JPS62150521A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62150521A
JPS62150521A JP29546185A JP29546185A JPS62150521A JP S62150521 A JPS62150521 A JP S62150521A JP 29546185 A JP29546185 A JP 29546185A JP 29546185 A JP29546185 A JP 29546185A JP S62150521 A JPS62150521 A JP S62150521A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thickness
magnetic layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29546185A
Other languages
Japanese (ja)
Inventor
Keiji Okubo
大久保 恵司
Hisashi Yamazaki
山崎 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29546185A priority Critical patent/JPS62150521A/en
Publication of JPS62150521A publication Critical patent/JPS62150521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and corrosion resistance by consisting a magnetic layer of a Co-Ni alloy contg. 2.5-11.5at% La and consisting of a nonmagnetic metallic underlying layer of W. CONSTITUTION:A nonmagnetic substrate 2 is formed by using a disk-shaped aluminum plate finished to <=20mum surface in both circumferential and radial directions, forming an electroless plating film of the Ni-P alloy thereon to about 30mum thickness and finishing the plating film to a specular surface up to 0.02mum average surface roughness and 15mum thickness. The nonmagnetic metallic underlying layr 3 is then formed on the substrate 2 by sputtering W. The magnetic layer 4 is formed by sputtering onto the W underlying layer 3 to about 500Angstrom thickness within the same sputtering vessel immediately after the formation of the layer 3. The Co-30at%Ni alloy contg. 5at% La is used as the magnetic layer to determine the thickness of the W film. The time for sputtering is thus shortened by using the thin W film for the nonmagnetic metal lic underlying layer and the magnetic layer made of the compsn. exhibiting the good magnetic characteristics is obtd. Excellent corrosion resistance is obtd. as well.

Description

【発明の詳細な説明】 〔発明の槁する技術分野〕 本発明は磁気記録装置に用いられる磁気ディスクなどの
磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.

〔従来技術とその問題点〕[Prior art and its problems]

近年磁気記録装置に用いられる磁気ディスクな−よ どの磁気記録媒体−2ますます高記録密度となる傾向に
あり、これに伴い磁気記録媒体の磁性層の膜厚を従来の
約1μ工程度から0.1μm以下まで薄クシ。
In recent years, there has been a trend toward higher and higher recording densities in magnetic recording media such as magnetic disks used in magnetic recording devices. .Thin comb down to 1μm or less.

保磁力(Hc)もより高くする必要がある。そのため磁
気記録媒体の製造方法もサブミクロンオーダでは磁性層
の膜厚が不均一になるスピンコード法に代って、均一な
薄膜を容易に形成することが可能なスパッタ法やメッキ
法が注目されるとともに。
It is also necessary to increase the coercive force (Hc). For this reason, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention as a manufacturing method for magnetic recording media, as they can easily form a uniform thin film, instead of the spin code method, which results in non-uniform magnetic layer thickness on the submicron order. Along with.

従来の鉄酸化物例えばr −Fe 203の磁性層は、
その磁気特性、特に残留磁束密度が小さく出力が低いと
いうことから、磁性層として、スパッタ法によって形成
されるコバル) (Co)系合金1例えはコバルト−ニ
ッケル(Ni)合金磁性薄膜が使用されるようになった
。この合金のNi含有量の範囲は20〜30at%がよ
いことが知られている。
A conventional magnetic layer of iron oxide, e.g. r-Fe 203, is
Because of its magnetic properties, especially its small residual magnetic flux density and low output, a magnetic thin film of a cobalt (Co) alloy (for example, a cobalt-nickel (Ni) alloy) formed by sputtering is used as the magnetic layer. It became so. It is known that the Ni content range of this alloy is preferably 20 to 30 at%.

第5図に例えばCo −N i合金磁性薄膜の磁性層を
備えたディスク状磁気記録媒体の安部構成断面図を示す
FIG. 5 shows a sectional view of the lower part of a disk-shaped magnetic recording medium including a magnetic layer of a Co--Ni alloy magnetic thin film, for example.

第5図の磁気記録媒体は合金基板1上に非磁性基体層2
を被覆し、この非磁性基体N2の上にさらに非磁性金属
下地層3aを介してCoJJi合金薄膜の磁性層4aを
被覆し、磁性層4;I上に保護層5aとその上に潤滑層
5bを形成したものである。
The magnetic recording medium shown in FIG. 5 has a non-magnetic base layer 2 on an alloy substrate 1.
A magnetic layer 4a of a CoJJi alloy thin film is further coated on the nonmagnetic substrate N2 via a nonmagnetic metal underlayer 3a, and a protective layer 5a is formed on the magnetic layer 4;I and a lubricating layer 5b is formed thereon. was formed.

このように構成された磁気記録媒体の合金基板1にはア
ルミニウム合金が多用されているが、場合によってはプ
ラスチックを用いてもよく、所定の面粗さ、平行度およ
び平面度に仕上げられる。
Aluminum alloy is often used for the alloy substrate 1 of the magnetic recording medium constructed in this way, but plastic may also be used in some cases, and the substrate is finished to a predetermined surface roughness, parallelism, and flatness.

非磁性基体層2はニッケルーりん(Ni−P)合金を無
電解メッキしたもの、もしくは基板1自体をアルマイト
処理して得たものがよく、いずれも所定の硬さを必要と
し、表面は機械的研磨により鏡面仕上げを行々う。非磁
性金属下地層3aは通常主としてクロム(Cr )など
が用いられ3000A程度の膜厚にスパッタ法などによ
り形成される。
The nonmagnetic base layer 2 is preferably obtained by electroless plating of a nickel-phosphorus (Ni-P) alloy, or by alumite treatment of the substrate 1 itself. Both require a certain hardness, and the surface is mechanically coated. Polish to a mirror finish. The nonmagnetic metal underlayer 3a is usually made of chromium (Cr) or the like, and is formed to a thickness of about 3000 Å by sputtering or the like.

磁性層4aとシテは、Co−20〜30;l t% N
i合金薄膜を、スパッタ法によシ形成した磁気記録媒体
が良好な磁気特性を示すという点で有効であるが、との
C。
The magnetic layer 4a and the shite are made of Co-20~30;lt%N
C. is effective in that a magnetic recording medium in which an i-alloy thin film is formed by sputtering exhibits good magnetic properties.

−Ni合金薄膜について、その後の研究が進むにつれて
、初期の磁気特性はすぐれていても、薄膜磁性層自体の
耐食性が十分でないために、磁気記録媒体の使用される
環境によっては遂には磁気特性の劣化を起こすことが判
明し、そのため本発明者らは鋭意研究の結果、従来相反
関係にあるとみなされていた磁気特性と耐食性の問題を
克服して。
-As research progressed on Ni alloy thin films, it was discovered that although the initial magnetic properties were excellent, the corrosion resistance of the thin magnetic layer itself was insufficient, and the magnetic properties could eventually deteriorate depending on the environment in which the magnetic recording medium was used. As a result of intensive research, the inventors of the present invention overcame the problem of magnetic properties and corrosion resistance, which had been considered to be in a contradictory relationship.

うy p ン(La)を含むCo 20〜30 at%
Ni合金が磁性j―4aとして磁気特性と耐食性の双方
を兼備するものであることを見出し、この磁気記録媒体
を同一出願人により提案している。
Co 20 to 30 at% including Uypn (La)
It has been discovered that Ni alloy has both magnetic properties and corrosion resistance as a magnetic J-4A, and this magnetic recording medium has been proposed by the same applicant.

磁性層4aの上にはCrもしくはCr酸化物(Cr20
3)などの保護層5aと、さらにカーボンもしくは二酸
化珪素(8i02)などの潤滑層5bがいずれも連続し
てスパッタにより設けられる。媒体によっては保護層5
aと潤滑層5bとの二層にすることなく、カーボンもし
くは8i0□の薄膜を保fI潤滑層として一層のみ形成
するものもあるが、 CrやCr酸化物層を設けるのは
磁性層4の耐食性を配慮しているからである。
Cr or Cr oxide (Cr20
A protective layer 5a such as 3) and a lubricating layer 5b such as carbon or silicon dioxide (8i02) are both successively provided by sputtering. Depending on the medium, protective layer 5
In some cases, a thin film of carbon or 8i0□ is formed as an fI lubricating layer without forming two layers, ie, a and a lubricating layer 5b, but the reason why a Cr or Cr oxide layer is provided is to improve the corrosion resistance of the magnetic layer 4. This is because they take into consideration the following.

ここで再び非磁性金属下地層38について述べる。Here, the nonmagnetic metal underlayer 38 will be described again.

非磁性金属下地層3aはCo−Ni合金薄膜磁性層4a
の保磁力(Hc)を高める作用をもつものであり、下地
層3aの厚さによっても磁性層4aの保磁力が変化する
。下地層3aは膜厚の増加とともに磁性層4aの保磁力
を飽和させる傾向にあり、その保磁力を飽和させる下地
層3aの膜厚は材料によって大きく異なる。また第5図
のように下地層3a上に磁性層4aとして前述したLa
を含むCo−Ni合金薄膜をスパッタにより形成した後
、引続きCrjたはCr2O3などの保護層5aとさら
にカーボンまたはSiO□などの潤滑層5bを連続スパ
ッタ被覆して構成した磁気記録媒体は、磁性層4aが良
好な磁気特注と耐食性とをもっている上に、保護層5a
を設けであるから、一層耐食性が強化されたすぐれたも
のとなる、以上のことから、この磁気記録媒体は、保護
層5aの効果を期待して、磁気特性上安定に保持したま
ま下地層3aを可能な限シ薄くし、スパッタ時間を短縮
することができるという可能性をもっている。したがっ
て従来3000A程度の膜厚の下地層3aを形成してい
たCrなどに代シ、7!らに薄い膜厚の下地層とするた
めの材料を選択すること、およびこの下地層と組み合わ
せて最適な磁気特性を示す磁性層Co−Ni合金に対し
て添加するLaの含有量の範囲を決定することKより、
製造効率が高く、良好な磁気特性と耐食性を有する磁気
記録媒体を得ることができる。
The non-magnetic metal underlayer 3a is a Co-Ni alloy thin film magnetic layer 4a.
This has the effect of increasing the coercive force (Hc) of the magnetic layer 4a, and the coercive force of the magnetic layer 4a also changes depending on the thickness of the underlayer 3a. The underlayer 3a tends to saturate the coercive force of the magnetic layer 4a as its thickness increases, and the thickness of the underlayer 3a that saturates the coercive force varies greatly depending on the material. Further, as shown in FIG. 5, the above-mentioned La
A magnetic recording medium is constructed by forming a Co-Ni alloy thin film containing Crj or Cr2O3 by sputtering, and then successively sputtering a protective layer 5a such as Crj or Cr2O3 and a lubricating layer 5b such as carbon or SiO□. 4a has good magnetic customization and corrosion resistance, and the protective layer 5a
Therefore, this magnetic recording medium is expected to have the effect of the protective layer 5a, and the underlayer 3a is coated with the underlayer 3a while maintaining the magnetic properties stably. It has the potential to be made as thin as possible and to shorten sputtering time. Therefore, instead of Cr, etc., which conventionally formed the base layer 3a with a thickness of about 3000A, 7! Furthermore, we selected a material for a thinner underlayer, and determined the range of La content to be added to the magnetic layer Co-Ni alloy that exhibits optimal magnetic properties in combination with this underlayer. From Do K,
A magnetic recording medium with high manufacturing efficiency and good magnetic properties and corrosion resistance can be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり。 The present invention has been made in view of the above points.

その目的は基板上を被覆した非磁性基体上に非磁性金属
下地層、 Laを含むCo−Ni合金薄膜磁性層。
The purpose is to coat a nonmagnetic substrate with a nonmagnetic metal underlayer and a Co-Ni alloy thin film magnetic layer containing La.

保護層および潤滑層をこの順にスパッタして積層成形し
てなり、特に薄い非磁性金属下地層と適量のLaを含有
したco−Ni合金薄膜磁性層との組み合わせによる良
好な磁気特性と耐食性を具備した磁気記録媒体を提供す
ることにある。
A protective layer and a lubricant layer are sputtered and laminated in this order, and it has good magnetic properties and corrosion resistance due to the combination of a particularly thin non-magnetic metal underlayer and a co-Ni alloy thin film magnetic layer containing an appropriate amount of La. The object of the present invention is to provide a magnetic recording medium that has the following characteristics.

〔発明の要点〕[Key points of the invention]

本発明は不活性ガス雰囲気中でアルミニウム基板上のN
1−P層の上に連続的にスパッタして形成した下地層、
磁性層、保護層および潤滑層からなる積層薄膜の下地層
を膜厚はぼ500^のW膜、峰性層をLa 2.5〜1
15atチ含むCo−Ni合金模とすることにより達せ
られる。
The present invention deals with N on an aluminum substrate in an inert gas atmosphere.
1-A base layer formed by continuous sputtering on the P layer,
The base layer of the laminated thin film consisting of the magnetic layer, protective layer and lubricating layer is a W film with a film thickness of approximately 500^, and the peak layer is a W film with a thickness of La 2.5 to 1.
This can be achieved by using a Co--Ni alloy model containing 15at.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図に本発明により得られた磁気記録媒体の要部構成
断面を示し、第5図と埃通部分を同一符号で表わしであ
る。第1図は第5図と基本的な構成は同じであるが、第
1図が第5図と異なる所は。
FIG. 1 shows a cross section of the main part of a magnetic recording medium obtained according to the present invention, and the dust passage portions are designated by the same reference numerals as in FIG. 5. The basic configuration of FIG. 1 is the same as that of FIG. 5, but there are differences between FIG. 1 and FIG. 5.

非磁性金属下地層3にW膜を用い磁性層4はW下地層に
対して良好な磁気特性が得られるLa含有量をもったC
o−Ni合金とした点にある。
The non-magnetic metal underlayer 3 is a W film, and the magnetic layer 4 is a C film with a La content that provides better magnetic properties than the W underlayer.
The point is that it is an o-Ni alloy.

まず非磁性合金基板1として旋盤加工および加圧焼純に
より、十分に小さなうねりすなわち円周・半径方向とも
20μm以下の面に仕上げたディスク状アルミニウム板
を用い、この上にN1−P合金の無電解メッキを約30
μmの厚さに被膜し、メッキ被膜を平均表面粗さ0.0
2μm、厚さ15μm−トで鏡面仕上げを行なうことに
よシ非磁性基体2を形成する。次いで非磁性基体2の上
に非磁性金属下地層3として本発明ではWをスパッタし
て形成したが、下地層3の厚さは前述のように磁性層4
の磁気特性に影響を与えるので、どの程度まで薄くでき
るかを調べるために005μmから0,1μm間隔で0
.3μmまで変化させた。W下地層3を形成した後、直
ちに引続き同じスパッタ槽内でW下地層3の上に磁性層
4をほぼ50誌の厚さにスパッタにより設けた。W膜の
厚さを決定するための磁性層4としてはLaを5at%
含む(’o−3Qat%Ni合金を用いた。
First, as the non-magnetic alloy substrate 1, a disc-shaped aluminum plate finished with sufficiently small waviness, that is, 20 μm or less in both the circumferential and radial directions, is used by lathe processing and pressure annealing. Approximately 30 electrolytic plating
The plating film is coated to a thickness of μm and has an average surface roughness of 0.0.
The non-magnetic substrate 2 is formed by mirror finishing with a thickness of 2 .mu.m and a thickness of 15 .mu.m. Next, in the present invention, W is sputtered to form a non-magnetic metal base layer 3 on the non-magnetic substrate 2, but the thickness of the base layer 3 is as described above.
Since this affects the magnetic properties of
.. The thickness was varied up to 3 μm. Immediately after forming the W underlayer 3, a magnetic layer 4 was sputtered to a thickness of approximately 50 mm on the W underlayer 3 in the same sputtering tank. The magnetic layer 4 for determining the thickness of the W film contains 5 at% of La.
('o-3Qat%Ni alloy was used.

第2図は下地層3として設けたW膜の厚さに対する磁性
層4のHcの変化を示した線図である。第2図では横軸
を0.05μm間隔に目盛ったW膜の厚づ。
FIG. 2 is a diagram showing the change in Hc of the magnetic layer 4 with respect to the thickness of the W film provided as the underlayer 3. In Figure 2, the thickness of the W film is scaled on the horizontal axis at 0.05 μm intervals.

縦軸は磁性層4のHcとして示しているが、第2図には
ほかに二つの比較例を併記し、本発明と従来例とを対比
させ本発明の有効性を明らかにしている。比較例1の磁
気記録媒体の製造方法は本実施例の場合と同様であるが
磁性層がCO単独の薄膜である点のみが異なり、比較例
2では同様に磁性層をCo−3Qat%Niの薄膜とし
Laを添加してないものである。
Although the vertical axis indicates Hc of the magnetic layer 4, two other comparative examples are also shown in FIG. 2, and the effectiveness of the present invention is clarified by comparing the present invention and the conventional example. The manufacturing method of the magnetic recording medium of Comparative Example 1 is the same as that of this example, except that the magnetic layer is a thin film made of CO alone, and in Comparative Example 2, the magnetic layer is similarly made of Co-3Qat%Ni. It is a thin film and does not contain La.

第2図から本発明の下地層3としてWを用いたときは、
磁性層4のCo −N i合金にLaを含むことが。
From FIG. 2, when W is used as the base layer 3 of the present invention,
The Co-Ni alloy of the magnetic layer 4 may contain La.

磁性層4のHcを高める効果が顕著であり、しかもW膜
厚がほぼ0.05μm以上となればHcが大きな値で飽
和に達することがわかる。このことはCo−3Qat%
Ni−5at%La合全La膜を磁性層4としてW下地
層3と組み合わせ用いるときはW膜の厚さを#WY0.
05μmまで薄くするのが可能なことを意味している。
It can be seen that the effect of increasing the Hc of the magnetic layer 4 is remarkable, and moreover, when the W film thickness becomes approximately 0.05 μm or more, the Hc reaches saturation at a large value. This means that Co-3Qat%
When using a Ni-5at%La all-La film as the magnetic layer 4 in combination with the W underlayer 3, the thickness of the W film is #WY0.
This means that it is possible to reduce the thickness to 0.5 μm.

これに対して比較例1および比較例2はW膜厚を増して
も磁性層のHcはあまり大きくならず、W下地N3とL
aを含むCo−Ni合金磁性層4との組み合わせ効果が
第2図から明らかでめるっ なお下地層3に続いて磁性層・【をスパッタするまでに
、あまり長い時間スパッタ槽内に放置したり、大気に曝
したシすると、下地層3の効果を発揮することができず
、磁性層4の必要とする大きな保磁力が得られなくなる
。例えば下地層3を形成した後、大気に曝して磁性層4
をその上に形成した場合、磁性層4の保磁力は僅か20
00e Lか得られない。このことはスパッタ幕内に長
時間放置したときも同様の結果となるから、下地層3の
形成後は直ちに磁性層4のスパッタを実施しなければな
らない。
On the other hand, in Comparative Examples 1 and 2, even if the W film thickness was increased, the Hc of the magnetic layer did not increase so much, and the W underlayer N3 and L
It is clear from FIG. 2 that the effect of the combination with the Co--Ni alloy magnetic layer 4 containing a is clear. If the underlayer 3 is exposed to the atmosphere, the effect of the underlayer 3 cannot be exhibited, and the large coercive force required by the magnetic layer 4 cannot be obtained. For example, after forming the underlayer 3, the magnetic layer 4 is exposed to the atmosphere.
formed thereon, the coercive force of the magnetic layer 4 is only 20
00e L cannot be obtained. The same result occurs even when the magnetic layer 4 is left in the sputter curtain for a long time, so the magnetic layer 4 must be sputtered immediately after the underlayer 3 is formed.

次にW下地層3の膜厚を500人一定としたとき、その
上に設けるco−Ni合金磁性層に対して添加するLa
の量を決定するため、磁性層4のCo−3Qat%N1
−La合金のLa含有量を0〜15at%の範囲で変え
、磁気特性について調べた。その結果を第3図(a)〜
(d3 K示す。第3図はいずれも横軸をLa含有量と
し、縦軸を磁気特性として3点の平均値をプロットした
線図である。すなわち第3図(a)は保磁力、第3図(
b)は保磁力角形比(蜀、第3図(C)は残留磁束密度
(Br)他の条件は全て同じに設定してあり、いずれも
RFスパッタ装置を用いて出力500W、全ガス圧4.
0X10−2Torr、基板温度は室温とし、下地層3
のWの膜厚は前述のようにすべて500Aとした。
Next, when the film thickness of the W underlayer 3 is constant at 500 people, La added to the co-Ni alloy magnetic layer provided thereon is
To determine the amount of Co-3Qat%N1 in the magnetic layer 4,
The magnetic properties of the -La alloys were investigated by changing the La content in the range of 0 to 15 at%. The results are shown in Figure 3(a)~
(d3 K is shown.) Figure 3 is a diagram in which the horizontal axis is the La content and the vertical axis is the magnetic property, and the average value of three points is plotted. In other words, Figure 3 (a) shows the coercive force, Figure 3 (
b) is the coercive force squareness ratio (Shu, Figure 3 (C) is the residual magnetic flux density (Br), all other conditions are the same, and both are RF sputtering equipment with an output of 500 W and a total gas pressure of 4. ..
0X10-2 Torr, substrate temperature is room temperature, base layer 3
The film thickness of W in all cases was 500A as described above.

第3図(a)〜(d)かられかるように、磁性層4のL
a含有量に対して最も大きく変る磁気特性は(a)図の
Hcであって磁気記録媒体として有効な9000e以上
の得られるLa含有量の範囲は2.5〜11.5at%
であり、10000eを超える最も好ましい範囲は3.
5〜9at%である。この範囲のLa含有量についてみ
ると、(b)図の来 s、(cj図のBr・δ、(d)図のBs・δはいずれ
もLa含有量の増加とともに低下する傾向にある。しか
しこの程度の低下は磁気特性の上で特に問題となること
はない− かくして本発明の磁気記録媒体は下地層3にW膜を用い
て500人まで膜厚を薄くしても、この上に設ける磁性
層4にはCo−3Qat%Ni −2,5〜11.5a
t% La合金薄膜とすることによシ良好な磁気特性を
保持することができるが、さらに最後にCrまたはCr
2O3の保護層5aとカーボンまたはS r 02など
の潤滑層5bをスパッタして膜厚500人に形成してす
ぐれた耐食性をもだせている。
As can be seen from FIGS. 3(a) to 3(d), L of the magnetic layer 4
The magnetic property that changes the most with respect to a content is (a) Hc in the figure, and the range of La content that can be obtained at 9000e or higher, which is effective as a magnetic recording medium, is 2.5 to 11.5 at%.
, and the most preferable range exceeding 10,000e is 3.
It is 5 to 9 at%. Looking at the La content in this range, the values s in figure (b), Br and δ in figure (cj), and Bs and δ in figure (d) all tend to decrease as the La content increases. However, This degree of decline does not pose a particular problem in terms of magnetic properties.Thus, even if the magnetic recording medium of the present invention uses a W film as the underlayer 3 and the film thickness is reduced to 500, the thickness of the underlayer 3 can be reduced to 500. The magnetic layer 4 contains Co-3Qat%Ni-2,5~11.5a
Although good magnetic properties can be maintained by forming a t% La alloy thin film, Cr or Cr
A protective layer 5a of 2O3 and a lubricant layer 5b of carbon or Sr02 are formed by sputtering to a thickness of 500 mm, thereby providing excellent corrosion resistance.

第4図は温度409C1相対湿度80チの雰囲気中に曝
した本発明の磁気記録媒体、すなわち下地層3をW膜と
し磁性層4をCo−30a t%Ni −5at% L
aとする第1図の構成をもつものを記録装置に用いたと
きの放置期間に対する工2−個数の変化を示した線図で
ある。第4図の場合も第2図のときと同じ比較例1と比
較例2を併記した。第4図にみられるように工2−個数
は本発明の磁気記録媒体は12週間放置してはじめて僅
かにエラーがカウントされるのに対して、比較例1.比
較例2のものは短い日数のうちにエラー個数が急激に増
加し使用に耐えなくなる。このことは磁性層全体の磁気
特性としては環境条件によって比較的長時間にわたり大
きな変化を生ずることがないとしても、湿気などに曝さ
れたとき、従来の磁性層は表面の微小な局部から順次腐
食されて変質が進行するのに対し、Laを適量含有した
磁性層を有する本発明の磁気記録媒体は第4図から耐食
性もすぐれたものであることがわかる。なお第4図には
図示してないが25〜11.53 t%の範囲でLaを
含んだco −N i合金磁性層についていずれも同様
の結果を得ることができる。
FIG. 4 shows the magnetic recording medium of the present invention exposed to an atmosphere with a temperature of 409C and a relative humidity of 80C, that is, the underlayer 3 is a W film and the magnetic layer 4 is Co-30at%Ni-5at%L.
FIG. 2 is a diagram showing changes in the number of workpieces with respect to the neglect period when a recording device having the configuration shown in FIG. 1 is used as a recording device. In the case of FIG. 4, Comparative Example 1 and Comparative Example 2, which are the same as in FIG. 2, are also shown. As shown in FIG. 4, the magnetic recording medium of the present invention has only a small number of errors counted after being left for 12 weeks, whereas the magnetic recording medium of the comparative example 1. In Comparative Example 2, the number of errors increases rapidly within a short period of time, making it unusable. This means that even though the magnetic properties of the entire magnetic layer do not change significantly over a relatively long period of time depending on environmental conditions, conventional magnetic layers corrode sequentially starting from minute localized areas on the surface when exposed to moisture. On the other hand, it can be seen from FIG. 4 that the magnetic recording medium of the present invention having a magnetic layer containing an appropriate amount of La also has excellent corrosion resistance. Although not shown in FIG. 4, similar results can be obtained for any co-Ni alloy magnetic layer containing La in the range of 25 to 11.53 t%.

また本発明の磁気記録媒体を磁気記録装置に組み込んで
C8S試験を行なった結果、2万回のコンタクト、スタ
ート、ストップに対しても記録媒体表面になんら傷を発
生せず、再生出力もほとんど低下することなく、十分な
耐久性をもっていることが実証された。
Furthermore, as a result of conducting a C8S test by incorporating the magnetic recording medium of the present invention into a magnetic recording device, no scratches occurred on the surface of the recording medium even after 20,000 contacts, starts, and stops, and the reproduction output hardly decreased. It has been demonstrated that it has sufficient durability without any damage.

以上説明してきたように1本発明の磁気記録媒体は非磁
性金属下地層に薄いW膜を用いてスパッタ時間を短縮す
るとともに、W膜に対応して良好な磁気特性を示す組成
の磁性層を有し、耐食性にもすぐれたものであるという
ことができるっ〔発明の効果〕 磁気ディスクなどの磁気記録媒体は記録密度をあげるた
めに、 1jIi性層の膜厚を薄くして磁気特性の向上
を図ゆ、スパッタによるCo−Ni合金薄膜が用いられ
るようになったが、一方でCo−Ni合金磁性層は使用
環境における耐食性が例えば鉄酸化物膜などより劣ると
いう欠点があり、そのため本発明者らは磁気特性を保持
したまま耐食性を付与させるGo−Ni合金への第三元
素とその添加量範囲の決定、さらに磁性層の上に設ける
Cr保護層の効果と相俟って下地層をより薄くすること
が可能な材料について研究を重ねた結果、本発明では実
施例で説明したように、Laを2.5〜11.5at%
含むCo−Ni合金薄膜を磁性層とし、下地層には膜厚
をほぼ500Aまで薄くしたW膜を用いることにより、
W下地層が磁性層のHcを高めるのに効果的に作用する
と同時に、磁性層自体の耐食性も向上し、 Co−Ni
−2,5〜11,5at%Laの組成をもつ磁性層とW
下地層との組み合わせは、磁気特性と耐食性という従来
相反関係にあった問題を一挙に解決し、この二つの特性
を一つの記録媒体に兼備させることができたものであり
、シかも下地層として膜厚をほぼ50己1で減少可能な
W膜を用いたので、スパッタ時間の短縮による製造効率
を高めている。したがって本発明の磁気記録媒体は記録
装置に用いて十分な出力を与えるとともに安定して長寿
命を保持することができるなど多くの利点を有するもの
である。
As explained above, the magnetic recording medium of the present invention shortens the sputtering time by using a thin W film as a non-magnetic metal underlayer, and also has a magnetic layer having a composition that exhibits good magnetic properties corresponding to the W film. [Effects of the Invention] In order to increase the recording density of magnetic recording media such as magnetic disks, the thickness of the 1jIi layer is reduced to improve magnetic properties. In order to achieve this, Co-Ni alloy thin films formed by sputtering have come to be used, but on the other hand, Co-Ni alloy magnetic layers have the disadvantage that their corrosion resistance in the usage environment is inferior to, for example, iron oxide films. They determined the third element and the range of its addition to the Go-Ni alloy, which imparts corrosion resistance while retaining magnetic properties, and combined with the effect of the Cr protective layer provided on the magnetic layer, the underlayer As a result of repeated research on materials that can be made thinner, in the present invention, as explained in the examples, La is reduced to 2.5 to 11.5 at%.
By using a Co-Ni alloy thin film containing as a magnetic layer and a W film with a thickness reduced to approximately 500A as an underlayer,
The W underlayer acts effectively to increase the Hc of the magnetic layer, and at the same time improves the corrosion resistance of the magnetic layer itself.
A magnetic layer with a composition of −2,5 to 11,5 at% La and W
The combination with the underlayer solves the conventionally contradictory problems of magnetic properties and corrosion resistance, and makes it possible to combine these two characteristics into one recording medium. Since a W film whose film thickness can be reduced by approximately 50 times 1 is used, manufacturing efficiency is improved by shortening sputtering time. Therefore, the magnetic recording medium of the present invention has many advantages when used in a recording device, such as being able to provide sufficient output and stably maintain a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の要部構成断面図、第2
図は下地層の厚さに対する磁性層のHeの変化を示す線
図、第3図は磁性層のLaの含有量と磁気特性との関係
を示す線図、第4図は温度40℃。 相対湿度80チの雰囲気中に曝した磁気記録媒体の放置
期間とエラー個数の関係を示す線図、第5図は従来の磁
気記録媒体の要部楊成断面図である。 1・・・合金基板、2・・・非磁性部体層、 3,3a
・・・非磁性金属下地層、 4,4a・・・磁性層、5
a・・・保護層、5b・・・潤滑層。 ・−パパ・・・・−・   、′J ゛、−・、 第1図 0.1 0,2 0.3 W環KC)Am ) 第2図 (a)            (b)第3図 、mlmgF、8    (weeks)第4図 第5@
FIG. 1 is a cross-sectional view of the main part of the magnetic recording medium of the present invention, and FIG.
The figure is a diagram showing the change in He in the magnetic layer with respect to the thickness of the underlayer, Figure 3 is a diagram showing the relationship between the La content of the magnetic layer and magnetic properties, and Figure 4 is a diagram at a temperature of 40°C. A diagram showing the relationship between the storage period and the number of errors in a magnetic recording medium exposed to an atmosphere with a relative humidity of 80 degrees. FIG. 5 is a cross-sectional view of the main part of a conventional magnetic recording medium. 1... Alloy substrate, 2... Nonmagnetic body layer, 3, 3a
...Nonmagnetic metal underlayer, 4,4a...Magnetic layer, 5
a... Protective layer, 5b... Lubricating layer.・-Papa・・・・・,'J゛,-・, Fig. 1 0.1 0,2 0.3 W ring KC) Am) Fig. 2 (a) (b) Fig. 3, mlmgF, 8 (weeks) Figure 4 Figure 5 @

Claims (1)

【特許請求の範囲】 1)基板上の主表面を被覆した非磁性基体上に、非磁性
金属下地層、磁性層、保護層および潤滑層をこの順に連
続スパッタして積層成形した磁気記録媒体において、前
記磁性層がLaを2.5〜11.5at%含むCo−N
i合金からなり、前記非磁性金属下地層がWからなるこ
とを特徴とする磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において磁性層の
Laの含有量が3.5〜9at%であることを特徴とす
る磁気記録媒体。 3)特許請求の範囲第1項または第2項記載の媒体にお
いて、Wの膜厚がほぼ500Åであることを特徴とする
磁気記録媒体。
[Claims] 1) A magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricant layer are laminated in this order by successive sputtering on a nonmagnetic substrate that covers the main surface of a substrate. , the magnetic layer contains 2.5 to 11.5 at% of Co-N
1. A magnetic recording medium comprising an i alloy, wherein the nonmagnetic metal underlayer comprises W. 2) A magnetic recording medium according to claim 1, wherein the magnetic layer has a La content of 3.5 to 9 at%. 3) A magnetic recording medium according to claim 1 or 2, characterized in that the W film thickness is approximately 500 Å.
JP29546185A 1985-12-25 1985-12-25 Magnetic recording medium Pending JPS62150521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29546185A JPS62150521A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29546185A JPS62150521A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62150521A true JPS62150521A (en) 1987-07-04

Family

ID=17820884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29546185A Pending JPS62150521A (en) 1985-12-25 1985-12-25 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62150521A (en)

Similar Documents

Publication Publication Date Title
JPH07114016B2 (en) Magnetic recording medium and manufacturing method thereof
US5252367A (en) Method of manufacturing a magnetic recording medium
US5122423A (en) Magnetic recording medium comprising a chromium underlayer deposited directly on an electrolytic abrasive polished high purity aluminum alloy substrate
JPS62157323A (en) Magnetic recording medium
JP2515771B2 (en) Magnetic recording media
JPS62150521A (en) Magnetic recording medium
JPH0514325B2 (en)
JPH0467251B2 (en)
JPS62150524A (en) Magnetic recording medium
JPS62150523A (en) Magnetic recording medium
JPS62150520A (en) Magnetic recording medium
JPH0467252B2 (en)
JPS62150522A (en) Magnetic recording medium
JP2540479B2 (en) Magnetic memory
JPH0650683B2 (en) Magnetic memory
JPS6018817A (en) Magnetic storage medium
JPH0467249B2 (en)
JPH04259908A (en) Magnetic disk substrate
JPS63269318A (en) Magnetic recording medium
JPS62141629A (en) Magnetic recording medium
JPS62239420A (en) Magnetic recording medium
JPH04137217A (en) Magnetic disk having excellent magnetic characteristic and production thereof
JPS6342021A (en) Magnetic recording medium
JPS59180829A (en) Magnetic storage body
JPS62239419A (en) Magnetic recording medium