JP2515771B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2515771B2
JP2515771B2 JP61306421A JP30642186A JP2515771B2 JP 2515771 B2 JP2515771 B2 JP 2515771B2 JP 61306421 A JP61306421 A JP 61306421A JP 30642186 A JP30642186 A JP 30642186A JP 2515771 B2 JP2515771 B2 JP 2515771B2
Authority
JP
Japan
Prior art keywords
magnetic
less
recording medium
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61306421A
Other languages
Japanese (ja)
Other versions
JPS6313118A (en
Inventor
芳博 城石
定夫 菱山
博之 鈴木
則和 積田
庸雄 菅沼
吉雄 郷原
奨章 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to KR1019870002691A priority Critical patent/KR0126478B1/en
Priority to CN 87103212 priority patent/CN1008411B/en
Priority to DE19873710024 priority patent/DE3710024A1/en
Priority to US07/030,600 priority patent/US4786553A/en
Publication of JPS6313118A publication Critical patent/JPS6313118A/en
Application granted granted Critical
Publication of JP2515771B2 publication Critical patent/JP2515771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気ディスク装置用などの磁気記録媒体に
係り、特に高記録密度に好適で耐蝕性、耐摺動特性など
の信頼性に優れた媒体に関する。
The present invention relates to a magnetic recording medium for a magnetic disk device or the like, and is particularly suitable for high recording density and has excellent reliability such as corrosion resistance and sliding resistance. Regarding the medium.

〔従来の技術〕[Conventional technology]

従来、高記録密度用の磁気記録媒体として、特公昭54
−33523号公報で示されているように、金属磁性薄膜を
用いた媒体が提案されている。一般に媒体形成法として
は、蒸着法、スパッタ法、メッキ法、及びイオンビーム
スパッタ法などがある。最近、高記録密度化、高信頼性
化に関する要求が増々高まって来ており、特に耐蝕性を
向上するため、特開昭57−15406号公報、特開昭57−196
508号公報のように磁性金属にCr,Nbなど第3元素を添加
する提案がなされるようになった。
Conventionally, as a magnetic recording medium for high recording density,
A medium using a metal magnetic thin film has been proposed as disclosed in Japanese Patent No. 33523. Generally, the medium forming method includes a vapor deposition method, a sputtering method, a plating method, an ion beam sputtering method, and the like. Recently, demands for higher recording density and higher reliability have been increasing, and in order to improve corrosion resistance in particular, JP-A-57-15406 and JP-A-57-196 have been proposed.
As disclosed in Japanese Patent No. 508, it has been proposed to add a third element such as Cr and Nb to a magnetic metal.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、これらの発明はほとんど磁気記録用テープに
関するものであり、コンピュータ用ハードディスクなど
の様に、信頼性に関するより厳しい仕様を満たすには至
っていない。
However, these inventions are mostly related to magnetic recording tapes, and have not yet met the stricter specifications regarding reliability, such as hard disks for computers.

本発明の目的は、金属磁性薄膜の優れた磁気特性を実
質的に維持しつつ、改良された耐蝕性を有するCo−Ni系
磁性金属薄膜から成る磁気記録媒体を与えることにあ
る。
An object of the present invention is to provide a magnetic recording medium comprising a Co—Ni based magnetic metal thin film having improved corrosion resistance while substantially maintaining the excellent magnetic properties of the metal magnetic thin film.

〔問題点を解決するための手段〕[Means for solving problems]

周期率表I b,III a,IV a,V a,VIII族の第4,第5,第6
周期の元素などをCo−Niに添加し、スパッタ法などで形
成した磁性膜の磁気特性、耐蝕性などを鋭意検討した結
果、前記の目的の達成のためには、ZrをCo−Ni系磁性合
金薄膜中に含ませることが極めて有効であることが見い
出された。この発明の磁気記録媒体は、このような知見
に基づくものであり、上記目的は非磁性基板上に主にC
o,Ni,Zrとから成り、かつZrの含有量がCoとNiに対して
0.1at%以上30at%以下であり、磁気特性を向上するた
めにより望ましくはNiの含有量がCoに対して10at%以上
60at%以下であり、さらに望ましくは、Niの含有量がCo
に対して20at%よりも多く、50at%以下さらに望ましく
は30at%以上48at%以下であり、かつZrの含有量がCoと
Niに対して2at%以上20at%以下、望ましくは2at%以上
15at%以下、さらに望ましくは3at%以上12at%以下、
さらに望ましくは4at%以上11at%以下である磁性層を
形成することにより達成される。さらに、磁性層と非磁
性基板との間に100Å以上、5000Å以下のCr中間層を形
成するか、金属状基板を用いる媒体の場合にはその表面
を10ないし400Å酸化せしめ、その上に直接もしくは前
記Cr層を介して磁性層を形成することで、特に記録再生
特性に優れた媒体を提供できる。一方、基板表面に20Å
以上、1000Å以下の少なくともSi、CもしくはGe中間層
のいずれか1層を介在せしめることで、特に垂直磁気記
録用に優れた媒体を提供することもできる。以上の媒体
表面に100Åないし1000Åの非磁性被覆膜を形成するこ
とで、耐蝕性をさらに向上すると共に耐摺動特性に優れ
た媒体を提供できる。
Periodic table Ib, IIIa, IVa, Va, VIII group 4th, 5th, 6th
As a result of diligent examination of the magnetic characteristics and corrosion resistance of the magnetic film formed by sputtering, etc., by adding a periodic element to Co-Ni, in order to achieve the above objective, Zr It has been found that inclusion in an alloy thin film is extremely effective. The magnetic recording medium of the present invention is based on such knowledge, and the above-mentioned object is mainly achieved by using C on a non-magnetic substrate.
It consists of o, Ni, Zr, and the content of Zr is relative to Co and Ni.
0.1 at% or more and 30 at% or less, more preferably Ni content of 10 at% or more with respect to Co in order to improve magnetic properties.
60 at% or less, and more preferably, the content of Ni is Co
To 20 at% or more, 50 at% or less, more preferably 30 at% or more and 48 at% or less, and the content of Zr is Co
2 at% or more and 20 at% or less with respect to Ni, desirably 2 at% or more
15 at% or less, more preferably 3 at% or more and 12 at% or less,
More preferably, it is achieved by forming a magnetic layer of 4 at% or more and 11 at% or less. Further, a Cr intermediate layer of 100 Å or more and 5000 Å or less is formed between the magnetic layer and the non-magnetic substrate, or in the case of a medium using a metallic substrate, its surface is oxidized by 10 to 400 Å and directly or on it. By forming the magnetic layer via the Cr layer, it is possible to provide a medium having excellent recording and reproducing characteristics. On the other hand, 20Å on the substrate surface
As described above, by interposing at least one of the Si, C, and Ge intermediate layers having a thickness of 1000 Å or less, it is possible to provide a medium particularly excellent for perpendicular magnetic recording. By forming a 100 Å to 1000 Å non-magnetic coating film on the surface of the above medium, it is possible to provide a medium having further improved corrosion resistance and excellent sliding resistance.

〔作用〕[Action]

以上の発明は以下の機能による。Ar圧5mTorr、投入電
力5W/cm2、基板温度150℃でRFスパッタリング法でガラ
ス基板上に形成した500Åの(Co0.7Ni0.30.9Zr0.1
(Co0.8Ni0.20.8Zr0.2,(Co0.9Ni0.10.7Zr0.3
(Co0.6Ni0.40.95Zr0.05磁性薄膜をオージエ分光法、
アノード分極曲線法などにより解析した結果、いずれも
表面から深さ60〜30Å程度までZr濃度が高く、かつ緻密
な酸化膜が形成されていることが明らかになった。第9
図にCoNiZr薄膜の、膜厚方向における典型的な組成分布
を示す。ここで試料は、Si基板上に150℃でAr圧を10mTo
rr、投入電力を2W/cm2として5000ÅのCr下地層を形成し
た後、連続して膜厚500Åの(Co0.7Ni0.30.95Zr0.05
を成膜したものである。このプロファイルは、磁性膜上
にCなどの非磁性被覆層を設けても同じであった。磁性
膜中に窒素、酸素等は認められなかった。すなわち、Zr
は磁性薄膜表面に優先的に集まり、緻密な不働態膜を構
成するため、磁性膜の耐蝕性を著しく向上している。こ
の効果はZrの濃度が0.1at%以上であれば認められた。
一方、Zrの添加により媒体の飽和磁束密度は低下する
が、Zrの含有量がCoとNiに対して30at%以下であれば、
その飽和磁束密度は酸化物磁性媒体と同等以上であり実
用上は問題はないことが明らかになった。
The above invention has the following functions. 500 Å (Co 0.7 Ni 0.3 ) 0.9 Zr 0.1 formed on glass substrate by RF sputtering method at Ar pressure 5mTorr, input power 5W / cm 2 , substrate temperature 150 ℃.
(Co 0.8 Ni 0.2 ) 0.8 Zr 0.2 , (Co 0.9 Ni 0.1 ) 0.7 Zr 0.3 ,
(Co 0.6 Ni 0.4 ) 0.95 Zr 0.05 Magnetic thin film by Auger spectroscopy,
As a result of analysis by the anodic polarization curve method, it was revealed that a dense oxide film with high Zr concentration was formed from the surface to a depth of 60 to 30 Å. Ninth
The figure shows the typical composition distribution of CoNiZr thin film in the film thickness direction. Here, the sample is an Ar pressure of 10 mTo on a Si substrate at 150 ° C.
rr, input electric power of 2 W / cm 2 and forming a Cr underlayer of 5000 Å, and then continuously forming (Co 0.7 Ni 0.3 ) 0.95 Zr 0.05 with a film thickness of 500 Å
Is formed into a film. This profile was the same even when a non-magnetic coating layer such as C was provided on the magnetic film. Neither nitrogen nor oxygen was found in the magnetic film. That is, Zr
Is preferentially gathered on the surface of the magnetic thin film to form a dense passivation film, which significantly improves the corrosion resistance of the magnetic film. This effect was observed when the Zr concentration was 0.1 at% or more.
On the other hand, although the saturation magnetic flux density of the medium is lowered by the addition of Zr, if the Zr content is 30 at% or less with respect to Co and Ni,
The saturation magnetic flux density is equal to or higher than that of the oxide magnetic medium, and it has been clarified that there is no problem in practical use.

ところが、CoNiZr合金は、特開昭56−44752(USP4306
908)やアイ・イー・イー・イートランザクション オ
ン マグネチックス、エム エージー16、(1980)第11
29頁から第1131頁(IEEE,Trans.on Magn.MAG−16(198
0)pp1129−1131)に述べられているように超急冷法な
どで作成すると非晶質化し易く、保磁力も低く、磁気ヘ
ッド用材料には適すが、磁気記録用媒体材料としては好
ましくないことが知られている。これに対して、スパッ
タリング法、蒸着法、イオンビームスパッタリング法な
どで、Cr,Mo,Wなどの体心立方格子金属を形成した後にC
oNiZr磁性膜を形成すると、熱処理をしなくても優位的
に結晶質で、しかも保磁力が500Oe以上と高く、磁気記
録用媒体として適した磁気特性を持たせることができ
る。すなわち、Ar圧5mTorr、基板温度180℃で、ガラス
基板、もしくはNiPをメッキしたAl合金基板上に、DCス
パッタリング法により、投入電力5W/cm2で膜厚2500Åの
Crを形成した後、連続して膜厚600Åの(Co0.6Ni0.4
1-xZrx(x;0,0.02,0.03,0.08,0.11,0.12,0.125,0.15,0.
175,0.225)磁性膜を形成すると、第10図に示すよう
に、Zr組成が少ない場合には結晶質で保磁力も500Oe以
上と大きいが、Zr組成が15at%以上に多くなると急激に
非晶質化し、保磁力が500Oe以下に低下してしまう。こ
こで、Zr組成が15at%よりも多く、30at%以下であれ
ば、280℃〜500℃で基板を熱処理することによりCoNiZr
磁性薄膜を結晶化せしめ、高保磁力化することができる
ので、該組成範囲であれば、磁気記録媒体として使用で
きる。しかし、一般には、P組成10.5wwt%の非晶質NiP
を5〜30μmメッキしたAl合金ディスクがディスク基板
に用いられている。これは、ディスクの強度を向上する
と共に、表面平坦性、浮上性を高めるためである。ここ
で、該基板は250℃〜300℃で3時間程度熱処理すると、
結晶化すると共に帯磁してしまうので、前記の基板熱処
理はあまり好ましくない。さらに、このような熱処理
は、反応を抑制するために、保護膜を形成する直前に行
なうことが望ましく、プロセスが複雑になるという欠点
もある。したがって熱処理を施さずに500Oeと高い保磁
力を得るためには、第10図から、Zrの組成は15at%以下
とすることが望ましい。耐蝕性が高めるという点ではZr
組成は2at%以上とすることが望ましい。Zrを添加して
保磁力を向上するという点で、第10図から、より望まし
くはZr組成を3at%以上12at%以下、さらに望ましくは4
at%以上11at%以下とすることが好ましい。ただし、オ
ーバライトなどの記録再生特性を向上させるためには、
磁性媒体を薄膜化することが必要であり、このためには
Niの含有量がCoに対して60at%以下であることが望まし
いことも明らかになった。一方、媒体の記録密度を向上
するためには媒体の保磁力を高くする必要があり、この
ためには第5図に示すようにNiの含有量をCoに対して20
at%よりも多く、50at%以下、さらに望ましくは、30at
%以上48at%以下、面内もしくは垂直磁気記録用として
目的に応じて磁性膜の磁性特性制御層としてCr、表面酸
化層もしくはSi,C,Geを介在せめることが望ましい。保
磁力などの磁気特性ならびに経済性を考えると、Crの膜
厚は100Å以上、5000Å以下、酸化層膜厚は10Å以上400
Å以下、Si,C,Ge膜厚は20Å以上、1000Å以下が好まし
い。さらに、磁性層の表面に100Å以上の非磁性被覆膜
を形成することで、耐摺動信頼性を向上すると共に耐蝕
性をさらに向上させることができる。ただし1000Åより
膜厚が厚くなるとスペーシング損失が多くなり、記録再
生特性上好ましくない。
However, the CoNiZr alloy is disclosed in JP-A-56-44752 (USP4306
908) and iEeTransaction on Magnetics, MAG 16, (1980) No. 11
Pages 29 to 1131 (IEEE, Trans.on Magn. MAG-16 (198
0) pp1129-1131), it is easy to amorphize when created by the ultra-quenching method and the like, and has a low coercive force, which is suitable for magnetic head materials, but not preferable as magnetic recording medium materials. It has been known. On the other hand, C, after forming a body-centered cubic lattice metal such as Cr, Mo, W by sputtering, vapor deposition, ion beam sputtering, etc.
When the oNiZr magnetic film is formed, it is predominantly crystalline without heat treatment, and has a high coercive force of 500 Oe or more, and can have magnetic characteristics suitable as a magnetic recording medium. That is, at an Ar pressure of 5 mTorr and a substrate temperature of 180 ° C., on a glass substrate or an Al alloy substrate plated with NiP, a DC sputtering method was used to apply a power of 5 W / cm 2 and a film thickness of 2500 Å.
After forming Cr, the film thickness of 600Å (Co 0.6 Ni 0.4 ) is continuously formed.
1-x Zr x (x; 0,0.02,0.03,0.08,0.11,0.12,0.125,0.15,0.
175, 0.225) When a magnetic film is formed, as shown in Fig. 10, when the Zr composition is small, it is crystalline and has a large coercive force of 500 Oe or more, but when the Zr composition exceeds 15 at%, it becomes amorphous rapidly. The quality is improved and the coercive force is reduced to 500 Oe or less. Here, if the Zr composition is more than 15 at% and 30 at% or less, heat treatment of the substrate at 280 ° C to 500 ° C is performed to produce CoNiZr.
Since the magnetic thin film can be crystallized to have a high coercive force, it can be used as a magnetic recording medium within this composition range. However, in general, amorphous NiP with a P composition of 10.5 wwt%
An Al alloy disc plated with 5 to 30 μm is used as a disc substrate. This is to improve the strength of the disc and to improve the surface flatness and the floating property. Here, when the substrate is heat-treated at 250 ° C. to 300 ° C. for about 3 hours,
The above-mentioned heat treatment of the substrate is not very preferable because it is crystallized and magnetized. Further, such a heat treatment is preferably performed immediately before forming the protective film in order to suppress the reaction, and there is a drawback that the process becomes complicated. Therefore, in order to obtain a high coercive force of 500 Oe without heat treatment, it is desirable from FIG. 10 that the Zr composition is 15 at% or less. Zr in terms of improving corrosion resistance
The composition is preferably 2 at% or more. From the viewpoint of improving the coercive force by adding Zr, from FIG. 10, it is more desirable that the Zr composition is 3 at% or more and 12 at% or less, and more desirably 4 at% or less.
It is preferable to be at% or more and 11 at% or less. However, in order to improve the recording / playback characteristics such as overwrite,
It is necessary to thin the magnetic medium, and for this purpose
It was also clarified that the Ni content is preferably 60 at% or less with respect to Co. On the other hand, in order to improve the recording density of the medium, it is necessary to increase the coercive force of the medium. To this end, as shown in FIG.
Greater than at% and less than or equal to 50 at%, more preferably 30 at
% Or more and 48 at% or less, it is desirable to interpose Cr, a surface oxide layer or Si, C, Ge as a magnetic property control layer of a magnetic film for in-plane or perpendicular magnetic recording depending on the purpose. Considering magnetic properties such as coercive force and economical efficiency, the Cr film thickness is 100 Å or more and 5000 Å or less, and the oxide layer film thickness is 10 Å or more 400
Å or less, Si, C, Ge film thickness is preferably 20 Å or more and 1000 Å or less. Furthermore, by forming a 100-liter or more non-magnetic coating film on the surface of the magnetic layer, it is possible to improve the sliding resistance and the corrosion resistance. However, when the film thickness is thicker than 1000Å, spacing loss increases, which is not preferable in terms of recording / reproducing characteristics.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。11
はAl合金などから成る基板、12、12′はNi−P,Ni−W−
Pなどから成る非磁性メッキ層、13,13′はCrなどから
成る磁性制御層、14,14′はCo−Ni−Zr合金から成る磁
性層であり、それぞれは以下に示すように構成される。
An embodiment of the present invention will be described below with reference to FIG. 11
Is a substrate made of Al alloy, 12 and 12 'are Ni-P, Ni-W-
A non-magnetic plating layer made of P, 13 and 13 'are magnetic control layers made of Cr, and 14 and 14' are magnetic layers made of Co-Ni-Zr alloy. .

外径130mmφ,内径40mmφ,厚さ1.9mmのAl合金基板11
の上に20μmの非磁性12wt%P−Niメッキ層12,12′を
形成した。この基板上に、基板温度180℃、Ar圧5mTor
r、RF投入電力4W/cm2でCr薄膜13,13′を2500Å形成した
後、同条件でTi,Zr,V,Nb,Ta,Cr,Mo,W,Ru,Rh,Pd,Ptを0.0
5at%,0.1at%,1at%,10at%,15at%,20at%,30at%,40
at%,50at%添加したCo0.7Ni0.8合金ターゲットを用い
て磁性層14,14′を600Å形成した。第2図に、40℃、1
規定のNaClを用いた塩水噴霧試験により、第3添加元素
のCoNiに対する相対濃度を10at%とした磁気ディスクの
飽和磁束密度の時間変化を示す。21には、Co0.7Ni0.8
金薄膜を用いた磁気ディスクの結果を示す。Ti,Pt,Ru,T
a,Rh,V,Nb,Cr,Zr,Pdを添加することでCoNiの耐蝕性は向
上するがZr,Nbを添加することで飽和磁束密度の劣化が
無く、優れた耐蝕性を示すことが分かった。この効果は
添加量が0.1at%以上であれば実質的に同様であった。
Outer diameter 130mmφ, inner diameter 40mmφ, thickness 1.9mm Al alloy substrate 11
A non-magnetic 12 wt% P-Ni plating layer 12, 12 'having a thickness of 20 .mu.m was formed on the above. On this substrate, substrate temperature 180 ℃, Ar pressure 5mTor
r, RF input power of 4 W / cm 2 was used to form Cr thin film 13, 13 ′ with 2500 Å, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Ru, Rh, Pd, Pt was 0.0
5at%, 0.1at%, 1at%, 10at%, 15at%, 20at%, 30at%, 40
The magnetic layers 14 and 14 'were formed to 600 Å using Co 0.7 Ni 0.8 alloy target containing at% and 50 at%. Fig. 2 shows 40 ℃, 1
A salt spray test using specified NaCl shows the time-dependent change of the saturation magnetic flux density of the magnetic disk when the relative concentration of the third additive element to CoNi is 10 at%. Figure 21 shows the results of magnetic disks using Co 0.7 Ni 0.8 alloy thin films. Ti, Pt, Ru, T
By adding a, Rh, V, Nb, Cr, Zr, Pd, the corrosion resistance of CoNi is improved, but by adding Zr, Nb, the saturation magnetic flux density does not deteriorate and excellent corrosion resistance can be exhibited. Do you get it. This effect was substantially the same if the added amount was 0.1 at% or more.

次に外径220mmφ、厚さ1.9mmのAl合金基板11,15μm
の非磁性11wt%P−Niメッキ層12,12′を用いた基板上
に、基板温度150℃、Ar圧10mTorr、DC投入電力7W/cm2
Cr膜13,13′を1500Å形成し、同条件でZr,Rh,Nb,Pd,W,V
を8at%添加したCo0.75Ni0.25合金ターゲットを用いて
磁性層14,14′を500Å形成した。第3図に、40℃、1規
定のNaCl水溶液に本ディスクを浸漬した時の飽和磁束密
度の時間変化を示す。特にZrを添加した場合に著しい耐
蝕性の向上が認められた。この時、いずれの磁性膜も優
位的に多結晶質であった。本効果はZrが主たる添加物で
あれば良く、その他にTi,Pt,Ru,Ta,Rh,V,Nb,Cr,Pdが含
有されていても優れた耐蝕性を示した。すなわち(Co
0.7Ni0.30.95Zr0.05,(Co0.6Ni0.40.94Zr0.06(Co
0.65Ni0.450.95Zr0.05にRuを0.5,1.0at%,Taを1,2,5a
t%,Crを1,2,5at%,Tiを1,2,4at%,Nbを2,4,6at%,Rhを
0.2,0.5,1.0at%,Ptを0.2,0.5,1.0at%,Pdを0.2,0.5,1.
0at%,Vを2,4,6at%添加した磁性膜を形成しその耐食性
について、60℃90%RHクラス10000の部屋での高温高湿
試験により評価した。いずれの磁性膜もこれらの第4元
素を添加することで、2週間後の磁化の減少量は5%以
下で特に優れていた。これは、これらの第4元素を添加
することで、表面酸化被膜の構造がより強固になり、均
一な腐食、酸化に対する耐食性が向上するためである。
以上の効果は、上記元素の添加量を0.01at%以上とすれ
ば認められた。ただし添加量が15at%を越えると飽和磁
化が低下してしまうので望ましくない。
Next, outer diameter 220mmφ, thickness 1.9mm Al alloy substrate 11,15μm
On a substrate using non-magnetic 11wt% P-Ni plating layers 12, 12 'at a substrate temperature of 150 ° C, an Ar pressure of 10mTorr, and a DC input power of 7W / cm 2 .
A Cr film 13,13 ′ is formed on 1500 Å and Zr, Rh, Nb, Pd, W, V are formed under the same conditions.
Magnetic layers 14 and 14 'were formed to a thickness of 500 Å using a Co 0.75 Ni 0.25 alloy target containing 8 at% of. FIG. 3 shows the change over time in the saturation magnetic flux density when the disc was immersed in a 1N NaCl aqueous solution at 40 ° C. Especially when Zr was added, a remarkable improvement in corrosion resistance was observed. At this time, all the magnetic films were predominantly polycrystalline. This effect is only required if Zr is the main additive, and excellent corrosion resistance is exhibited even if Ti, Pt, Ru, Ta, Rh, V, Nb, Cr, and Pd are also contained. That is (Co
0.7 Ni 0.3 ) 0.95 Zr 0.05 , (Co 0.6 Ni 0.4 ) 0.94 Zr 0.06 (Co
0.65 Ni 0.45 ) 0.95 Zr 0.05 with Ru 0.5,1.0 at%, Ta 1,2,5a
t%, Cr 1,2,5at%, Ti 1,2,4at%, Nb 2,4,6at%, Rh
0.2,0.5,1.0at%, Pt 0.2,0.5,1.0at%, Pd 0.2,0.5,1.
A magnetic film containing 0 at% and V at 2,4,6 at% was formed and its corrosion resistance was evaluated by a high temperature and high humidity test in a room at 60 ° C, 90% RH class 10,000. Addition of these fourth elements to all the magnetic films was particularly excellent in that the amount of decrease in magnetization after 2 weeks was 5% or less. This is because the addition of these fourth elements strengthens the structure of the surface oxide film and improves uniform corrosion and corrosion resistance to oxidation.
The above effects were recognized when the amount of the above elements added was 0.01 at% or more. However, if the amount added exceeds 15 at%, the saturation magnetization will decrease, which is not desirable.

Co0.9Ni0.1,Co0.6Ni0.4,Co0.5Ni0.5,Co0.4Ni0.6,Co
0.3Ni0.7,Co0.62Ni0.3Cr0.08にZrを15at%添加した合金
ターゲットを用い、Cr膜厚を2000Å、磁性層を700Åと
した場合も、Zrの添加に対して上記2つの実施例と同様
の効果が見い出され、Zrを0.1at%以上添加することに
より著しい耐蝕性の向上が認められた。しかし、Zrを30
at%よりも多く添加すると飽和磁束密度、保磁力の劣化
が著しく、実用上望ましくないことがわかり、添加量と
しては30at%以下が好ましい。
Co 0.9 Ni 0.1 , Co 0.6 Ni 0.4 , Co 0.5 Ni 0.5 , Co 0.4 Ni 0.6 , Co
When an alloy target in which Zr is added at 15 at% to 0.3 Ni 0.7 , Co 0.62 Ni 0.3 Cr 0.08 , and the Cr film thickness is 2000 Å and the magnetic layer is 700 Å, the same as the above two examples for Zr addition The effect was found, and a significant improvement in corrosion resistance was observed by adding Zr of 0.1 at% or more. But Zr 30
It has been found that when added in excess of at%, the saturation magnetic flux density and coercive force are significantly deteriorated, which is not desirable in practice, and the added amount is preferably 30 at% or less.

第4図には、第2図に示した磁気ディスクの保磁力を
示すが、Pdを添加した場合を除き、保磁力、角形比は60
0Oe以上、0.8以上あり、Pd添加物を除くいずれのディス
クも記録再生特性が優れていた。第5図に、Co,Niに対
するZ含有量を12at%とする磁性層を600Å、膜厚1000
ÅのCr上にAr圧7mTorr、8W/cm2のDCマグネトロンスパッ
タ法で形成した場合の保磁力とCoに対するNi含有量との
関係を示す。Coに対するNiの含有量が10at%以上、60at
%以下であれば、高記録密度に必要な550Oe程度以上の
面内方向保磁力が得られている。Niの含有量が20at%よ
りも多く、50at%以下であればさらに高い記録密度が達
成できる。実際、ギャップ長0.4μmのMn−Znフエライ
トヘッドにより、浮上量0.25μmとした時20KFCI以上の
高記録密度が達成された。第5図において、NiのCoに対
する含有量が20at%より多く50at%以下であれば保磁力
は650Oe以上と高く、さらにNi含有量が30at%以上48at
%以下であれば保磁力は750Oe以上とさらに高くなるの
で、記録再生特性上より望ましい。実際、外径130mm
φ、厚さ1.9mmtのAl合金基板11に、11.5wt%P−Niを20
μmメッキし、その表面を研磨後、さらに表面に基板円
周方向に中心線平均粗さRaで60Åの微細傷を付け、膜厚
15μmとした非磁性メッキ層12,12′の上に、基板温度2
00℃、Arガス圧15mTorr、投入電力1W/cm2で膜厚3000Å
のCrから成る磁性制御層13,13′を形成し、次いで同条
件で膜厚600Åの(Co1-xNix0.955Zr0.045磁性層(x
=0.2,0.25,0.3,0.37,0.40,0.45,0.48,0.50)14,14′を
形成した後,3mTorr,8W/cm2で膜厚450ÅのCから成る非
磁性被膜層を形成し、最後にパーフルオロアルキルポリ
エーテルから成る液体潤滑剤を40Å形成して磁気ディス
クとし、その記録再生特性をギャップ長0.4μmの薄膜
磁気ヘッドで評価したところ、第11図に示すようにCoに
対するNi含有率が30at%以上48at%以下の時に特にS/N
比が高く、極めて良好な記録再生特性を示した。
Fig. 4 shows the coercive force of the magnetic disk shown in Fig. 2. The coercive force and squareness ratio are 60 unless Pd is added.
It was 0 Oe or more and 0.8 or more, and all the disks except the Pd additive had excellent recording and reproducing characteristics. Fig. 5 shows a magnetic layer with a Z content of 12 at% for Co and Ni of 600Å and a film thickness of 1000.
The relation between the coercive force and the Ni content with respect to Co when formed by DC magnetron sputtering with Ar pressure of 7 mTorr and 8 W / cm 2 on Cr of Å is shown. Ni content to Co is 10at% or more, 60at
%, An in-plane coercive force of about 550 Oe or more required for high recording density is obtained. If the Ni content is more than 20 at% and 50 at% or less, a higher recording density can be achieved. In fact, with a Mn-Zn ferrite head with a gap length of 0.4 μm, a high recording density of 20 KFCI or more was achieved when the flying height was 0.25 μm. In Fig. 5, if the content of Ni to Co is more than 20 at% and less than 50 at%, the coercive force is as high as 650 Oe or more, and the Ni content is more than 30 at% and 48 at.
% Or less, the coercive force is further increased to 750 Oe or more, which is more desirable in terms of recording / reproducing characteristics. In fact, the outer diameter is 130 mm
11.5wt% P-Ni on the φ11 and 1.9mmt thick Al alloy substrate 11
After plating μm and polishing the surface, a fine scratch of 60Å with center line average roughness Ra is further made on the surface in the circumferential direction of the substrate.
Substrate temperature 2 on the non-magnetic plating layer 12 and 12 'of 15μm
Film thickness 3000Å at 00 ℃, Ar gas pressure 15mTorr, input power 1W / cm 2
Magnetic control layers 13 and 13 'made of Cr are formed, and then (Co 1-x Ni x ) 0.955 Zr 0.045 magnetic layer (x
= 0.2,0.25,0.3,0.37,0.40,0.45,0.48,0.50) 14,14 'is formed, then a non-magnetic film layer of C with a film thickness of 450 Å is formed at 3 mTorr, 8 W / cm 2 and finally A 40 Å liquid lubricant made of perfluoroalkyl polyether was formed into a magnetic disk, and its recording / reproducing characteristics were evaluated with a thin film magnetic head with a gap length of 0.4 μm. As shown in FIG. Especially S / N when 30at% or more and 48at% or less
The ratio was high and the recording / reproducing characteristics were extremely good.

以上の実施例において、NiP上に直接磁性層を形成す
ると保磁力は50Oe程度しかなく、100Å以上のCr膜を介
して磁性層を形成することで実用上充分な保磁力が得ら
れた。しかし、5000Åより厚いCrを形成しても保磁力向
上に関する効果はこれ以下の膜厚のCrを介した場合と変
らず、生産効率上Cr厚さは5000Å以下、より望ましくは
3000Å以下とすることが好ましい。
In the above examples, when the magnetic layer was formed directly on NiP, the coercive force was only about 50 Oe, and by forming the magnetic layer through the Cr film of 100 Å or more, the coercive force practically sufficient was obtained. However, even if Cr that is thicker than 5000Å is formed, the effect of improving the coercive force is the same as when Cr with a film thickness of less than this is used, and in terms of production efficiency, the Cr thickness is 5000Å or less, and more desirably
It is preferably 3000 Å or less.

膜厚100ÅのC膜13,13′を5mTorr,4W/cm2,基板温度10
0℃でNi−W−Pを25μm(12,12′)形成したAl合金基
板11上に成膜した後、(Co0.6Ni0.40.8Zr0.2磁性膜
(14,14′)を0.2μm形成することで、耐蝕性、垂直磁
気記録特性に優れた媒体を形成できた。中間層として20
0ÅのSi,50ÅのGeを用いても同様であった。また、中間
膜の効果は20Å以上の膜厚に対して認められた。ただし
実用上膜厚は1000Å以下で充分であった。
5mTorr, 4W / cm 2 , substrate temperature 10
After Ni-WP was deposited on an Al alloy substrate 11 having a thickness of 25 μm (12,12 ′) formed at 0 ° C., a (Co 0.6 Ni 0.4 ) 0.8 Zr 0.2 magnetic film (14,14 ′) was formed to a thickness of 0.2 μm. By doing so, a medium excellent in corrosion resistance and perpendicular magnetic recording characteristics could be formed. 20 as the middle layer
The same was true when 0Å Si and 50Å Ge were used. Moreover, the effect of the intermediate film was recognized for film thicknesses of 20 Å or more. However, for practical use, a film thickness of 1000Å or less was sufficient.

第6図には第1図とは別の構成の実施例を示す。Al合
金などから成る基板61、非磁性メッキ層62,62′,Co−Ni
−Zr合金から成る磁性層63,63′で構成される。
FIG. 6 shows an embodiment of a structure different from that of FIG. Substrate 61 made of Al alloy, non-magnetic plating layer 62, 62 ', Co-Ni
The magnetic layers 63 and 63 'are made of a -Zr alloy.

外径90mmφのAl合金基板61,15μmに非磁性11.5wt%
P−Niメッキ層62,62′とした基板を、基板温度100℃,O
2を20%含んだArガス中(5mTorr、0.4W/cm2)で逆スパ
ッタすることにより、酸化層を30Å形成し、その後Ar圧
5mTorr,6W/cm2,基板温度150℃でZrを5,15at%含むCo−N
i合金ターゲットを用いて磁性膜63,63′を600Å形成し
た。第7図に、Co,Niに対するZr含有量を10at%とした
時の磁性膜の飽和磁束密度と、Coに対するNi含有量との
関係を示す。50at%以下のNiに対して実用上充分な飽和
磁束密度が得られている。保磁力も第5図に示した場合
と同等の値が得られ、第1図の構成のディスクと同様に
優れた記録再生特性が得られた。耐蝕性は、第1図に示
した構成のディスクに比べて若干劣化したが、実用レベ
ルでは問題ないことも分った。NiP表面をこのように逆
スパッタ処理して酸化物を形成した後、第1図に示した
ようにCr層を介して磁性膜を形成した場合、最も良好な
記録再生特性が得られた。
Nonmagnetic 11.5wt% on Al alloy substrate 61,15μm with outer diameter 90mmφ
Substrates with P-Ni plating layers 62 and 62 'are placed at a substrate temperature of 100 ° C and O
By performing reverse sputtering in Ar gas containing 20% of 2 (5 mTorr, 0.4 W / cm 2 ), an oxide layer of 30 Å is formed, and then Ar pressure is applied.
5mTorr, 6W / cm 2, comprising 5,15At% of Zr at a substrate temperature of 0.99 ° C. Co-N
The magnetic films 63 and 63 ′ were formed to 600 Å using an i alloy target. FIG. 7 shows the relationship between the saturation magnetic flux density of the magnetic film and the Ni content with respect to Co when the Zr content with respect to Co and Ni is 10 at%. Practically sufficient saturation magnetic flux density has been obtained for Ni of 50 at% or less. The coercive force was similar to that shown in FIG. 5, and excellent recording / reproducing characteristics were obtained as with the disk having the configuration shown in FIG. Although the corrosion resistance was slightly deteriorated as compared with the disk having the structure shown in FIG. 1, it was also found that there was no problem at a practical level. When the magnetic film was formed through the Cr layer as shown in FIG. 1 after the NiP surface was reverse-sputtered in this way to form an oxide, the best recording and reproducing characteristics were obtained.

以上の実施例の他、O2を含有するArガス中で磁性膜を
形成し、磁性膜中のO含有量を0.1〜15at%とした磁気
ディスクも形成した。(Co0.7Ni0.30.95Zr0.05に酸素
を7at%含有する、本発明による磁気ディスクの膜厚方
向の組成分布(オージュプロファイル)の典型的な例を
第12図に示す。なお窒素など他の元素は認められなかっ
た。飽和磁束密度が減少する、耐蝕性が若干劣化するな
どの欠点はあるが、この場合も実用上問題のないレベル
の媒体が形成できた。すなわち、130mmφのAl合金基板1
1上に11wt%P−Niをメッキして鏡面研摩後、ディスク
の同方向に中心線平均面粗さで70Åの傷を付け、膜厚10
μmとした非磁性メッキ層12,12′上に、磁性膜の組成
が(Co0.7Ni0.30.95Zr0.05,(Co0.7Ni0.30.94Zr
0.06,(Co0.65Ni0.350.94Zr0.06,(Co0.60Ni0.40
0.94Zr0.06(Co0.7Ni0.30.945Zr0.05Ru0.005,(Co
0.6Ni0.40.91Zr0.05Ta0.04,(Co0.7Ni0.30.9Zr
0.05Mo0.05に酸素を0,2,5,7,10,15at%含む膜厚600Åの
磁性層14,14′と膜厚2500ÅのCr下地層13,13,とから成
り、かつ磁性膜表面にC,B4C,SiO2から成る膜厚400Åの
保護膜及びさらにその表面にパーフルオロアルキルポリ
エーテルから成る液体潤滑剤を50Å形成して磁気ディス
クとし、ギャップ長0.7μmの薄膜磁気ヘッドで相対速
度13.5m/s、浮上量0.22μmとして記録再生を評価した
ところ、酸素含有量と共に出力は低下するが、ノイズは
さらに低下し媒体S/N比は逆に酸素量と共に増大した。
これは、酸素がZrと優先的に結合し、結晶粒間の相互作
用を低減し、記録ビット間の磁化遷移領域が酸素量と共
に小さくなることによる。なお、酸素を15at%以上含有
させると出力の低下が著しく、ヘッド媒体系として考え
て全S/Nはかえって低下してしまうので好ましくなかっ
た。
In addition to the above examples, a magnetic disk was formed by forming a magnetic film in Ar gas containing O 2 and setting the O content in the magnetic film to 0.1 to 15 at%. FIG. 12 shows a typical example of the composition distribution (Auge profile) in the film thickness direction of the magnetic disk according to the present invention in which (Co 0.7 Ni 0.3 ) 0.95 Zr 0.05 contains 7 at% oxygen. No other element such as nitrogen was found. Although there are drawbacks such as a decrease in saturation magnetic flux density and a slight deterioration in corrosion resistance, in this case as well, a medium having a practically no problem level could be formed. That is, 130 mmφ Al alloy substrate 1
After plating 11 wt% P-Ni on 1 and mirror-polishing, scratches of 70 Å with centerline average surface roughness in the same direction of the disk, and film thickness 10
The composition of the magnetic film is (Co 0.7 Ni 0.3 ) 0.95 Zr 0.05 , (Co 0.7 Ni 0.3 ) 0.94 Zr on the non-magnetic plating layers 12 and 12 ′ having a thickness of μm.
0.06 , (Co 0.65 Ni 0.35 ) 0.94 Zr 0.06 , (Co 0.60 Ni 0.40 )
0.94 Zr 0.06 (Co 0.7 Ni 0.3 ) 0.945 Zr 0.05 Ru 0.005 , (Co
0.6 Ni 0.4 ) 0.91 Zr 0.05 Ta 0.04 , (Co 0.7 Ni 0.3 ) 0.9 Zr
0.05 Mo 0.05 consisting of 0,2,5,7,10,15at% oxygen and magnetic layer 14,14 'with a film thickness of 600Å and Cr underlayer 13,13 with a film thickness of 2500Å. A protective film of C, B 4 C, SiO 2 with a thickness of 400 Å and a liquid lubricant of perfluoroalkyl polyether on the surface of 50 Å to form a magnetic disk. When recording and reproducing were evaluated at a velocity of 13.5 m / s and a flying height of 0.22 μm, the output decreased with the oxygen content, but the noise further decreased and the media S / N ratio increased with the oxygen content.
This is because oxygen is preferentially bound to Zr, the interaction between crystal grains is reduced, and the magnetization transition region between recording bits becomes smaller with the amount of oxygen. If oxygen is contained at 15 at% or more, the output is remarkably decreased, and the total S / N is rather decreased considering the head medium system, which is not preferable.

第1図、第6図に示した構成の本実施例から成る磁気
ディスク上に、Ar圧5mTorr,8W/cm2、基板温度150℃でC
薄膜を500ÅDCマグネトロン方式で形成した磁気記録媒
体は、第3図に示した耐蝕試験法で、8時間以上経過し
ても酸化の変化は認められず、著しく耐蝕性が向上して
いることが明らかになった。また、C膜が無い場合に比
べて耐摺動強度は1〜5桁以上向上し、信頼性の面でも
C膜を形成することが好ましいことが明らかになった。
以上の効果は、保護膜の膜厚が100Å以上あれば認めら
れたが、1000Å以上となると、記録密度特性が著しく劣
化し、実用上好ましくないことも明らかになった。B,B
N,SiC膜を形成した場合、あるいは磁性膜表面を熱酸化
しても同様の効果が認められた。有機系の潤滑剤を形成
することにより、2〜3倍の信頼性向上が認められた。
On the magnetic disk of the present embodiment having the structure shown in FIGS. 1 and 6, Ar pressure of 5 mTorr, 8 W / cm 2 and substrate temperature of 150 ° C.
The magnetic recording medium with a thin film formed by the 500ÅDC magnetron system showed a significant improvement in corrosion resistance by the corrosion resistance test method shown in Fig. 3 without any change in oxidation even after 8 hours. Became. Further, it has been revealed that the sliding resistance is improved by 1 to 5 digits or more as compared with the case where there is no C film, and that it is preferable to form the C film also in terms of reliability.
The above effect was confirmed when the thickness of the protective film was 100 Å or more, but when it was 1000 Å or more, it became clear that the recording density characteristic was remarkably deteriorated, which was not preferable in practical use. B, B
Similar effects were observed when N, SiC films were formed or when the surface of the magnetic film was thermally oxidized. By forming the organic lubricant, it was confirmed that the reliability was improved by 2 to 3 times.

第8図にはさらに別の実施例を示す。81は、表面をア
ルマイト処理したAl基板、もしくはポリイミド、PETな
どの有機性基板、82,82′は第1図で示したものと同様
の磁性制御層、83,83′はCo−Ni−Zrから成る磁性層、8
4,84′は既に説明したのと同様の非磁性被覆層である。
組成、膜厚、成膜方法は前述の通りである。
FIG. 8 shows still another embodiment. 81 is an Al substrate whose surface is anodized, or an organic substrate such as polyimide or PET, 82 and 82 'are magnetic control layers similar to those shown in FIG. 1, and 83 and 83' are Co-Ni-Zr. Magnetic layer, consisting of 8
4,84 'is a non-magnetic coating layer similar to that described above.
The composition, film thickness, and film forming method are as described above.

本実施例では磁気ディスク、フロツピディスクを例に
して説明したが、本効果はこれ等の媒体に限るわけでは
なく、磁気テープなどにも適用できる。また、成膜法に
ついても、スパツタリング法に限らず、蒸着法、イオン
ビームスパツタ法などでも良い。
In this embodiment, the magnetic disk and the floppy disk have been described as an example, but the present effect is not limited to these media and can be applied to a magnetic tape or the like. Further, the film forming method is not limited to the spattering method, but may be a vapor deposition method, an ion beam sputter method, or the like.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、金属磁気記録薄膜の優
れた磁気特性を実質的に維持しつつ、従来の媒体に比べ
て格段に優れた耐蝕性を有するCo−Ni系金属磁性薄膜を
有する磁気記録媒体を提供することができる。
As described above, according to the present invention, while substantially maintaining the excellent magnetic properties of the metal magnetic recording thin film, it has a Co-Ni-based metal magnetic thin film having significantly better corrosion resistance than the conventional medium. A magnetic recording medium can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の磁気ディスクの断面図、第
2図、第3図は本発明の磁気ディスク等に対する塩水噴
霧試験、塩水浸漬試験の結果を示す図、第4図、第5図
はそれ等の磁気特性を示す図、第6図は別の実施例の磁
気ディスクの断面図、第7図はその磁気特性を示す図、
第8図はさらに別の実施例の磁気ディスクの断面図、第
9図はCoNiZr/Cr膜の膜厚方向の組成分布を示す図、第1
0図は本発明の磁気ディスクの面内保磁力と磁性膜のZr
含有量との関係を示す図、第11図は本発明より成る磁気
ディスクのS/Nと磁性膜のNi含有量との関係を示す図、
第12図は本発明よりなる別の実施例の膜厚方向の組成分
布を示す図である。 11、61、81……基板、12,12′,62,62′,……非磁性メ
ツキ層、13,13′,82,82′……磁性制御層、14,14′,63,
63′,83,83′……磁性層、84,84′……非磁性被覆層。
FIG. 1 is a cross-sectional view of a magnetic disk according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the results of a salt spray test and a salt water immersion test for the magnetic disk of the present invention, FIG. 4, FIG. FIG. 5 is a diagram showing their magnetic characteristics, FIG. 6 is a sectional view of a magnetic disk of another embodiment, and FIG. 7 is a diagram showing their magnetic characteristics.
FIG. 8 is a sectional view of a magnetic disk according to still another embodiment, and FIG. 9 is a diagram showing a composition distribution in the film thickness direction of a CoNiZr / Cr film.
Fig. 0 shows the in-plane coercive force of the magnetic disk of the present invention and the Zr of the magnetic film.
Figure showing the relationship with the content, FIG. 11 is a diagram showing the relationship between the S / N of the magnetic disk according to the present invention and the Ni content of the magnetic film,
FIG. 12 is a diagram showing the composition distribution in the film thickness direction of another example according to the present invention. 11, 61, 81 ... Substrate, 12, 12 ', 62, 62', ... Non-magnetic plating layer, 13, 13 ', 82, 82' ... Magnetic control layer, 14, 14 ', 63,
63 ', 83,83' ... magnetic layer, 84,84 '... non-magnetic coating layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 積田 則和 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 菅沼 庸雄 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 郷原 吉雄 小田原市国府津2880番地 株式会社日立 製作所小田原工場内 (72)発明者 林 奨章 小田原市国府津2880番地 株式会社日立 製作所小田原工場内 (56)参考文献 特開 昭61−224121(JP,A) 特開 昭56−44752(JP,A) 特開 昭61−294629(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norikazu Sekida 1-280 Higashi Koigakubo, Kokubunji City, Central Research Laboratory, Hitachi, Ltd. (72) Norio Suganuma 1-280 Higashi Koigakubo, Kokubunji City, Hitachi Research Institute, Ltd. (72) Inventor Yoshio Gohara 2880, Kozu, Odawara City, Odawara Plant, Hitachi, Ltd. (72) Inventor Shosho Hayashi, 2880, Kozu, Odawara City, Odawara Plant, Hitachi, Ltd. (56) Reference JP 61-224121 (JP, A) JP-A-56-44752 (JP, A) JP-A-61-294629 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性基板上に磁性層を形成した磁気記録
媒体において、前記磁性層が主にCoとNiとZrとから成
り、かつZrの含有量がCoとNiに対して0.1at%以上30at
%以下で優位的に結晶質であり、前記磁性層に総量で0.
1at%以上15at%以下のOを含むことを特徴とする磁気
記録媒体。
1. A magnetic recording medium having a magnetic layer formed on a non-magnetic substrate, wherein the magnetic layer is mainly composed of Co, Ni and Zr, and the Zr content is 0.1 at% with respect to Co and Ni. More than 30at
% Or less is predominantly crystalline, and the total amount in the magnetic layer is 0.
A magnetic recording medium containing 1 at% or more and 15 at% or less of O.
【請求項2】非磁性基板上に磁性層を形成した磁気記録
媒体において、前記磁性層表面にZrが偏析していること
を特徴とする特許請求の範囲第1項記載の磁気記録媒
体。
2. The magnetic recording medium according to claim 1, wherein Zr is segregated on the surface of the magnetic layer in the magnetic recording medium having a magnetic layer formed on a non-magnetic substrate.
【請求項3】前記磁性膜のCoとNiに対するZrの含有量が
2at%以上20at%以下であることを特徴とする特許請求
の範囲第1項又は第2項記載の磁気記録媒体。
3. The content of Zr with respect to Co and Ni of the magnetic film is
The magnetic recording medium according to claim 1 or 2, wherein the content is 2 at% or more and 20 at% or less.
【請求項4】前記Niの含有量がCoに対して10at%以上60
at%以下であることを特徴とする特許請求の範囲第1項
又は第2項記載の磁気記録媒体。
4. The content of Ni is 10 at% or more with respect to Co and 60.
The magnetic recording medium according to claim 1 or 2, which is at% or less.
【請求項5】前記Niの含有量がCoに対して20at%よりも
多くかつ50at%以下、Zrの含有量がCoとNiに対して2at
%以上20at%以下であることを特徴とする特許請求の範
囲第1項又は第2項記載の磁気記録媒体。
5. The content of Ni is more than 20 at% and less than 50 at% with respect to Co, and the content of Zr is 2 at% with respect to Co and Ni.
% Or more and 20 at% or less, The magnetic recording medium according to claim 1 or 2, wherein
【請求項6】前記磁性膜が、Co,Ni,Zrの他にTi,Pt,Ru,T
a,Rh,V,Nb,Cr,Pdの少なくとも1種を総量で0.01at%以
上15at%以下含むことを特徴とする特許請求の範囲第1
項ないし第5項のいずれかに記載の磁気記録媒体。
6. The magnetic film comprises Ti, Pt, Ru, T in addition to Co, Ni, Zr.
Claim 1 characterized in that at least one kind of a, Rh, V, Nb, Cr, Pd is contained in a total amount of 0.01 at% or more and 15 at% or less.
The magnetic recording medium according to any one of items 1 to 5.
【請求項7】前記磁性層と非磁性基板との間に100Å以
上、5000Å以下のCr中間層が介在することを特徴とする
特許請求の範囲第1項ないし第6項のいずれかに記載の
磁気記録媒体。
7. The Cr intermediate layer of 100 Å or more and 5000 Å or less is interposed between the magnetic layer and the non-magnetic substrate, as claimed in any one of claims 1 to 6. Magnetic recording medium.
【請求項8】非磁性金属基板が、その表面の10ないし40
0Åが酸化されている基板であることを特徴とする特許
請求の範囲第1項ないし第7項のいずれかに記載の磁気
記録媒体。
8. A non-magnetic metal substrate having a surface of 10 to 40.
The magnetic recording medium according to any one of claims 1 to 7, wherein 0Å is a substrate that is oxidized.
【請求項9】前記磁性層が垂直磁気記録媒体であり、該
磁性層と非磁性基板との間に20Å以上、1000Å以下の少
なくともSi、もしくはC、もしくはGe中間層のいずれか
1層が介在することを特徴とする特許請求の範囲第1項
ないし第6項のいずれかに記載の磁気記録媒体。
9. The magnetic layer is a perpendicular magnetic recording medium, and at least one layer of Si, C, or Ge intermediate layer of 20 Å or more and 1000 Å or less is interposed between the magnetic layer and the nonmagnetic substrate. The magnetic recording medium according to any one of claims 1 to 6, characterized in that:
【請求項10】前記磁性層の表面に膜厚100ないし1000
Åの非磁性被覆膜を形成したことを特徴とする特許請求
の範囲第1項ないし第9項のいずれかに記載の磁気記録
媒体。
10. A film thickness of 100 to 1000 on the surface of the magnetic layer.
The magnetic recording medium according to any one of claims 1 to 9, wherein a non-magnetic coating film of Å is formed.
【請求項11】前記非磁性基板が、NiP,NiWPのいずれか
をメッキしたAl合金であることを特徴とする特許請求の
範囲第1項ないし第10項のいずれかに記載の磁気記録媒
体。
11. The magnetic recording medium according to any one of claims 1 to 10, wherein the non-magnetic substrate is an Al alloy plated with either NiP or NiWP.
JP61306421A 1986-03-28 1986-12-24 Magnetic recording media Expired - Lifetime JP2515771B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019870002691A KR0126478B1 (en) 1986-03-28 1987-03-24 Magnetic recording medium
CN 87103212 CN1008411B (en) 1986-03-28 1987-03-27 Magnetic recording carrier
DE19873710024 DE3710024A1 (en) 1986-03-28 1987-03-27 MAGNETIC STORAGE MEDIUM
US07/030,600 US4786553A (en) 1986-03-28 1987-03-27 Magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6832786 1986-03-28
JP61-68327 1986-03-28

Publications (2)

Publication Number Publication Date
JPS6313118A JPS6313118A (en) 1988-01-20
JP2515771B2 true JP2515771B2 (en) 1996-07-10

Family

ID=13370621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306421A Expired - Lifetime JP2515771B2 (en) 1986-03-28 1986-12-24 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2515771B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260621A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Magnetic recording medium and production thereof
JPH0258723A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Magnetic recording medium and magnetic memory medium
JP2516064B2 (en) * 1989-02-28 1996-07-10 日本ビクター株式会社 Magnetic recording medium and manufacturing method thereof
JPH02226515A (en) * 1989-02-28 1990-09-10 Hitachi Ltd Magnetic recording medium
US5066552A (en) * 1989-08-16 1991-11-19 International Business Machines Corporation Low noise thin film metal alloy magnetic recording disk

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644752A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Ferromagnetic amorphous alloy
JPS61224121A (en) * 1985-03-29 1986-10-04 Hitachi Metals Ltd Magnetic recording medium
JPS61294629A (en) * 1985-06-21 1986-12-25 Sumitomo Metal Mining Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS6313118A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
US6440589B1 (en) Magnetic media with ferromagnetic overlay materials for improved thermal stability
US6562489B2 (en) Magnetic recording medium and magnetic storage apparatus
US6120890A (en) Magnetic thin film medium comprising amorphous sealing layer for reduced lithium migration
JP5401069B2 (en) Perpendicular magnetic recording medium
KR0130768B1 (en) Magnetic recording media for longitudinal recording
US5879783A (en) Low noise magnetic recording medium and method of manufacturing
US6586116B1 (en) Nonmetallic thin film magnetic recording disk with pre-seed layer
US20050158588A1 (en) Magnetic recording medium having novel underlayer structure
US6010795A (en) Magnetic recording medium comprising a nickel aluminum or iron aluminum underlayer and chromium containing intermediate layer each having (200) dominant crystalographic orientation
JPH0916941A (en) Magnetic recording medium and manufacture
EP0531035B1 (en) Magnetic recording medium
US6524730B1 (en) NiFe-containing soft magnetic layer design for multilayer media
US4786553A (en) Magnetic recording medium
US6156422A (en) High density magnetic recording medium with high Hr and low Mrt
JP2515771B2 (en) Magnetic recording media
US6187408B1 (en) Thin film magnetic disk with CoPtCrB layer
JPH10334444A (en) Magnetic recording medium
US6045931A (en) Magnetic recording medium comprising a cobalt-samarium magnetic alloy layer and method
US4939045A (en) Magnetic recording medium
JPH0877544A (en) Magnetic recording medium and its production
JP2845974B2 (en) In-plane magnetic recording medium and magnetic storage device using the same
JP3390957B2 (en) In-plane magnetic recording medium, method of manufacturing the in-plane magnetic recording medium, and magnetic storage device
KR0126478B1 (en) Magnetic recording medium
JP2948193B2 (en) Magnetic recording media
JP3033577B2 (en) Magnetic recording media

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term