適
な磁気特性を示す磁性層Co−Ni合金に対して添加す
るNdの含有量の範囲を決定することにより、製造効率
が高く、良好な磁気特性と耐食性を有する磁気記録媒体
を得ることができる。
Based on the above, this magnetic recording medium is expected to have the effect of the gorge layer 5a, stably maintain magnetic properties, and retain the underlying layer 1.
There is a possibility that the sputtering time can be shortened by making the layer 3a as thin as possible. Therefore, Cr, which conventionally formed the base layer 3a with a thickness of about 3000
Instead, it is necessary to select a material for an underlayer with an even thinner film thickness, and to increase the Nd content added to the magnetic layer Co-Ni alloy that exhibits optimal magnetic properties in combination with this underlayer. By determining the range of , it is possible to obtain a magnetic recording medium with high manufacturing efficiency and good magnetic properties and corrosion resistance.

〔発明の目的〕 本発明は上述の点に鑑みてなされたものであり、その目
的は基板上を被覆した非磁性基体上に非磁性金属下地層
、Ndを含むCo−Ni合金薄膜磁性層。
[Object of the Invention] The present invention has been made in view of the above points, and its object is to provide a nonmagnetic metal underlayer and a Co-Ni alloy thin film magnetic layer containing Nd on a nonmagnetic base coated on a substrate.

保護層および潤滑層なこの順にスパッタして積層成形t
7てなり、符に薄い非磁性金属下1t!!増と適量のN
dを含有したCo−Ni合金薄膜磁性層との組み合わせ
による良好な磁気特性と耐食性を具備した磁気記録媒体
を提供することにある。
The protective layer and lubricant layer are sputtered and laminated in this order.
7, 1t under thin non-magnetic metal! ! Increase and appropriate amount of N
An object of the present invention is to provide a magnetic recording medium having good magnetic properties and corrosion resistance in combination with a Co--Ni alloy thin film magnetic layer containing d.

〔発明の袂点〕[The point of invention]

本発明は不活性ガス雰囲気中でアルミニウム基板上のN
1−P層の上に連続的にスバンタして形成した下地層、
磁性層、保循鳩および潤滑層からなる積層薄膜の下地層
を膜厚はぼ500 ’hのW膜、磁性層をNd O,5
〜5at%含むCo−Ni合金族とすることにより達せ
られろ。
The present invention deals with N on an aluminum substrate in an inert gas atmosphere.
1-A base layer formed by continuous svantering on the P layer,
The base layer of the laminated thin film consisting of the magnetic layer, circulation dovetail and lubricating layer is a W film with a film thickness of approximately 500'h, and the magnetic layer is a NdO,5
This can be achieved by using a Co--Ni alloy group containing ~5 at%.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基つき説明する。 The present invention will be explained below based on examples.

第1図に本発明により得られた磁気記録媒体の要部構成
断面を示し、第5図と共通部分を同一符号で表わしであ
る。第1図は第5図と基本的な構成は同じであるが、第
1図が第5図と異なる所は、非磁性金属下地層3にW膜
を用い磁性層4はW下地層に対[、て良好な磁気特性が
得られるNd含有量をもったCo−Ni合金とした点に
ある。
FIG. 1 shows a cross section of a main part of a magnetic recording medium obtained according to the present invention, and parts common to those in FIG. 5 are denoted by the same reference numerals. The basic structure of FIG. 1 is the same as that of FIG. 5, but the difference between FIG. 1 and FIG. The point is that the Co--Ni alloy has a Nd content that provides good magnetic properties.

まず非磁性合金基板1として旋盤加工および加圧焼純に
より、十分に小さなうねりすなわち円周・半径方向とも
20ρ以下の面に仕上げたディスク状アルミニウム板を
用い、この上にNi −P合金の無′酩解メンキを約3
0μmの厚さに被膜し1、メッキ被膜を平均表面粗さ0
.02μm、厚ヒ15μmまで鏡面仕上げを行なうこと
により非磁性基体2を形成する。次いで非磁性基体2の
上に非磁性金属下地層3と[7て本発明ではWをスパッ
タ17て形成[、だが、下地層3の厚さは前述のように
磁性層4の磁気特性に影響を与えるので、どの程度まで
薄(できるかを調べるために005μmから01μm間
隔で0.3μmまで変化させた。W下地層3を形成t、
た後、直ちに引続き同じスパッタ槽内でW下地層3の上
に磁性層4をほぼ500 kの厚さにスパッタにより設
けた。W膜の厚さを決定するための磁性層4としてはN
dを2.8 at%含むCo−30at%Ni合金を用
いた。
First, as the non-magnetic alloy substrate 1, a disc-shaped aluminum plate finished with sufficiently small waviness, that is, a surface of 20ρ or less in both the circumferential and radial directions, is used by lathe processing and pressure annealing. 'About 3 minutes of drunken menki
The plating film is coated to a thickness of 0 μm and has an average surface roughness of 0.
.. The non-magnetic substrate 2 is formed by performing mirror finishing to a thickness of 0.2 μm and a thickness of 15 μm. Next, a nonmagnetic metal underlayer 3 is formed on the nonmagnetic substrate 2 by sputtering W in the present invention, but the thickness of the underlayer 3 affects the magnetic properties of the magnetic layer 4 as described above. To find out how thin it can be, the thickness was varied from 0.05 μm to 0.3 μm at intervals of 0.1 μm. Forming the W base layer 3,
Immediately thereafter, a magnetic layer 4 with a thickness of approximately 500K was formed on the W underlayer 3 by sputtering in the same sputtering bath. N is used as the magnetic layer 4 to determine the thickness of the W film.
A Co-30 at% Ni alloy containing 2.8 at% of d was used.

第2図は下地層3として設けたW膜の厚さに対する磁性
層4のHcの変化を示した線図である。第2図では横軸
を0.05μm間隔に目盛ったW膜の厚さ、縦軸は磁性
層4のHcとして示しているが、第2図にはほかに二つ
の比較例を併記し、本発明と従来例とを対比させ本発明
の有効性を明らかにt7ている。比較例1の磁気記録媒
体の製造方法は本実施例の場合と同様であるが磁性層が
Co単独の薄膜である点のみが異なり、比較例2では同
様に磁性層をCo −30at%Niの薄膜とL Nd
を添加してないものである。
FIG. 2 is a diagram showing the change in Hc of the magnetic layer 4 with respect to the thickness of the W film provided as the underlayer 3. In FIG. 2, the horizontal axis shows the thickness of the W film scaled at 0.05 μm intervals, and the vertical axis shows the Hc of the magnetic layer 4. Two other comparative examples are also shown in FIG. The effectiveness of the present invention is clearly demonstrated by comparing the present invention with the conventional example. The manufacturing method of the magnetic recording medium of Comparative Example 1 was the same as that of this example, except that the magnetic layer was a thin film made of Co alone, and in Comparative Example 2, the magnetic layer was similarly made of Co-30at%Ni. Thin film and L Nd
It is not added.

第2図から本発明の下地Ffi 3としてWを用いたと
きは、磁性層4のCo−Ni合金にNdを含むことが、
磁性層4のHeを高める効果が顕著であり、しかもW膜
厚がほぼ0.05μm以上となればHcが大きな値で飽
和に達することがわかる。このことはCo−30at%
Ni−2,8at%Nd合金磁性膜を磁性層4としてW
下地層3と組み合わせ用いるときはW膜の厚さをほぼ0
.05μmまで薄くするのが可能なことを意味している
。これに対して比較例1および比較例2はW膜厚を増[
7ても磁性層のHcはあまり太き(ならず、W下地層3
とNdを含むCo−Ni合金磁性)fi 4との組み合
わせ効果が第2図から明らかである。
From FIG. 2, when W is used as the base Ffi 3 of the present invention, the Co-Ni alloy of the magnetic layer 4 contains Nd.
It can be seen that the effect of increasing He in the magnetic layer 4 is remarkable, and moreover, when the W film thickness becomes approximately 0.05 μm or more, Hc reaches saturation at a large value. This means that Co-30at%
A Ni-2,8at%Nd alloy magnetic film is used as the magnetic layer 4, and W is used as the magnetic layer 4.
When used in combination with base layer 3, the thickness of the W film is approximately 0.
.. This means that it is possible to reduce the thickness to 0.5 μm. On the other hand, in Comparative Examples 1 and 2, the W film thickness was increased [
7, the Hc of the magnetic layer is not too thick (and the W underlayer 3
The effect of the combination with the Co--Ni alloy (magnetic) fi 4 containing Nd is clear from FIG.

なお下地層3に続いて磁性層・4をスパッタするまでに
、あまり長い時間スパッタ槽内に放置したり、大気に曝
17たすすると、下地層3の効果を発揮することができ
ず、磁性44の必要とする大きな保磁力が得られなくな
る。例えば下地層3を形成した後、大気に曝し2て磁性
層4をその上に形成した場合、磁性層4の保磁力は菫か
2000e t、か得られない。このことはスパッタ槽
内に長時間放置し7たときも同様の結果となるから、下
地層3の形成後は直ちに磁性層4のスパッ、りを実施し
なければならない。
Note that if the magnetic layer 4 is left in the sputtering bath for too long or exposed to the atmosphere before sputtering the magnetic layer 4 following the base layer 3, the effect of the base layer 3 will not be exhibited and the magnetic layer will deteriorate. The large coercive force required by 44 cannot be obtained. For example, if the underlayer 3 is formed and then exposed to the atmosphere and the magnetic layer 4 is formed thereon, the coercive force of the magnetic layer 4 will be violet 2000 et. The same result will occur even if the magnetic layer 4 is left in the sputtering bath for a long time, so the magnetic layer 4 must be sputtered immediately after the underlayer 3 is formed.

次にW下地層3の膜厚を500 ’A一定としたとき、
その上に設けるCo−Ni合金磁性層に対して添加する
NdO量を決定するため、磁性層4のCo−30at%
N 1−Nd合金のNd含有量をO〜15at%の範囲
で変え、磁気特性について調べた。その結果を第3図(
a)〜(d) K示す。第3図はいずれも横軸をNd含
有量とし1、縦軸を磁気特性として3点の平均値をプロ
ットした線図である。すなわち第3図(a)は保磁力、
第3図(b)は保磁力角形比(S”)、第3図(c)は
残留磁束密きその他の条件は全て同じに設定し7てあり
、いずれもRFスパッタ装置を用いて出力soo w 
、全ガス圧4.OX 1O−2Torr 、基板温度は
室温とし、下地層3のWの膜厚は前述のようにすべて5
0Åとし7た。
Next, when the film thickness of the W underlayer 3 is constant at 500'A,
In order to determine the amount of NdO added to the Co-Ni alloy magnetic layer provided thereon, the Co-30 at%
The Nd content of the N1-Nd alloy was varied in the range of O to 15 at%, and the magnetic properties were investigated. The results are shown in Figure 3 (
a) to (d) K is shown. FIG. 3 is a diagram in which the horizontal axis represents the Nd content, and the vertical axis represents the magnetic properties, plotting the average value of three points. In other words, Fig. 3(a) shows the coercive force,
Figure 3(b) shows the coercive force squareness ratio (S"), and Figure 3(c) shows the residual magnetic flux density and other conditions being the same. lol
, total gas pressure4. OX 1O-2 Torr, the substrate temperature is room temperature, and the W film thickness of the base layer 3 is all 5 as described above.
It was set to 0 Å.

第3図(a)〜(d)かられかるように、磁性層4のN
d含有量に対して最も大きく変る磁気特性は(a)図の
Hcであって磁気記録媒体として有効な9000e以上
の得られるNd含有量の範囲は0.5〜5 at%であ
り、10000eを超える最も好まし7い範囲は1.5
〜4.5 a t%である。この範囲のNd含有量に、
ついてみると、(b1図のS”、(c)図のBr−aw
(d)図のBs−δはいずれもNd含有量の増加ととも
に低下する傾向にある。し7かしこの程度の低下は磁気
特性の上で特に問題となることはない。
As can be seen from FIGS. 3(a) to 3(d), N of the magnetic layer 4
The magnetic property that changes the most with respect to the d content is Hc in the figure (a), and the range of Nd content that can be obtained is 9000e or more, which is effective as a magnetic recording medium, is 0.5 to 5 at%, and 10000e or more. The most preferable range to exceed is 1.5
~4.5 at%. In this range of Nd content,
When I looked at it, I found that (S” in figure b1, Br-aw in figure (c)
(d) In both cases, Bs-δ tends to decrease as the Nd content increases. However, this degree of decrease does not pose any particular problem in terms of magnetic properties.

かくして本発明の磁気記録勿体は下地層3にW膜を用い
て500 hまで膜厚を湖(シても、この上に設ける磁
性層4にはCo−30at%Ni−0,5〜5 at%
Nd合金薄膜とすることにより良好な磁気特性を保持す
ることかできるが、さらに最後にCrまたはCr2O3
の保MJm5gとカーボンまたは5i02などの潤滑/
m5bをヌパソタして膜厚500 Aに形成し2てすぐ
れた耐食性をもたせている。
In this way, the magnetic recording medium of the present invention uses a W film as the underlayer 3 and has a film thickness of up to 500 hours. %
Although good magnetic properties can be maintained by forming a Nd alloy thin film, Cr or Cr2O3
Maintenance MJm5g and lubrication such as carbon or 5i02/
M5b is coated to a film thickness of 500 Å and has excellent corrosion resistance.

第4図は温度40℃、相対湿度80%の雰囲気中に曝1
7た本発明の磁気記録媒体、すなわち下地層3をW膜と
し磁性層4をCo−30at%Ni−2,8at%Nd
とする第1図の構成をもつものを記録装置に用いたとき
の放置期間に対するエラー個数の変化を示した線図であ
る。第4図の場合も第2図のとぎと同じ比較例1と比較
例2を併記した。第4図にみられるようにエラー個数は
本発明の磁気記録媒体は12週間放置してはじめて僅か
にエラーがカウントされるのに対し7て、比較例1.比
較例2のものは短い日数のうちにエラー個数が急激に増
加し使用に耐えな(なる。このことは磁性層全体の磁気
特性としては環境条件によって比較的長時間にわたり大
きな変化を生することがないとしても、湿気などに曝さ
れたとき、従来の磁性)fMは表面の微小な局部から順
次腐食されて変質が進行するのに対し、Ndを適量含有
l、た磁性層を有する本発明の磁気記録媒体は84図か
ら耐食性もすぐれたものであることがわかる。なお第4
図には図示してないが0.5〜5at%の範囲でNdを
含んだCo−Ni合金磁性層についていずれも同様の結
果を得ることができる。
Figure 4 shows 1 exposed to an atmosphere with a temperature of 40°C and a relative humidity of 80%.
7. The magnetic recording medium of the present invention, that is, the underlayer 3 is a W film and the magnetic layer 4 is Co-30at%Ni-2, 8at%Nd.
FIG. 2 is a diagram showing changes in the number of errors with respect to an unused period when a recording device having the configuration shown in FIG. 1 is used. In the case of FIG. 4, Comparative Example 1 and Comparative Example 2, which are the same as those in FIG. 2, are also shown. As shown in FIG. 4, the number of errors in the magnetic recording medium of the present invention is only 7 after being left for 12 weeks, whereas the number of errors in the comparative example 1 is only 7. In Comparative Example 2, the number of errors increases rapidly within a short period of time, making it unusable. This means that the magnetic properties of the entire magnetic layer undergo large changes over a relatively long period of time depending on the environmental conditions. Even if there is no magnetic layer, when exposed to moisture, etc., conventional magnetic fM is corroded sequentially from minute local areas on the surface and deterioration progresses, whereas the present invention, which has a magnetic layer containing an appropriate amount of Nd, It can be seen from FIG. 84 that the magnetic recording medium has excellent corrosion resistance. Furthermore, the fourth
Although not shown in the figure, similar results can be obtained for any Co--Ni alloy magnetic layer containing Nd in the range of 0.5 to 5 at%.

また本発明の磁気記録媒体を磁気記録媒体に組み込んで
C8S試験を行なった結果、2万回のコンタクト・スタ
ート・ストップに対(、ても記録媒体表面になんら傷を
発生せず、再生出力もほとんど低下することなく、十分
な耐久性をもっていることが実証された。
Furthermore, as a result of conducting a C8S test by incorporating the magnetic recording medium of the present invention into a magnetic recording medium, it was found that even after 20,000 contact starts and stops, no scratches occurred on the surface of the recording medium, and the playback output remained unchanged. It was demonstrated that it had sufficient durability with almost no deterioration.

以上説明してきたようK、本発明の磁気記録画体は非磁
性金属下地層に薄いW膜を用いてスバ、ツク時間を短縮
するとともに、W膜に対応し7て良効な磁気特性を示す
組成の磁性層を有[7、耐食性にもすぐれたものである
ということができる。
As explained above, the magnetic recording body of the present invention uses a thin W film as a non-magnetic metal underlayer to shorten the time for stripping and unloading, and also exhibits good magnetic properties compatible with the W film. It can be said that it has a magnetic layer of the composition [7] and has excellent corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

磁気ティスフなどの磁気記録媒体は記録密度にあげるた
めに、磁性層の膜厚を薄くして磁気特伯の向上を図り、
スパッタによるCo−Ni合金薄膜力用いられるように
なったが、一方でCo−Ni合金蘇性層は使用環境にお
′ける耐食性が例えば鉄酸化噌膜なとより劣るという欠
点があり、そのため本多明者らは磁気特性を保持し7た
まま耐食性を付与プせるCo−Ni合金への第三元素と
その添加量範囲σ決定、さらに磁性層の上に設けるCr
保護層の動因と相俟って下地層をより薄くすることが可
能なネ料について研究を重ねた結果、本発明では実施9
で説明したように、 Ndを0.5〜5 at%含むC
o−Ni’。
In order to increase the recording density of magnetic recording media such as magnetic tape, the thickness of the magnetic layer is reduced to improve the magnetic properties.
A Co-Ni alloy thin film formed by sputtering has come to be used, but on the other hand, the Co-Ni alloy resuscitator layer has the disadvantage that its corrosion resistance in the usage environment is inferior to that of, for example, an iron oxide film. Many researchers have determined the third element and its addition amount range σ to the Co-Ni alloy that can impart corrosion resistance while retaining magnetic properties, and have also added Cr to the magnetic layer.
As a result of repeated research into a material that can make the base layer thinner in conjunction with the behavior of the protective layer, the present invention has developed
As explained in , C containing 0.5 to 5 at% Nd
o-Ni'.

金薄膜を磁性層とし、下地層には膜厚をほぼ500Xま
で薄くI−たW膜を用いることにより、W下地2  層
が磁性層のHcを高めるのに効果的に作用すると同時に
、磁性層自体の耐食性も向上し、Co −Ni −0,
5〜Sat%Ndの組成をもつ磁性層とW下地層との組
み合わせは、磁気特性と耐食性という従来相反関係にあ
った問題を一挙に解決し、この二つの特性を一つの記録
媒体に兼備させることができたものであり、しかも下地
層と(7て膜厚をほぼ500 Aまで減少可能なW膜を
用いたので、スパヅタ時間・  の短縮による製造効率
を筒めている。(7たがってE  本発明の磁気記録媒
体は記録装置に用いて十分なン  出−力を与えるとと
もに安定し7て長寿命を保持することができるなど多く
の利点を有するものである。
By using a thin gold film as the magnetic layer and a W film with a thin film thickness of approximately 500X as the underlayer, the second W underlayer acts effectively to increase the Hc of the magnetic layer, and at the same time The corrosion resistance of Co-Ni-0,
The combination of a magnetic layer with a composition of 5~Sat%Nd and a W underlayer solves the conventionally contradictory problems of magnetic properties and corrosion resistance all at once, allowing a single recording medium to have these two properties. Moreover, since the base layer and the W film were used, which can reduce the film thickness to approximately 500 Å, manufacturing efficiency was achieved by shortening the spatter time. E The magnetic recording medium of the present invention has many advantages when used in a recording device, such as being able to provide sufficient output, being stable, and having a long life.

【図面の簡単な説明】[Brief explanation of drawings]

)   第1図は本発明の磁気記録媒体の置部構成断面
5  図、第2図は下地層の厚さに対する磁性層のHc
Q)r  変化を示す線図、第3図は磁性層のNd含有
量と磁す  気持性との関係を示す線図、第4図は温度
40℃。 r  相対湿度80%の雰囲気中に曝1.た磁気記録媒
体の放置期間とエラー個数の関係を示す線図、第5図は
従来の磁気記録媒体の要部構成断面図である。 l・・・合金基板、2・・・非磁性基体層、3,3a・
・・非磁性金属下地層、4,4a・・・磁性層、5a・
・・保護層、5b・・・潤滑層。 7・′。 、−9−八、ニーシロ 芽1 第1図 W IL’4 (/−1m) 第2図 (α)(b) (c)               (d)第3図 第4図 h 第5図
) Figure 1 shows a cross-section of the configuration of the magnetic recording medium of the present invention. Figure 2 shows the Hc of the magnetic layer relative to the thickness of the underlayer.
Q) A diagram showing the change in r. Figure 3 is a diagram showing the relationship between the Nd content of the magnetic layer and the magnetism. Figure 4 is a diagram showing the relationship between the Nd content of the magnetic layer and the magnetic properties. Figure 4 is a diagram showing the temperature at 40°C. r Exposure to an atmosphere of 80% relative humidity 1. FIG. 5 is a diagram showing the relationship between the storage period of a magnetic recording medium and the number of errors, and FIG. 5 is a cross-sectional view of the main part of a conventional magnetic recording medium. l...Alloy substrate, 2...Nonmagnetic base layer, 3, 3a.
...Nonmagnetic metal base layer, 4, 4a...Magnetic layer, 5a.
...Protective layer, 5b...Lubricating layer. 7・′. , -9-8, Nishiro bud 1 Fig. 1 W IL'4 (/-1m) Fig. 2 (α) (b) (c) (d) Fig. 3 Fig. 4 h Fig. 5

Claims (1)

【特許請求の範囲】 1)基板上の主表面を被覆した非磁性基体上に、非磁性
金属下地層、磁性層、保護層および潤滑層をこの順に連
続スパッタして積層成形した磁気記録媒体において、前
記磁性層がNdを0.5〜5at%を含むCo−Ni合
金からなり、前記非磁性金属下地層がWからなることを
特徴とする磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において磁性層の
Ndの含有量が1.5〜4.5at%であることを特徴
とする磁気記録媒体。 3)特許請求の範囲第1項または第2項記載の媒体にお
いて、Wの膜厚がほぼ500Åであることを特徴とする
磁気記録媒体。
[Claims] 1) A magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricant layer are laminated in this order by successive sputtering on a nonmagnetic substrate that covers the main surface of a substrate. . A magnetic recording medium, wherein the magnetic layer is made of a Co--Ni alloy containing 0.5 to 5 at% of Nd, and the nonmagnetic metal underlayer is made of W. 2) A magnetic recording medium according to claim 1, wherein the magnetic layer has an Nd content of 1.5 to 4.5 at%. 3) A magnetic recording medium according to claim 1 or 2, characterized in that the W film thickness is approximately 500 Å.
JP29546585A 1985-12-25 1985-12-25 Magnetic recording medium Pending JPS62150524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29546585A JPS62150524A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29546585A JPS62150524A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62150524A true JPS62150524A (en) 1987-07-04

Family

ID=17820941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29546585A Pending JPS62150524A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62150524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308719A (en) * 2004-03-22 2005-11-04 Ngk Spark Plug Co Ltd Controller for gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308719A (en) * 2004-03-22 2005-11-04 Ngk Spark Plug Co Ltd Controller for gas sensor

Similar Documents

Publication Publication Date Title
US4713279A (en) Magnetic recording medium
JPS62150524A (en) Magnetic recording medium
JPS62157323A (en) Magnetic recording medium
JPH0474772B2 (en)
JPH0514325B2 (en)
JPH0467251B2 (en)
JPS62150523A (en) Magnetic recording medium
JP2540479B2 (en) Magnetic memory
JPH0650683B2 (en) Magnetic memory
JPS62150521A (en) Magnetic recording medium
JPS6018817A (en) Magnetic storage medium
JPH0467252B2 (en)
JPS62150522A (en) Magnetic recording medium
JPS62150520A (en) Magnetic recording medium
JPH0467249B2 (en)
JPS62141629A (en) Magnetic recording medium
JPS6342021A (en) Magnetic recording medium
JPS63269318A (en) Magnetic recording medium
JPS59180829A (en) Magnetic storage body
JPS6243832A (en) Magnetic recording medium
JPS62239420A (en) Magnetic recording medium
JPS62239419A (en) Magnetic recording medium
JPS60193124A (en) Magnetic recording medium
JPH04137217A (en) Magnetic disk having excellent magnetic characteristic and production thereof
JPH01237925A (en) Magnetic recording medium