JPS62150520A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62150520A
JPS62150520A JP29546085A JP29546085A JPS62150520A JP S62150520 A JPS62150520 A JP S62150520A JP 29546085 A JP29546085 A JP 29546085A JP 29546085 A JP29546085 A JP 29546085A JP S62150520 A JPS62150520 A JP S62150520A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thickness
magnetic layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29546085A
Other languages
Japanese (ja)
Inventor
Keiji Okubo
大久保 恵司
Hisashi Yamazaki
山崎 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29546085A priority Critical patent/JPS62150520A/en
Publication of JPS62150520A publication Critical patent/JPS62150520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and corrosion resistance by consisting a magnetic layer of a Co-Ni alloy contg. 4-14at% Pt and consisting of a nonmagnetic metallic underlying layer of W. CONSTITUTION:A nonmagnetic substrate 2 is formed by a disk-shaped aluminum plate finished to <=20mum surface in both circumferential and radial directions, forming an electroless plating film of the Ni-P alloy thereon to about 30mum thickness and finishing the plating film to a specular surface up to 0.02mum average surface roughness and 15mum thickness. The nonmagnetic metallic underlying layer 3 is then formed on the substrate 2 by the sputtering W. The magnetic layer 4 is formed by sputtering onto the W underlying layer 3 to about 500Angstrom thickness within the same sputtering vessel immediately after the formation of the layer 3. The Co-30at%Ni alloy contg. 10at% Pt is used as the magnetic layer 4 to determine the thickness of the W film. A long life is thus stably maintained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は磁気記録装置に用いられる磁気ディスクなどの
磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.

〔従来技術とその問題点〕[Prior art and its problems]

近年磁気記録装置に用いられる磁気ディスクなどの磁気
記録媒体はますます高記録密度となる傾向にあり、これ
に伴い磁気記録媒体の磁性層の膜厚を従来の約1μ工程
度から0.1μm以下まで薄くシ。
In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have tended to have higher and higher recording densities, and with this trend, the thickness of the magnetic layer of magnetic recording media has been reduced from the conventional process of about 1 μm to 0.1 μm or less. Thinly cut.

保磁力(Hc)もより高くする必要がある。そのため磁
気記録媒体の製造方法もサブミクロンオーダでは磁性層
の膜厚が不均一になるスピンコード法に代って、均一な
薄膜を容易に形成することが可能なスパッタ法やメッキ
法が注目されるとともに。
It is also necessary to increase the coercive force (Hc). For this reason, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention as a manufacturing method for magnetic recording media, as they can easily form a uniform thin film, instead of the spin code method, which results in non-uniform magnetic layer thickness on the submicron order. Along with.

従来の鉄酸化物例えばγ−Fe2O3の磁性層は、その
磁気特性、特に残留磁束密度が小さく出力が低いという
ことから、磁性層として、スパッタ法によって形成され
るコバル)(Co)系合金1例えばコバルト−ニッケル
(Ni )合金磁性薄膜が使用されるようになった。こ
の合金のNi含有量の範囲は20〜30at%がよいこ
とが知られている。
Conventional magnetic layers of iron oxides, such as γ-Fe2O3, have low magnetic properties, especially residual magnetic flux density, and low output. Cobalt-nickel (Ni) alloy magnetic thin films have come into use. It is known that the Ni content range of this alloy is preferably 20 to 30 at%.

第5図に例えばCo−Ni合金磁性薄膜の磁性層を備え
たディスク状磁気記録媒体の要部構成断面図を示す。
FIG. 5 shows a sectional view of a main part of a disk-shaped magnetic recording medium having a magnetic layer made of a Co--Ni alloy magnetic thin film, for example.

第5図の磁気記録媒体は合金基板1上に非磁性基体層2
を被覆し、この非磁性基体層2の上にさらに非磁性金属
下地層3aを介してCo−Ni合合金模膜磁性層4aを
被覆し、磁性層4X1上に保護1@53とその上に潤滑
層5bを形成したものである。
The magnetic recording medium shown in FIG. 5 has a non-magnetic base layer 2 on an alloy substrate 1.
A Co--Ni alloy simulated magnetic layer 4a is further coated on the non-magnetic base layer 2 via a non-magnetic metal underlayer 3a, and a protective layer 1@53 is formed on the magnetic layer 4X1 and A lubricating layer 5b is formed thereon.

このように構成された磁気記録媒体の合金基板1にはア
ルミニウム合金が多用されているが、場合によってはプ
ラスチックを用いてもよく、所定の面粗さ、平行度およ
び平面度に仕上げられる。
Aluminum alloy is often used for the alloy substrate 1 of the magnetic recording medium constructed in this way, but plastic may also be used in some cases, and the substrate is finished to a predetermined surface roughness, parallelism, and flatness.

非磁性基体層2はニッケルーりん(Ni−p)合金を無
電解メッキしたもの、もしくは基板1自体をアルマイト
処理して得たものがよく、いずれも所定の硬さを必要と
し、表面は機械的研磨により鏡面仕上げを行なう。非磁
性金属下地層3aは通常主としてクロム(Cr)などが
用いられ3000^程度の膜厚にスパッタ法などによ多
形成される。
The nonmagnetic base layer 2 is preferably obtained by electroless plating of a nickel-phosphorus (Ni-P) alloy, or by alumite treatment of the substrate 1 itself. Both require a certain hardness, and the surface is mechanically coated. Polish to a mirror finish. The nonmagnetic metal underlayer 3a is usually made of chromium (Cr) or the like, and is formed to a thickness of about 3000 mm by sputtering or the like.

磁性層4aとしてはCo−20〜3Qat%Ni合金薄
膜をスパッタ法により形成した磁気記録媒体が良好な磁
気特性を示すという点で有効であるが、このCo−Ni
合金薄膜について、その後の研究が進むにつれて。
As the magnetic layer 4a, a magnetic recording medium in which a Co-20 to 3Qat%Ni alloy thin film is formed by sputtering is effective in that it exhibits good magnetic properties.
As further research progresses on alloy thin films.

初期の磁気特性はすぐれていても、薄膜磁性層自体の耐
食性が十分でないために、磁気記録媒体の使用される環
境によっては遂には磁気特性の劣化を起こすことが判明
し、そのため本発明者らは鋭意研究の結果、従来相反関
係にあるとみなされていた磁気特性と耐食性の問題を克
服して、白金αt)を含むCO20〜3Qat%Ni合
金が磁性層4aとして磁気特性と耐食性の双方を兼備す
るものであることを見出し、この磁気記録媒体を同一出
願人により提案している。
Although the initial magnetic properties were excellent, it was found that the corrosion resistance of the thin film magnetic layer itself was insufficient, and depending on the environment in which the magnetic recording medium was used, the magnetic properties would eventually deteriorate.Therefore, the present inventors As a result of extensive research, we have overcome the problem of magnetic properties and corrosion resistance, which were conventionally considered to be in conflict with each other, and found that CO20~3Qat%Ni alloy containing platinum (αt) has both magnetic properties and corrosion resistance as the magnetic layer 4a. The same applicant has proposed this magnetic recording medium.

磁性層4aの上にはCrもしくはCr酸化物(cr;o
s)などの保護層5aとさらにカーポ/もしくは二酸化
珪素(Sin2)などの潤滑層5bがいずれも連続して
スパッタにより設けられる。媒体によっては保護層5a
と潤滑層5bとの二層にすることなく、カーボンもしく
はSiO□の薄膜を保護潤滑層として一層のみ形成する
ものもあるが、 CrやCr酸化物層を設けるのは磁性
層4の耐食性を配慮しているからである。
Cr or Cr oxide (cr; o
A protective layer 5a such as s) and a lubricating layer 5b such as carpo/silicon dioxide (Sin2) are both successively provided by sputtering. Depending on the medium, the protective layer 5a
In some cases, a thin film of carbon or SiO□ is formed as a protective lubricant layer without forming two layers, ie, the magnetic layer and the lubricating layer 5b, but the provision of a Cr or Cr oxide layer takes into consideration the corrosion resistance of the magnetic layer 4. This is because they are doing so.

ここで再び非磁性金属下地層33について述べる。Here, the nonmagnetic metal underlayer 33 will be described again.

非磁性金属下地層3aはCo−Ni合金薄膜磁性層4a
の保磁力(Hc )を高める作用をもつものであり、下
地層3aの厚さによっても磁性層4aの保磁力が変化す
る。下地層3aは膜厚の増加とともに磁性層4aの保磁
力を飽和させる傾向にあり、その保磁力を飽和させる下
地層3aの膜厚は材料によって大きく異なる。また、第
5図のように下地層3a上に磁性層4aとして前述した
ptを含むCo−Ni合金薄膜をスパッタによ多形成し
た後、引続きCrまたはCr2O3などの保積層5aと
さらにカーボンまたはSiO□などの潤滑層5bを連続
スパッタ被覆して構成した磁気記録媒体は、磁性層4a
が良好な磁気特性と耐食性とをもっている上に、保護層
5aを設けであるから、一層耐食性が強化されたすぐれ
たものとなる。
The non-magnetic metal underlayer 3a is a Co-Ni alloy thin film magnetic layer 4a.
The coercive force of the magnetic layer 4a changes depending on the thickness of the underlayer 3a. The underlayer 3a tends to saturate the coercive force of the magnetic layer 4a as its thickness increases, and the thickness of the underlayer 3a that saturates the coercive force varies greatly depending on the material. Further, as shown in FIG. 5, after forming a Co--Ni alloy thin film containing PT as described above as the magnetic layer 4a on the underlayer 3a by sputtering, a retaining layer 5a of Cr or Cr2O3 and further a carbon or SiO A magnetic recording medium constructed by continuously coating a lubricating layer 5b such as □ with a magnetic layer 4a
In addition to having good magnetic properties and corrosion resistance, since the protective layer 5a is provided, the corrosion resistance is further enhanced.

以上のことから、この磁気記録媒体は、保護層5aの効
果を期待して、磁気特性を安定に保持したまま下地層3
aを可能な限シ薄<17、スパッタ時間を短縮すること
ができるという可能性をもっている。したがって従来3
000A程度の膜厚の下地層3aを形成していたCrな
どに代シ、さらに薄い膜厚の下地層とするための材料を
選択すること、およびこの下地層と組み合わせて最適な
磁気特性を示す磁性層Co −N i合金に対して添加
するptの含有量の範囲を決定することにより、製造効
率が高く、良好な磁気特性と耐食性を有する磁気記録媒
体を得ることができる。
From the above, this magnetic recording medium expects the effect of the protective layer 5a, and the underlying layer 5a is
It has the possibility of reducing the sputtering time by making a as thin as possible <17. Therefore, conventional 3
Instead of Cr, which forms the underlayer 3a with a thickness of about 0.000A, it is necessary to select a material for forming an underlayer with an even thinner thickness, and to exhibit optimal magnetic properties in combination with this underlayer. By determining the range of the pt content added to the magnetic layer Co--Ni alloy, it is possible to obtain a magnetic recording medium with high manufacturing efficiency and good magnetic properties and corrosion resistance.

〔発明の目的〕 本発明は上述の点に鑑みてなされたものであり、その目
的は基板上を被覆した非磁性基体上に非磁性金属下地層
、Ptを含むCo−Ni合金薄膜磁性層。
[Object of the Invention] The present invention has been made in view of the above points, and its object is to provide a nonmagnetic metal underlayer and a Pt-containing Co--Ni alloy thin film magnetic layer on a non-magnetic base coated on a substrate.

保護層および潤滑層をこの順にスパッタして積層成形し
てなり、特に薄い非磁性金属下地層と適量のptを含有
したCo−Ni合金薄膜磁性層との組み合わせによる良
好な磁気特性と耐食性を具備した磁気記録媒体を提供す
ることにある。
A protective layer and a lubricant layer are sputtered and laminated in this order, and the combination of a particularly thin non-magnetic metal underlayer and a thin Co-Ni alloy magnetic layer containing an appropriate amount of PT provides good magnetic properties and corrosion resistance. The object of the present invention is to provide a magnetic recording medium that has the following characteristics.

〔発明の要点〕[Key points of the invention]

本発明は不活性ガス雰囲気中でアルミニウム基板上のN
1−P層の上に連続的にスパッタして形成した下地層、
磁性層、保護層および潤滑層からなる積層薄膜の下地層
と膜厚t1ぼ500^のW膜、磁性層をPt4〜14a
t%含むCo−Ni合金膜とすることにより達せられる
The present invention deals with N on an aluminum substrate in an inert gas atmosphere.
1-A base layer formed by continuous sputtering on the P layer,
The base layer of the laminated thin film consisting of a magnetic layer, a protective layer and a lubricating layer, a W film with a film thickness t1 of about 500^, and a Pt4-14a magnetic layer.
This can be achieved by forming a Co--Ni alloy film containing t%.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明するっ第1図に本発明
により得られた磁気記録媒体の要部構成断面を示し、第
5図と共通部分を同一符号で表わしである。第1図は第
5図と基本的な構成は同じであるが、第1図が第5図と
異なる所は、非磁性金属下地層3にW膜を用い磁性層4
はW下地層に対して良好な磁気特性が得られるpt含有
量をもっだCo−Ni合金とした点にある。
The present invention will be described below based on examples. FIG. 1 shows a cross section of the main part of a magnetic recording medium obtained according to the present invention, and parts common to those in FIG. 5 are denoted by the same reference numerals. The basic structure of FIG. 1 is the same as that of FIG. 5, but the difference between FIG. 1 and FIG.
The point is that the Co--Ni alloy has a high pt content that provides good magnetic properties for the W underlayer.

まず非磁性合金基板1として旋盤加工および加圧焼純に
よシ、十分に小さなりねシすなわち円周・半径方向とも
20μm以下の面に仕上げたディスク状アルミニウム板
を用い、この上にN1−P合金の無電解メッキを約30
μmの厚さに被膜し、メッキ被膜を平均表面粗さ0.0
2μm、厚さ15μmまで鏡面仕上げを行なうことによ
シ非磁性基体2を形成する。次いで非磁性基体2の上に
非磁性金属下地層3として本発明ではWをスパッタして
形成したが、下地層3の厚さは前述のように磁性層4の
磁気特性に影響を与えるので、どの程度まで薄くできる
かを調べるためK O,05μmから0.1μm間隔で
0.3μmまで変化させた。W下地層3を形成した後、
直ちに引続き同じスパッタ槽内でW下地層3の上に磁性
層4をほぼ5ooAの厚さにスパッタによ)設けた。W
膜の厚さを決定するだめの磁性層4としてはPiを10
at%含むCo−3Qat%Ni合金を用いた。
First, as the non-magnetic alloy substrate 1, a disk-shaped aluminum plate is used which has been lathe-processed and pressure-sintered to have a surface with a sufficiently small radius, that is, 20 μm or less in both the circumferential and radial directions. Approximately 30% electroless plating of P alloy
The plating film is coated to a thickness of μm and has an average surface roughness of 0.0.
The non-magnetic substrate 2 is formed by performing a mirror finish to a thickness of 2 μm and a thickness of 15 μm. Next, a nonmagnetic metal underlayer 3 is formed on the nonmagnetic substrate 2 by sputtering W in the present invention, but the thickness of the underlayer 3 affects the magnetic properties of the magnetic layer 4 as described above. In order to investigate how thin it can be made, K O was varied from 05 μm to 0.3 μm at 0.1 μm intervals. After forming the W base layer 3,
Immediately thereafter, in the same sputtering tank, a magnetic layer 4 was formed on the W underlayer 3 to a thickness of about 50A (by sputtering). W
For the magnetic layer 4 that determines the thickness of the film, 10% of Pi is used.
A Co-3Q at% Ni alloy containing at% was used.

第2図は下地層3として設けたW膜の厚さに対する磁性
層4のHcの変化を示した線図である。第2図では横軸
を0.05μm間隔に目盛ったW膜の厚さ。
FIG. 2 is a diagram showing the change in Hc of the magnetic layer 4 with respect to the thickness of the W film provided as the underlayer 3. In Figure 2, the horizontal axis is the thickness of the W film, scaled at 0.05 μm intervals.

縦軸は磁性層のHcとして示しているが、第2図にはほ
かに二つの比較例を併記し1本発明と従来例とを対比さ
せ本発明の有効性を明らかKしている。
Although the vertical axis indicates Hc of the magnetic layer, FIG. 2 also shows two comparative examples to clearly demonstrate the effectiveness of the present invention by comparing the present invention and a conventional example.

比較例1の磁気記録媒体の製造方法は本実施例の場合と
同様であるが磁性層がCO単独の薄膜である点のみが異
なり、比較例2では同様に磁性層をC0−3Qat%N
iの薄膜としpiを添加してないものである。
The manufacturing method of the magnetic recording medium of Comparative Example 1 is the same as that of this example, except that the magnetic layer is a thin film made of CO alone, and in Comparative Example 2, the magnetic layer is similarly made of C0-3Qat%N.
It is a thin film of i and no pi is added.

第2図から本発明の下地層3としてWを用いたときは、
磁性層4のCo −N i合金にPiを含むことが。
From FIG. 2, when W is used as the base layer 3 of the present invention,
The Co-Ni alloy of the magnetic layer 4 may contain Pi.

磁性層4のHcを高める効果が顕著であシ、シかもW膜
厚がほぼ0.05μm以上となればHCが大きな値で飽
和に達することがわかる。このことはCo−30at%
Ni−10at%Pt合金磁性膜を磁性層4としてW下
地層3と組み合わせ用いるときはW膜の厚さをほぼ0.
05μmまで薄くするのが可能なことを意味している。
It can be seen that the effect of increasing the Hc of the magnetic layer 4 is remarkable, and that when the W film thickness becomes approximately 0.05 μm or more, the HC reaches saturation at a large value. This means that Co-30at%
When a Ni-10at%Pt alloy magnetic film is used as the magnetic layer 4 in combination with the W underlayer 3, the thickness of the W film is approximately 0.
This means that it is possible to reduce the thickness to 0.5 μm.

これに対して比較例1および比較例2はW膜厚を増して
も磁性層のHcはあまり大きくならず、W下地層3とp
tを含むCo −N i合金磁性層4との組み合わせ効
果が第2図から明らかである、 なお下地層3に続いて磁性層4をスパッタするまでに、
あまり長い時間スパッタ槽内に放置したり、大気に曝し
たりすると、下池層3の効果を発揮することができず、
磁性層4の必要とする大きな保磁力が得られなくなる。
On the other hand, in Comparative Examples 1 and 2, the Hc of the magnetic layer did not increase much even if the W film thickness was increased, and the W underlayer 3 and P
The effect of the combination with the Co-Ni alloy magnetic layer 4 containing t is clear from FIG.
If it is left in the sputtering tank for too long or exposed to the atmosphere, the effect of Shimoike Layer 3 will not be exhibited.
The large coercive force required by the magnetic layer 4 cannot be obtained.

例えば下地層3を形成した後、大気に曝して磁性層4を
その上に形成した場合、磁性層4の保磁力は僅か200
0e Lか得られない。このことはスパッタ槽内に長時
間放置したときも同様の結果となるから、下地層3の形
成後は直ちに磁性層4のスパッタを実施しなければなら
ない。
For example, when the underlayer 3 is formed and then the magnetic layer 4 is formed thereon by exposing it to the atmosphere, the coercive force of the magnetic layer 4 is only 200.
0e L or not obtained. The same result occurs even when the material is left in a sputtering tank for a long time, so the magnetic layer 4 must be sputtered immediately after the underlayer 3 is formed.

次にW下地層3の膜厚を5ooA一定としたとき。Next, when the film thickness of the W underlayer 3 is set to be constant at 5ooA.

その上に設けるCo−Ni合金磁性層に対して添加する
ptの量を決定するため、磁性層4のCo−30at%
N1−pt合金のPt含有量をO〜15at%の範囲で
変え、磁気特性について調べた。その結果を第3図(a
)〜(d)に示す。第3図はいずれも横軸をpt含有量
とし、縦軸を磁気特性として3点の平均値をプロットし
た線図である。すなわち第3図(a)は保磁力、第3図
(b)は保磁力角形比歯、第3図(C)は残留磁束密度
の他の条件は全て同じに設定してあり、いずれも■゛ス
パツタ装置用いて出力500W、全ガス圧40X10 
 Torr 、基板温度は室温とし、下地層3のWの膜
厚は前述のようにすべて500Aとした。
In order to determine the amount of pt added to the Co-Ni alloy magnetic layer provided thereon, the Co-30at% of the magnetic layer 4 is
The Pt content of the N1-pt alloy was varied in the range of O to 15 at%, and the magnetic properties were investigated. The results are shown in Figure 3 (a
) to (d). FIG. 3 is a diagram in which the horizontal axis is the pt content and the vertical axis is the magnetic property, and the average value of three points is plotted. In other words, all other conditions are the same, such as coercive force in Figure 3 (a), coercive force square ratio tooth in Figure 3 (b), and residual magnetic flux density in Figure 3 (C), and all other conditions are set as ■゛Using a sputtering device, output 500W, total gas pressure 40X10
Torr, the substrate temperature was set to room temperature, and the W film thickness of the underlayer 3 was all set to 500 A as described above.

第3図(a)〜(d)かられかるように、磁性層4のp
t含有量に対して最も大きく変る磁気特性は(a)図の
HCであって磁気記録媒体として有効な9000e以上
の得られるPt含有量の範囲は4〜14a峠であ択10
000eを超える最も好ましい範囲は6〜12at%で
ある。
As can be seen from FIGS. 3(a) to 3(d), p of the magnetic layer 4
The magnetic property that changes the most with respect to the t content is (a) HC in the figure, and the range of Pt content that can be obtained is 9000e or more, which is effective as a magnetic recording medium, is from 4 to 14a pass, and option 10.
The most preferred range above 000e is 6 to 12 at%.

この範囲のpt含有量についてみると、(b)図のS。Looking at the pt content in this range, S in figure (b).

(C)図のBr・δ、(d)図のBs・δはいずれもp
t含有量の増加とともに低下する傾向にあるっしかしこ
の程度の低下は磁気特性の上で特に問題となることはな
い。
Br・δ in the figure (C) and Bs・δ in the figure (d) are both p
Although it tends to decrease as the t content increases, this degree of decrease does not pose a particular problem in terms of magnetic properties.

かくして本発明の磁気記録媒体は下地層3KW膜を用い
て5ootまで膜厚を薄くしても、この上に設ける磁性
層4にはCo −30a t%Ni−4〜14at%P
1合金薄膜とするととKよシ良好な磁気特性を保持する
ことができるが、さらに最後にCrまたはCr2O3の
保護層5aとカーボンまたはS i02などの潤滑層5
bをスパッタして膜厚500λに形成してすぐれた耐食
性をも九せている。
Thus, even if the magnetic recording medium of the present invention uses a 3KW underlayer film and the film thickness is reduced to 5oot, the magnetic layer 4 provided thereon contains Co-30at%Ni-4 to 14at%P.
1 alloy thin film can maintain better magnetic properties than K, but in addition, a protective layer 5a of Cr or Cr2O3 and a lubricant layer 5 of carbon or Si02 are added at the end.
It is formed by sputtering b to a film thickness of 500λ to provide excellent corrosion resistance.

第4図は温度40℃、相対湿度80チの雰囲気中に曝し
た本発明の磁気記録媒体、すなわち下地層3をW膜とし
磁性層4をCo−30at%Ni−10at%Ptとす
る第1図の構成をもつものを記録装置に用いたときの放
置期間に対するエラー個数の変化を示した線図である。
FIG. 4 shows a first magnetic recording medium of the present invention exposed to an atmosphere at a temperature of 40° C. and a relative humidity of 80° C., in which the underlayer 3 is a W film and the magnetic layer 4 is Co-30 at% Ni-10 at% Pt. FIG. 3 is a diagram showing the change in the number of errors with respect to the neglect period when a recording device having the configuration shown in the figure is used.

第4図の場合も第2図のときと同じ比較例1と比較例2
を併記した。第4図にみられるようにエラー個数は本発
明の磁気記録媒体は12温間放置してはじめて僅かにエ
ラーがカウントされるのに対して、比較例1.比較例2
のものは短い日数のうちにエラー個数が急激に増加し使
用に耐えなくなる。このことは磁性層全体の磁気特性と
しては環境条件によって比較的長時間にわたシ大きな変
化を生ずることがないとしても、湿気などに曝されたと
き、従来の磁性層は表面の微小な局部から順次腐食され
て変質が進行するのに対し。
In the case of Fig. 4, Comparative Example 1 and Comparative Example 2 are the same as in Fig. 2.
Also listed. As shown in FIG. 4, the number of errors in the magnetic recording medium of the present invention is only slightly counted after being left for 12 hours, whereas the number of errors in the magnetic recording medium of the comparative example 1. Comparative example 2
The number of errors increases rapidly within a short period of time, making it unusable. This means that although the magnetic properties of the entire magnetic layer do not change significantly over a relatively long period of time depending on environmental conditions, when exposed to moisture etc., conventional magnetic layers are Whereas corrosion progresses sequentially and alteration progresses.

Ptを適量含有した磁性層を有する本発明の磁気記録媒
体は第4図から耐食性もすぐれたものであることがわか
る。なお第4図には図示してないが4〜14at%の範
囲でPlを含んだCo−Ni合金磁性層についていずれ
も同様の結果を得ることができる。
It can be seen from FIG. 4 that the magnetic recording medium of the present invention having a magnetic layer containing an appropriate amount of Pt also has excellent corrosion resistance. Although not shown in FIG. 4, similar results can be obtained for any Co--Ni alloy magnetic layer containing Pl in the range of 4 to 14 at%.

また本発明の磁気記録媒体を磁気記録装置に組み込んで
C8S試験を行なった結果、2万回のコンタクト、スタ
ート、ストップに対しても記録媒体表面になんら傷を発
生せず、再生出力もほとんど低下することなく、十分な
耐久性をもっていることが実証された。
Furthermore, as a result of conducting a C8S test by incorporating the magnetic recording medium of the present invention into a magnetic recording device, no scratches occurred on the surface of the recording medium even after 20,000 contacts, starts, and stops, and the reproduction output hardly decreased. It has been demonstrated that it has sufficient durability without any damage.

以上説明してきたようK、本発明の磁気記録媒体は非磁
性金属下地層に薄いW膜を用いてスパッタ時間を短縮す
るとともに、W膜に対応して良好な磁気特性を示す組成
の磁性層を有し、耐食性にもすぐれたものであるという
ことができる。
As explained above, the magnetic recording medium of the present invention shortens the sputtering time by using a thin W film as a non-magnetic metal underlayer, and also uses a magnetic layer having a composition that exhibits good magnetic properties corresponding to the W film. It can be said that it has excellent corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

磁気ディスクなどの磁気記録媒体は記録密度をあげるた
めに%磁性層の膜厚を薄くして磁気特性の向上を図シ、
スパッタにょるCo−Ni合金薄膜が用いられるように
なったが、一方でCo−Ni合金磁性層は使用環境にお
ける耐食性が例えば鉄酸化物膜などより劣るという欠点
があり、そのため本発明者らは磁気特性を保持した′t
t耐食性を付与させるCo−Ni合金への第三元素とそ
の添加量範囲の決定、さらに磁性層の上に設けるCr保
瞳層の効果と相俟って下地層をより薄くすることが可能
な材料について研究を重ねた結果1本発明では実施例で
説明したように、 Ptを4〜14at%含むCo−N
i合金薄膜を磁性層とし、下地層には膜厚をほぼ500
^まで薄くしたW膜を用いることKより、W下地層が磁
性層のHcを高めるのに効果的に作用すると同時に、磁
性層自体の耐食性も向上し、 Co−Ni−4〜14a
t%Ptの組成をもつ磁性層とW下地層との組み合わせ
は、磁気特性と耐食性という従来相反関係にあった問題
を一挙に解決し、この二つの特性を一つの記録媒体に兼
備させることができたものであり。
In order to increase the recording density of magnetic recording media such as magnetic disks, the thickness of the magnetic layer is reduced to improve magnetic properties.
Sputtered Co-Ni alloy thin films have come to be used, but on the other hand, Co-Ni alloy magnetic layers have the disadvantage that their corrosion resistance in the usage environment is inferior to, for example, iron oxide films. 't that retains magnetic properties
The determination of the third element and the range of its addition to the Co-Ni alloy that imparts corrosion resistance, combined with the effect of the Cr pupil retention layer provided on the magnetic layer, makes it possible to make the base layer even thinner. As a result of repeated research on materials, the present invention uses Co-N containing 4 to 14 at% of Pt, as explained in the examples.
The i-alloy thin film is used as the magnetic layer, and the underlying layer has a film thickness of approximately 500 mm.
By using a W film thinned to ^^, the W underlayer acts effectively to increase the Hc of the magnetic layer, and at the same time improves the corrosion resistance of the magnetic layer itself.
The combination of a magnetic layer with a composition of t%Pt and a W underlayer solves the conventionally contradictory problems of magnetic properties and corrosion resistance at once, making it possible to combine these two properties into a single recording medium. It was made.

しかも下地層として膜厚をほぼ500Aまで減少可能な
W膜を用いたので、スパッタ時間の短縮による製造効率
を高めている。したがって本発明の磁気記録媒体は記録
装置に用いて十分な出力を与えるとともに安定して長寿
命を保持することができるなど多くの利点を有するもの
である。
Moreover, since a W film whose thickness can be reduced to approximately 500 Å is used as the underlayer, manufacturing efficiency is improved by shortening sputtering time. Therefore, the magnetic recording medium of the present invention has many advantages, such as being able to provide a sufficient output when used in a recording device and stably maintain a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の要部構成断面図、第2
図は下地層の厚さに対する磁性層のHcの変化を示す線
図、第3図は磁性層のpt宮有量と磁気特性との関係を
示す線図、第4図は温度40℃。 相対湿度80%の雰囲気中に曝した磁気記録媒体の放置
期間とエラー個数の関係を示す線図、第5図は従来の磁
気記録媒体の要部構成断面図である。 1・・・合金基板、2・・・非磁性基体層、 3,3a
・・・非磁性金属下地層、 4,4a・・・磁性層、5
a・・・保護層、5b・・・W&1図 第2図 Pt含有量(at’/、)       Pt含有!(
at’/、)(a)              (b
)(υ            (d) 第3図 Za期間(weekS) 第4図 第5図
FIG. 1 is a cross-sectional view of the main part of the magnetic recording medium of the present invention, and FIG.
The figure is a diagram showing the change in Hc of the magnetic layer with respect to the thickness of the underlayer, Figure 3 is a diagram showing the relationship between the amount of PT and magnetic properties of the magnetic layer, and Figure 4 is a diagram at a temperature of 40°C. A diagram showing the relationship between the storage period and the number of errors of a magnetic recording medium exposed to an atmosphere with a relative humidity of 80%, and FIG. 5 is a sectional view of the main part of a conventional magnetic recording medium. 1... Alloy substrate, 2... Nonmagnetic base layer, 3, 3a
...Nonmagnetic metal underlayer, 4,4a...Magnetic layer, 5
a...Protective layer, 5b...W&1 Figure 2 Pt content (at'/,) Pt content! (
at'/, ) (a) (b
)(υ (d) Figure 3 Za period (weekS) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1)基板上の主表面を被覆した非磁性基体上に、非磁性
金属下地層、磁性層、保護層および潤滑層をこの順に連
続スパッタして積層成形した磁気記録媒体において、前
記磁性層がPtを4〜14at%含むCo−Ni合金か
らなり、前記非磁性金属下地層がWからなることを特徴
とする磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において磁性層の
Ptの含有量が6〜12at%であることを特徴とする
磁気記録媒体。 3)特許請求の範囲第1項または第2項記載の媒体にお
いて、Wの膜厚がほぼ500Åであることを特徴とする
磁気記録媒体。
[Claims] 1) A magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricant layer are laminated in this order by successive sputtering on a nonmagnetic substrate that covers the main surface of a substrate. . A magnetic recording medium, wherein the magnetic layer is made of a Co-Ni alloy containing 4 to 14 at% of Pt, and the nonmagnetic metal underlayer is made of W. 2) A magnetic recording medium according to claim 1, wherein the magnetic layer has a Pt content of 6 to 12 at%. 3) A magnetic recording medium according to claim 1 or 2, characterized in that the W film thickness is approximately 500 Å.
JP29546085A 1985-12-25 1985-12-25 Magnetic recording medium Pending JPS62150520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29546085A JPS62150520A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29546085A JPS62150520A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62150520A true JPS62150520A (en) 1987-07-04

Family

ID=17820872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29546085A Pending JPS62150520A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62150520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042885A (en) * 2001-07-31 2003-02-13 Nippon Soken Inc Pressure detecting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042885A (en) * 2001-07-31 2003-02-13 Nippon Soken Inc Pressure detecting structure

Similar Documents

Publication Publication Date Title
JPH0827926B2 (en) Magnetic recording media
JPH07114016B2 (en) Magnetic recording medium and manufacturing method thereof
US5252367A (en) Method of manufacturing a magnetic recording medium
JPS5988806A (en) Magnetic storage body
JPS62150520A (en) Magnetic recording medium
JPS62157323A (en) Magnetic recording medium
JPH0750008A (en) Magnetic recording medium
JPH0474772B2 (en)
JPH0514325B2 (en)
JPS62150523A (en) Magnetic recording medium
JP2515771B2 (en) Magnetic recording media
JPS61199224A (en) Magnetic recording medium
JPH0467251B2 (en)
JP2540479B2 (en) Magnetic memory
JPH0467252B2 (en)
JPS62150521A (en) Magnetic recording medium
JPS6018817A (en) Magnetic storage medium
JPS62150522A (en) Magnetic recording medium
JPS62150524A (en) Magnetic recording medium
JPH0467250B2 (en)
JPS63269318A (en) Magnetic recording medium
JPH0467249B2 (en)
JPS62239420A (en) Magnetic recording medium
JPS62239421A (en) Magnetic recording medium
JPS6342021A (en) Magnetic recording medium