JPH0514325B2 - - Google Patents

Info

Publication number
JPH0514325B2
JPH0514325B2 JP60282559A JP28255985A JPH0514325B2 JP H0514325 B2 JPH0514325 B2 JP H0514325B2 JP 60282559 A JP60282559 A JP 60282559A JP 28255985 A JP28255985 A JP 28255985A JP H0514325 B2 JPH0514325 B2 JP H0514325B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
recording medium
alloy
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60282559A
Other languages
Japanese (ja)
Other versions
JPS62141628A (en
Inventor
Keiji Ookubo
Hisashi Yamazaki
Ikuo Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28255985A priority Critical patent/JPS62141628A/en
Publication of JPS62141628A publication Critical patent/JPS62141628A/en
Publication of JPH0514325B2 publication Critical patent/JPH0514325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は磁気記録装置に用いられる磁気デイス
クなどの磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.

〔従来技術とその問題点〕[Prior art and its problems]

近年磁気記録装置に用いられる磁気デイスクな
どの磁気記録媒体はますます高記録密度となる傾
向にあり、これに伴い磁気記録媒体の磁性層の膜
厚を従来の約1μm程度から0.1μm以下まで薄く
し、保磁力(Hc)もより高くする必要がある。
そのため磁気記録媒体の製造方法もサブミクロン
オーダでは磁性層の膜厚が付均一になるスピンコ
ート法に代つて、均一な薄膜を容易に形成するこ
とが可能なスパツタ法やメツキ法が注目されると
ともに、従来の鉄酸化物例えばγ−Fe2O3の磁性
層は、その磁気特性、特に残留磁束密度が小かす
出力が低いということから、磁性層として、スパ
ツタ法によつて形成されるコバルト(Co)系合
金例えばコバルト−ニツケル(Ni)合金磁性薄
膜が使用されるようになつた。Ni含有量の範囲
は20〜30at%がよいことが知られている。
In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have tended to have higher and higher recording densities, and as a result, the thickness of the magnetic layer of magnetic recording media has been reduced from the conventional approximately 1 μm to 0.1 μm or less. However, it is also necessary to increase the coercive force (Hc).
For this reason, in submicron order manufacturing methods for magnetic recording media, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention instead of the spin coating method, which allows the thickness of the magnetic layer to be uniform. At the same time, the magnetic layer of conventional iron oxide such as γ-Fe 2 O 3 has low output due to its magnetic properties, especially the residual magnetic flux density. (Co) based alloys, such as cobalt-nickel (Ni) alloy magnetic thin films, have come into use. It is known that the Ni content range is preferably 20 to 30 at%.

第6図に例えばCo−Ni合金磁性薄膜の磁性層
を備えたデイスク状磁気記録媒体の要部構成断面
図を示す。
FIG. 6 shows a sectional view of the main part of a disk-shaped magnetic recording medium having a magnetic layer made of, for example, a Co--Ni alloy magnetic thin film.

第6図の磁気記録媒体は合金基板1上に非磁性
基体層2を被覆し、この非磁性基体層2の上にさ
らに非磁性金属下地層3を介してCo−Ni合金薄
膜の磁性層4aを被覆し、磁性層4a上に保護潤
滑膜5を被覆したものである。
The magnetic recording medium shown in FIG. 6 has a non-magnetic base layer 2 coated on an alloy substrate 1, and a magnetic layer 4a of a Co--Ni alloy thin film on the non-magnetic base layer 2 with a non-magnetic metal underlayer 3 interposed therebetween. The magnetic layer 4a is coated with a protective lubricant film 5.

このように構成された磁気記録媒体の合金基板
1にはアルミニウム合金が多用されているが、場
合によつてはプラスチツクを用いてもよく、所定
の面粗さ、平行度および平面度に仕上げられる。
非磁性基体層2はニツケル−りん(Ni−P)合
金を無電解メツキしたもの、もしくは基板1自体
をアルマイト処理して得たものが好ましく、いず
れも所定の硬さを必要とし、表面は機構的研磨に
より鏡面仕上げを行なう。非磁性金属下地層3は
一般にクロム(Cr)を用いてスパツタ法などに
より形成する。この下地層3はCo−Ni合金薄膜
磁性層4aの保磁力(Hc)を高める作用をもつ
ものであり、下地層3の厚さによつても磁性層4
aの保磁力が変化する。下地層3は膜厚の増加と
ともに磁性層4aの保磁力を飽和させる傾向があ
り、その保磁力を飽和させる下地層3の膜厚は材
料によつて大きく異なる。したがつて実用的な磁
気記録媒体を作製するときは下地層3の膜厚はあ
まり厚くすることなく薄膜の形成時間を短かくし
適当な保磁力を磁性層4aに付与するようにして
いる。下地層3に磁性層4aをスパツタにより形
成した後、引続き最後にカーボンもしくは二酸化
珪素(SiO2)などの保護潤滑剤5を連続して被
覆する。
Aluminum alloy is often used for the alloy substrate 1 of the magnetic recording medium constructed in this way, but plastic may also be used in some cases, and it can be finished to a predetermined surface roughness, parallelism, and flatness. .
The non-magnetic base layer 2 is preferably obtained by electroless plating of a nickel-phosphorus (Ni-P) alloy or by alumite treatment of the substrate 1 itself. Both require a certain hardness, and the surface is mechanically plated. A mirror finish is achieved by target polishing. The nonmagnetic metal underlayer 3 is generally formed using chromium (Cr) by a sputtering method or the like. This underlayer 3 has the effect of increasing the coercive force (Hc) of the Co-Ni alloy thin film magnetic layer 4a, and the thickness of the underlayer 3 also increases the coercive force (Hc) of the magnetic layer 4a.
The coercive force of a changes. The underlayer 3 tends to saturate the coercive force of the magnetic layer 4a as its thickness increases, and the thickness of the underlayer 3 that saturates the coercive force varies greatly depending on the material. Therefore, when producing a practical magnetic recording medium, the film thickness of the underlayer 3 is not made too thick, the time for forming the thin film is shortened, and an appropriate coercive force is imparted to the magnetic layer 4a. After the magnetic layer 4a is formed on the underlayer 3 by sputtering, a protective lubricant 5 such as carbon or silicon dioxide (SiO 2 ) is continuously coated.

以上のようして得られるCo−Ni合金薄膜をス
パツタ法により形成した磁性層をもつ磁気記録媒
体は良好な磁気特性を示すという点で有効なもの
である。しかしながら、このCo−Ni合金薄膜に
ついてその後の研究が進むにつれて、初期の磁気
特性はすぐれているが、薄膜磁性層自体の耐食性
が十分でないために、使用される環境によつては
遂には磁気特性の劣化を起こすことがわかつた。
A magnetic recording medium having a magnetic layer formed by sputtering a Co--Ni alloy thin film obtained as described above is effective in that it exhibits good magnetic properties. However, as further research progressed on this Co-Ni alloy thin film, it was found that although the initial magnetic properties were excellent, the corrosion resistance of the thin film magnetic layer itself was insufficient, and the magnetic properties could eventually deteriorate depending on the environment in which it was used. It was found that it causes deterioration.

これに対して種々な対策も試みられている。そ
の一つは耐食性という点からみれば鉄酸化物は周
囲環境に対して安定しているから、例えばγ−
Fe2O3をスパツタによつて薄膜化するのがよい
が、その反面前述のように鉄酸化膜は磁気特性の
とくに残留磁束密度が低く、しかも鉄酸化物をス
パツタ法により薄膜として形成するにはスパツタ
条件や熱処理など複雑な手順を要するので問題点
が多く好ましくない。第2の対策は例えば金属材
料の分野で屡々行なわれているようにクロム
(Cr)を添加することによつて耐食性を向上させ
るという手法を利用することであるが、Co系合
金にCrを単独添加しても耐食性は向上するもの
の、逆に磁気特性が低下するのを避けることがで
きない。第3の対策として、Co−Ni合金薄膜の
表面に周囲環境の影響を完全に遮断することので
きる保護膜を形成することも効果的とみられる
が、磁気ヘツドとの潤滑性や薄膜状の保護膜に必
要な硬さや緻密性を保持することなどを同時に満
足する保護膜は未だ見られない。
Various countermeasures against this problem have been attempted. One is that iron oxides are stable in the surrounding environment in terms of corrosion resistance, so for example, γ-
It is better to form Fe 2 O 3 into a thin film by sputtering, but on the other hand, as mentioned above, iron oxide film has low magnetic properties, especially residual magnetic flux density, and it is difficult to form iron oxide as a thin film by sputtering. Since this method requires complicated procedures such as sputtering conditions and heat treatment, it has many problems and is not preferred. The second countermeasure is to improve corrosion resistance by adding chromium (Cr), which is often done in the field of metal materials. Even if it is added, the corrosion resistance will improve, but on the contrary, it cannot be avoided that the magnetic properties will deteriorate. As a third measure, forming a protective film on the surface of the Co-Ni alloy thin film that can completely block out the influence of the surrounding environment seems to be effective. A protective film that simultaneously maintains the hardness and denseness required for the film has not yet been found.

これらのことから、磁気記録媒体にスパツタ法
により形成される磁性層は、保護膜には補助的な
効果を期待し、従来相反関係にあるとみなされて
いた磁気特性と耐食性を両立させたすぐれたもの
を開発する必要がある。
For these reasons, the magnetic layer formed on magnetic recording media by the sputtering method is expected to have an auxiliary effect as a protective film, and is an excellent material that combines magnetic properties and corrosion resistance, which were previously considered to be in a contradictory relationship. It is necessary to develop something new.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであ
り、その目的はCo系合金の磁気特性を損なうこ
となく、耐食性も向上した薄膜磁性層を形成した
磁気記録媒体を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a magnetic recording medium in which a thin magnetic layer is formed that has improved corrosion resistance without impairing the magnetic properties of the Co-based alloy.

〔発明の要点〕[Key points of the invention]

本発明は、上述の目的を達成するため、非磁性
基体上に、非磁性金属下地層、磁性層および保護
膜をこの順に連続スパツタして積層形成した磁気
記録体において、前記非磁性金属下地層はCrか
らなり、前記磁性層はCo−Ni合金にPtを1〜
14at%含む合金からなることを特徴としている。
In order to achieve the above object, the present invention provides a magnetic recording body in which a nonmagnetic metal underlayer, a magnetic layer, and a protective film are laminated in this order on a nonmagnetic substrate by continuous sputtering. is made of Cr, and the magnetic layer is a Co-Ni alloy containing 1 to 100% Pt.
It is characterized by being made of an alloy containing 14at%.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図に本発明により得られた磁気記録媒体の
要部構成断面図を示し第6図と共通部分を同一符
号で表わしてある。第1図は第6図と基本的な構
成は同じであるが、第1図が第6図と異なる点は
磁性層4にCo−Ni−Pt合金薄膜を用いた所にあ
る。
FIG. 1 shows a cross-sectional view of the main part of a magnetic recording medium obtained according to the present invention, and parts common to those in FIG. 6 are designated by the same reference numerals. The basic structure of FIG. 1 is the same as that of FIG. 6, but the difference between FIG. 1 and FIG. 6 is that a Co--Ni--Pt alloy thin film is used for the magnetic layer 4.

まず、非磁性合金基板1として施盤加工および
加工焼鈍により、十分に小さなうねり、すなわち
円周・半径方向とも20μm以下の面に仕上げたデ
イスク状アルミニウム板を用い、この上にNi−
P合金の無電解メツキを約30μmの厚さに被膜
し、メツキ被膜を平均表面粗さ0.02μm、厚さ15μ
mまで鏡面仕上げを行なうことにより非磁性基体
2を形成する。次いで非磁性基体2の上に非磁性
金属下地層3としてCrをスパツタして形成する
がCr膜の厚さは前述のように磁性層4の磁気特
性に影響を与えるので0.1μm間隔で0.8μmまで変
化させた。下地層3を形成した後、直ちに引続き
同じスパツタ槽内で磁性層4として本発明による
Co−30at%Ni−Pt合金をスパツタにより下地層
3の上に500Åの厚さに設けた。この磁性合金薄
膜についてはPtを添加する効果を明らかにする
ため、Pt含有量を5at%おきに15at%まで変えた
ものを作製した。この際、下地層3に続いて磁性
層4をスパツタするまでにあまりに長い時間スパ
ツタ槽内に放置したり、大気に曝したりすると、
下地層3の効果を発揮することができず、磁性層
4の必要とする大きな保磁力が得られなくなる。
例えば、下地層3を形成した後、大気に曝して磁
性層4をその上に形成した場合、磁性層4の保磁
力は僅か200Oeにしかならない。これはスパツタ
槽内に長時間放置したときも同様の結果となるか
ら、下地層3の形成後は直ちに磁性層4のスパツ
タを実施しなければならない。最後に表面保護潤
滑膜5としてカーボンをスパツタして膜厚500Å
に形成することにより、この磁気記録媒体を作製
した。
First, as the non-magnetic alloy substrate 1, a disk-shaped aluminum plate finished with sufficiently small waviness, that is, 20 μm or less in both the circumferential and radial directions, was used by lathe processing and processing annealing.
Electroless plating of P alloy is coated to a thickness of approximately 30μm, and the plating film has an average surface roughness of 0.02μm and a thickness of 15μm.
The non-magnetic substrate 2 is formed by mirror finishing up to m. Next, a non-magnetic metal underlayer 3 is formed on the non-magnetic substrate 2 by sputtering Cr, but the thickness of the Cr film is 0.8 μm at intervals of 0.1 μm since it affects the magnetic properties of the magnetic layer 4 as described above. changed to. Immediately after forming the underlayer 3, a magnetic layer 4 according to the present invention is subsequently formed in the same sputtering bath.
A Co-30at%Ni-Pt alloy was provided on the base layer 3 by sputtering to a thickness of 500 Å. In order to clarify the effect of adding Pt to this magnetic alloy thin film, we created films in which the Pt content was varied in 5 at% increments up to 15 at%. At this time, if the magnetic layer 4 is left in the sputtering tank for too long or exposed to the atmosphere before sputtering the underlayer 3,
The effect of the underlayer 3 cannot be exhibited, and the large coercive force required by the magnetic layer 4 cannot be obtained.
For example, if the underlayer 3 is formed and then the magnetic layer 4 is formed thereon by exposing it to the atmosphere, the coercive force of the magnetic layer 4 will be only 200 Oe. The same result occurs even when the magnetic layer 4 is left in a sputtering tank for a long time, so the magnetic layer 4 must be sputtered immediately after the underlayer 3 is formed. Finally, sputter carbon as a surface protective lubricant film 5 to a film thickness of 500Å.
This magnetic recording medium was manufactured by forming the magnetic recording medium.

次に以上のごとくして得られた磁気記録媒体の
諸特性について述べる。
Next, various characteristics of the magnetic recording medium obtained as described above will be described.

第2図a〜dは磁性層4として設けたCo−
30at%Ni−Pt合金のPt含有量を変えたときの磁
気特性との関係を示した線図であり、いずれも横
軸を5at%間隔でPt含有量とし、縦軸を磁気特性
としてプロツトしたものである。すなわち、Pt
含有量に対して第2図aは保磁力、第2図bは角
形比sおよび保磁力角形比s*、第2図cは残留磁
束密度Brと膜厚δとの積、第2図dは飽和磁束
密度Bsと膜厚δとの積の関係線図である。ただ
し、このときその他の条件は全て同じに設定して
あり、いずれもRFスパツタ装置を用いて出力
500W、全ガス圧4.0×10-2Torr、基板温度は室温
である。なお下地層3のCrの膜厚はすべて3000
Åとした。
Figures 2 a to d show Co-
This is a diagram showing the relationship between changing the Pt content of a 30at% Ni-Pt alloy and its magnetic properties. In both cases, the horizontal axis represents the Pt content at 5at% intervals, and the vertical axis represents the magnetic properties. It is something. That is, Pt
Figure 2 a shows the coercive force for the content, Figure 2 b shows the squareness ratio s and coercive force squareness ratio s * , Figure 2 c shows the product of the residual magnetic flux density Br and the film thickness δ, and Figure 2 d is a relationship diagram of the product of saturation magnetic flux density Bs and film thickness δ. However, at this time, all other conditions were set the same, and both outputs were made using an RF sputtering device.
500W, total gas pressure 4.0×10 -2 Torr, and substrate temperature at room temperature. The thickness of Cr in base layer 3 is all 3000.
It was set as Å.

第2図a〜dからわかるようにPt含有量に対
して最も大きく変る磁気特性はa図のHcであつ
て、磁気記録媒体として有効な900Oe以上の得ら
れるPt含有量の範囲は1〜14at%であり1000Oe
を越える最も好ましい範囲は2〜13at%である。
この範囲のPt含有量についてみるとb図のSは
Ptを添加しないものより増大しているが、S*
c図のBr・δ、d図のBs・δはいずれも低下の
傾向にある。しかしこの程度の低下は磁気特性の
上でとくに問題となることはない。
As can be seen from Figure 2 a to d, the magnetic property that changes the most with respect to the Pt content is Hc in Figure a, and the range of Pt content that can obtain 900 Oe or more, which is effective as a magnetic recording medium, is 1 to 14 at. %1000Oe
The most preferred range is 2 to 13 at%.
Looking at the Pt content in this range, S in diagram b is
Although it increases compared to the one without Pt, S * , Br・δ in figure c, and Bs·δ in figure d all tend to decrease. However, this degree of decrease does not pose any particular problem in terms of magnetic properties.

次に下地層3として設けたCr被膜の厚さに対
する磁性層4のHcの変化を第3図の線図に示す。
この場合は磁性層4は前述の第2図aの結果に基
づきCo−30at%Ni−10at%Ptを選び、その他の
条件も一定とした。
Next, the change in Hc of the magnetic layer 4 with respect to the thickness of the Cr film provided as the underlayer 3 is shown in the diagram of FIG.
In this case, Co-30at%Ni-10at%Pt was selected for the magnetic layer 4 based on the results shown in FIG. 2a, and other conditions were kept constant.

第3図において横軸は0.1μm間隔に目盛つたCr
被膜の厚さ、縦軸は磁性層4のHcとして示して
あるが、第3図ではほかに二つの比較例を併記
し、本発明と従来例とを対比させ本発明の有効性
を明らかにしている。
In Figure 3, the horizontal axis is Cr scaled at 0.1 μm intervals.
The thickness of the film, the vertical axis is shown as Hc of the magnetic layer 4, but in Figure 3, two other comparative examples are also shown, and the effectiveness of the present invention is clarified by comparing the present invention and the conventional example. ing.

比較例1の磁気記録媒体の製造方法は上述の実
施例の場合と全く同様であるが、磁性層がCo単
独の薄膜である点のみが異なり、比較例2では同
様に磁性層をCo−30at%Niの薄膜としPtを添加
してないものである。
The manufacturing method of the magnetic recording medium of Comparative Example 1 is exactly the same as that of the above-mentioned Example, except that the magnetic layer is a thin film made of Co alone, and in Comparative Example 2, the magnetic layer is made of Co-30at. %Ni and does not contain Pt.

第3図から本発明に係るCo−30at%Ni−10at
%Ptの磁性層は下地のCr被膜によりHcを高くす
る効果が顕著であり、Cr膜厚0.3μm以上でHcが
大きな値で飽和に達することがわかる。これに対
して比較例1および比較例2はCr膜厚を増して
も磁性層のHcはあまり大きくならず、本発明実
施例におけるPt添加効果が明瞭である。また下
地層3はCrの代りにBiを用いることができるが、
Biの膜厚を500Å程度とすることにより、Crの場
合と同様の効果が得られる。さらに本発明の磁気
記録媒体の磁性層の耐食性について言及する。
From Fig. 3, Co-30at%Ni-10at according to the present invention
%Pt has a remarkable effect of increasing Hc due to the underlying Cr coating, and it can be seen that Hc reaches saturation at a large value when the Cr film thickness is 0.3 μm or more. On the other hand, in Comparative Examples 1 and 2, the Hc of the magnetic layer did not increase much even when the Cr film thickness was increased, and the effect of Pt addition in the examples of the present invention is clear. Also, Bi can be used instead of Cr for the base layer 3, but
By setting the Bi film thickness to about 500 Å, the same effect as in the case of Cr can be obtained. Furthermore, the corrosion resistance of the magnetic layer of the magnetic recording medium of the present invention will be mentioned.

第4図は温度40℃、相対温度80%の雰囲気中に
曝したCo−30at%Ni−10%Ptの磁気記録媒体の
磁気特性の変化を示した線図であるり、第5図は
同じくこの条件に曝した磁気記録媒体を記録装置
に用いたときのエラー個数の変化を示した線図で
あるが第4図、第5図の場合も比較のために第3
図のときと比較例1と比較例2を併記した。
Figure 4 is a diagram showing the change in magnetic properties of a Co-30at%Ni-10%Pt magnetic recording medium exposed to an atmosphere at a temperature of 40℃ and a relative temperature of 80%, and Figure This is a diagram showing the change in the number of errors when a magnetic recording medium exposed to these conditions is used in a recording device.
In the figure, Comparative Example 1 and Comparative Example 2 are also shown.

第4図は磁気記録媒体の放置期間に対する磁性
層のBr・δおよびHcの変化を示したものであ
り、磁気特性の初期値はそれぞれ異なるが、放置
時間経過に対する変化の割合はあまり変らない。
しかしながら第5図にみられるようにエラー個数
は本発明の記録媒体は12weeks放置してはじめて
僅かにエラーがカウントされるのに対して、比較
例1比較例2のものは短い日数のうちにエラー個
数が急激に増加し使用に耐えなくなる。このこと
は磁性層全体の磁気特性は環境条件によつて比較
的長時間大きな変化を示すことはないが、湿気な
どの雰囲気に曝されたとき、従来の磁性層は表面
の微小な局部から順次腐食されて変質することに
起因している。これに対しPtを適量添加した磁
性層を有する本発明の磁気記録媒体は第5図から
耐食性もすぐれたものであることがわかる。なお
第5図には図示していないが1〜14at%の範囲で
Ptを添加したものについて同様の結果を得るこ
とができる。
FIG. 4 shows changes in Br, δ, and Hc of the magnetic layer with respect to the storage period of the magnetic recording medium.Although the initial values of the magnetic properties are different, the rate of change over the storage period does not change much.
However, as can be seen in Figure 5, the number of errors in the recording medium of the present invention is only slightly counted after being left unused for 12 weeks, whereas Comparative Example 1 and Comparative Example 2 have errors within a short number of days. The number of pieces increases rapidly and it becomes unusable. This means that the magnetic properties of the entire magnetic layer do not change significantly over a relatively long period of time depending on environmental conditions, but when exposed to an atmosphere such as humidity, conventional magnetic layers gradually change from tiny localized areas on the surface. This is caused by corrosion and deterioration. On the other hand, it can be seen from FIG. 5 that the magnetic recording medium of the present invention having a magnetic layer to which an appropriate amount of Pt is added also has excellent corrosion resistance. Although not shown in Figure 5, in the range of 1 to 14at%
Similar results can be obtained with Pt added.

また本発明の磁気記録媒体を磁気記録装置に組
み込んでCSS試験を行なつた結果、2万回のコン
タクト・スタート・ストツプに対しても記録媒体
表面になんら傷を発生せず、再生出力もほとんど
低下することなく、十分な耐久性をもつているこ
とがわかつた。
Furthermore, as a result of conducting CSS tests by incorporating the magnetic recording medium of the present invention into a magnetic recording device, no scratches occurred on the surface of the recording medium even after 20,000 contact starts and stops, and the playback output was almost constant. It was found that it had sufficient durability without any deterioration.

以上説明してきたように、本発明の磁気記録媒
体はすぐれた磁気特性と耐食性を兼備したものと
ういことができる。
As explained above, the magnetic recording medium of the present invention can be said to have both excellent magnetic properties and corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

磁気デイスクなどの磁気記録媒体は記録密度を
あげるために磁性層の膜厚を薄くし、磁気特性を
向上させるためにスパツタによるCo−Ni系合金
薄膜が用いられるようになつたが、一方でこの磁
性層はCo−Ni系合金では使用環境における耐食
性が例えば鉄酸化物膜などより劣るという欠点を
もつていたのに対し、本発明はCo−Ni系合金に
1〜14at%のPtを含んだ磁性層を用いて、基板上
に非磁性基体層、下地層、磁性層および保護潤滑
膜をこの膜に堆積してなる磁気記録媒体として従
来と同様に構成したものであつて、磁性層のCo
−Ni系合金にPtを添加したことにより、Cr下地
層が磁性層のHcを高めるのに極めて効果的に働
くと同時に磁性層自体の耐食性を著しく向上さ
せ、磁気特性と耐食性という従来相反関係にあつ
た問題を一挙に解決し、この両者を一つの記録媒
体で兼ね備えることができ、しかも本発明の記録
媒体は製造効率もよく記録装置の出力も十分であ
り、長寿命を保持することができるという多くの
点で大きな利点を有するものである。
For magnetic recording media such as magnetic disks, the thickness of the magnetic layer has been reduced to increase the recording density, and sputtered Co-Ni alloy thin films have been used to improve magnetic properties. The magnetic layer of a Co-Ni alloy has the disadvantage that its corrosion resistance in the usage environment is inferior to that of, for example, an iron oxide film, but the present invention uses a Co-Ni alloy containing 1 to 14 at% of Pt. A magnetic recording medium is constructed in the same way as in the past, using a magnetic layer, and a non-magnetic base layer, an underlayer, a magnetic layer, and a protective lubricant film are deposited on this film on a substrate.
-By adding Pt to the Ni-based alloy, the Cr underlayer works extremely effectively to increase the Hc of the magnetic layer, and at the same time significantly improves the corrosion resistance of the magnetic layer itself, eliminating the traditional contradictory relationship between magnetic properties and corrosion resistance. These problems can be solved all at once, and both of these can be achieved in one recording medium. Moreover, the recording medium of the present invention has good manufacturing efficiency, has sufficient output from the recording device, and can maintain a long lifespan. It has great advantages in many respects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の要部構成断面
図、第2図は磁性層のPt含有量と磁気特性との
関係を示す線図、第3図は下地層の厚さに対する
磁性層のHcの変化を示す線図、第4図は温度40
℃、相対湿度80%の雰囲気中に曝した磁気記録媒
体の磁気特性の変化を示す線図、第5図は同じく
エラー個数の変化を示す線図、第6図は従来の磁
気記録媒体の要部構成断面図である。 1……合金基板、2……非磁性基体層、3……
非磁性金属下地層、4,4a……磁性層、5……
保護潤滑膜。
Figure 1 is a sectional view of the main part of the magnetic recording medium of the present invention, Figure 2 is a diagram showing the relationship between the Pt content of the magnetic layer and magnetic properties, and Figure 3 is a diagram showing the relationship between the magnetic layer thickness and the thickness of the underlayer. Figure 4 shows the change in Hc at temperature 40
℃ and 80% relative humidity. Figure 5 is a diagram showing changes in the number of errors. Figure 6 is a diagram showing the main points of conventional magnetic recording media. It is a partial configuration sectional view. 1...Alloy substrate, 2...Nonmagnetic base layer, 3...
Non-magnetic metal underlayer, 4, 4a...Magnetic layer, 5...
Protective lubricating film.

Claims (1)

【特許請求の範囲】 1 非磁性基体上に、非磁性金属下地層、磁性層
および保護膜をこの順に連続スパツタして積層形
成した磁気記録媒体において、前記非磁性金属下
地層はCrからなり、前記磁性層はCo−Ni合金に
Ptを1〜14at%含む合金からなることを特徴とす
る磁気記録媒体。 2 特許請求の範囲第1項記載の媒体において、
前記非磁性基体はアルミニウム合金基板上にNi
−P合金を無電解メツキしたものであり、前記保
護膜はカーボンからなることを特徴とする磁気記
録媒体。
[Scope of Claims] 1. A magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, and a protective film are successively laminated in this order on a nonmagnetic substrate by sputtering, wherein the nonmagnetic metal underlayer is made of Cr; The magnetic layer is made of Co-Ni alloy.
A magnetic recording medium comprising an alloy containing 1 to 14 at% of Pt. 2. In the medium described in claim 1,
The non-magnetic substrate is made of Ni on an aluminum alloy substrate.
- A magnetic recording medium which is electrolessly plated with a P alloy, and wherein the protective film is made of carbon.
JP28255985A 1985-12-16 1985-12-16 Magnetic recording medium Granted JPS62141628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28255985A JPS62141628A (en) 1985-12-16 1985-12-16 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28255985A JPS62141628A (en) 1985-12-16 1985-12-16 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62141628A JPS62141628A (en) 1987-06-25
JPH0514325B2 true JPH0514325B2 (en) 1993-02-24

Family

ID=17654050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28255985A Granted JPS62141628A (en) 1985-12-16 1985-12-16 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62141628A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555683B2 (en) * 1988-04-04 1996-11-20 日本ビクター株式会社 Magnetic recording media
DE69020032D1 (en) * 1989-04-04 1995-07-20 Mitsubishi Chem Corp Magnetic recording medium and manufacturing method thereof.
WO2004068472A1 (en) 2003-01-27 2004-08-12 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120624A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120624A (en) * 1985-11-20 1987-06-01 Hitachi Metals Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS62141628A (en) 1987-06-25

Similar Documents

Publication Publication Date Title
JPH0827926B2 (en) Magnetic recording media
US5252367A (en) Method of manufacturing a magnetic recording medium
JPH0566647B2 (en)
JPH0514325B2 (en)
JPH0474772B2 (en)
JPS62157323A (en) Magnetic recording medium
JP2540479B2 (en) Magnetic memory
JPS61199224A (en) Magnetic recording medium
JPH0467251B2 (en)
JPH0467252B2 (en)
JPH0467249B2 (en)
JPH0467250B2 (en)
JPH04259908A (en) Magnetic disk substrate
JPH0650683B2 (en) Magnetic memory
JP2644994B2 (en) Disk-shaped magnetic recording medium
JPS62150520A (en) Magnetic recording medium
JPS63269318A (en) Magnetic recording medium
JPS62239419A (en) Magnetic recording medium
JPS62150524A (en) Magnetic recording medium
JPS62150523A (en) Magnetic recording medium
JPS62150521A (en) Magnetic recording medium
JP2990975B2 (en) Magnetic recording media
JPS6342021A (en) Magnetic recording medium
JPS62150522A (en) Magnetic recording medium
JPS62239420A (en) Magnetic recording medium