JPH04137217A - Magnetic disk having excellent magnetic characteristic and production thereof - Google Patents

Magnetic disk having excellent magnetic characteristic and production thereof

Info

Publication number
JPH04137217A
JPH04137217A JP25685490A JP25685490A JPH04137217A JP H04137217 A JPH04137217 A JP H04137217A JP 25685490 A JP25685490 A JP 25685490A JP 25685490 A JP25685490 A JP 25685490A JP H04137217 A JPH04137217 A JP H04137217A
Authority
JP
Japan
Prior art keywords
magnetic
disk
layer
film
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25685490A
Other languages
Japanese (ja)
Other versions
JP3055795B2 (en
Inventor
Atsushi Kawamoto
淳 川本
Koichi Yamagishi
浩一 山岸
Fuminori Higami
樋上 文範
Nobuyuki Muto
伸之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2256854A priority Critical patent/JP3055795B2/en
Publication of JPH04137217A publication Critical patent/JPH04137217A/en
Application granted granted Critical
Publication of JP3055795B2 publication Critical patent/JP3055795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the magnetic disk having excellent magnetic characteristics and recording and reproducing characteristics by forming a magnetic layer consisting of a thin metallic film of a polycrystalline body on a disk-shaped nonmagnetic substrate and respectively specifying the intra-surface magnetorestriction constant of the thin metallic film and the difference between the lattice direction in the radial direction and the lattice distortion in the circumferential direction thereof. CONSTITUTION:The thin metallic film of the polycrystalline body is formed on the disk-shaped nonmagnetic substrate having rigidity. This thin metallic film is so formed that the intra-surface magnetorestriction constant thereof is >=1.5X10<-5>, that the difference between the lattice distortion in the radial direction and the lattice distortion in the circumferential direction of the disk is negative and that the absolute value thereof is 0.1 to 0.7%. Namely, the anisotropy of the distortions generated in the magnetic film is utilized to enhance the magnetic anisotropy by a reverse magnetorestrictive effect. The magnetic disk which has the excellent magnetic characteristics and has the excellent reproduced output voltage value and SN among the recording and reproducing characteristics is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気特性に優れた磁気ディスク及びその製造
法に係り、特にハードディスクと称される磁性ディスク
の記録再生特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic disk with excellent magnetic properties and a method for manufacturing the same, and particularly relates to improving the recording and reproducing characteristics of a magnetic disk called a hard disk. .

(従来の技術) 近年、情報処理システムにおけるファイルメモリとして
広く用いられている磁気ディスクには、その大容量化の
ために、記録密度を向上せしめることが要請されている
。而して、磁気ディスク媒体の高記録密度化を図るには
、磁気ディスクと磁気ヘッドとの間の距離を小さくする
こと及び磁気ディスクの記録再生特性(SN比及び出力
)を大きくすることが必要となるが、それら二つの要求
は全く相反する関係にある。けだし、磁気ディスクと磁
気ヘッドとの間の距離を小さくするには、ディスク面の
表面粗さを小さくすることが有効であるが、両者の吸着
を回避すること及び磁気ディスクの記録再生特性に影響
する磁気異方性を高めるためには、表面粗さを大きくす
ることが好ましいからである。
(Prior Art) In recent years, magnetic disks, which are widely used as file memories in information processing systems, are required to have higher recording densities in order to increase their capacity. Therefore, in order to increase the recording density of magnetic disk media, it is necessary to reduce the distance between the magnetic disk and the magnetic head and to increase the recording and reproducing characteristics (SN ratio and output) of the magnetic disk. However, these two requirements are completely contradictory. However, in order to reduce the distance between the magnetic disk and the magnetic head, it is effective to reduce the surface roughness of the disk surface. This is because it is preferable to increase the surface roughness in order to increase the magnetic anisotropy.

ところで、磁気ディスクの記録再生特性を良くするには
、媒体の保磁力を大きくすること、円周方向が磁化容易
軸となる媒体、即ち磁気異方性を有する媒体とすること
が必要である。そこで、従来では、媒体の保磁力を高め
るべく、金属磁性材料の成分と成膜法を制御することが
検討され、例えばCoCrTa系またはCoNiCr系
金属磁性材料を用いてハイアススパンタ成膜を行えば、
15000e以上となることが、電気通信学会研究会資
料二CPM 58−92(1988) P、23に明ら
かにされている。
By the way, in order to improve the recording and reproducing characteristics of a magnetic disk, it is necessary to increase the coercive force of the medium and to use a medium whose axis of easy magnetization is in the circumferential direction, that is, a medium having magnetic anisotropy. Therefore, conventionally, in order to increase the coercive force of the medium, it has been considered to control the components of the metal magnetic material and the film formation method. ,
15,000e or more is disclosed in IEICE Study Group Material 2 CPM 58-92 (1988) P, 23.

また、磁気ディスクに磁気異方性を付与するには、Ap
板等の非磁性体基板上に、略同心円状の微細な溝を設け
ることが有効であり、そしてそのような同心円状の微細
な溝によって、■記録再生時のSN比が向上されること
、■記録再生時に出力が増加せしめられること、等の効
果が奏され得ることが明らかにされ(米国特許第473
5840号明細書、特開昭62−146434号公報等
参照)、更にこのような記録再生特性とは別に、上記の
ような微細な溝を設けることによって、ハードディスク
の磁気ヘッドとの摩擦に対する耐久性が向上せしめられ
得ることが明らかにされ(特開昭61202324号公
報)、記録再生特性を良くする手段として知られている
In addition, in order to impart magnetic anisotropy to the magnetic disk, Ap
It is effective to provide approximately concentric fine grooves on a non-magnetic substrate such as a plate, and such concentric fine grooves improve the SN ratio during recording and reproduction; ■It has been revealed that effects such as increased output during recording and playback can be achieved (US Patent No. 473).
5840 specification, Japanese Patent Application Laid-open No. 62-146434, etc.), and apart from such recording/reproducing characteristics, providing the above-mentioned fine grooves improves durability against friction with the magnetic head of the hard disk. It has been revealed that this method can improve the recording and reproducing characteristics (Japanese Patent Application Laid-Open No. 61202324), and is known as a means for improving recording and reproducing characteristics.

特に、上記米国特許では、結晶磁気異方性を得るために
、微細な溝の凹凸によってスパッタ粒子のシャドウ効果
を誘起して、その上に形成されるCr中間層を(110
)面がディスク面と平行となるようにし、更にその上に
形成される磁性膜の結晶配向を生じさせることにより、
角型比が改善されるとされているが、その場合、表面あ
らさは、あらさ計測定値で50Å以上である必要があり
、それ以下では磁性膜のC軸の方位が一定でなく、角型
比が低下することが、明らかにされでいる。
In particular, in the above US patent, in order to obtain magnetocrystalline anisotropy, the shadow effect of sputtered particles is induced by the unevenness of fine grooves, and the Cr intermediate layer formed thereon is (110
) plane is parallel to the disk surface, and furthermore, by causing the crystal orientation of the magnetic film formed on it,
It is said that the squareness ratio is improved, but in that case, the surface roughness needs to be 50 Å or more as measured by a roughness meter, and if it is less than that, the orientation of the C axis of the magnetic film is not constant, and the squareness ratio It has been shown that this decreases.

なお、微細な溝を設けるための産業上利用できる装置と
しては、上記米国特許にも示されているように、AP板
等の基板を回転させながら、研磨テープまたは遊離砥粒
を表面に押し付けることによって、微細な溝を再現性よ
く形成するようにした装置があり、これによって、例え
ばO,OO1〜0、2 a mの深さで、100〜20
00本/[[[[[lのピッチの微細な溝が形成されて
いる。
In addition, as an industrially usable device for forming fine grooves, as shown in the above-mentioned U.S. patent, an abrasive tape or free abrasive grains are pressed onto the surface of a substrate such as an AP board while rotating it. There is a device that can form fine grooves with good reproducibility, for example, at a depth of 1 to 0.2 am.
Fine grooves with a pitch of 00 lines/[[[[l are formed.

(発明が解決しようとする課題) しかしながら、目的とする磁気ディスクを製造するに際
して、上記のように、/l板等の基板に単に同心円状の
微細な溝を設けるだけでは、大きな磁気異方性が得られ
ず、磁気異方性の大きさは1〜3 X 10−”erg
 / ccと小さく、角型比の向上は大きく望めなかっ
た。また、溝の形状(深さ。
(Problem to be Solved by the Invention) However, when manufacturing the intended magnetic disk, simply providing fine concentric grooves on a substrate such as a /l plate as described above does not result in large magnetic anisotropy. is not obtained, and the magnitude of magnetic anisotropy is 1 to 3 × 10-”erg
/cc, and no significant improvement in the squareness ratio could be expected. Also, the shape (depth) of the groove.

幅)及び溝の密度(半径方向単位長さ当りの溝の本数)
については、前記特開昭61−202324号公報に示
されているが、そこに明らかにされた深さ=0、001
〜0.2μm、密度=400〜1600本/肛の範囲に
おいては、磁性層を与える成膜媒体の記録再生特性はあ
まり変化せず、従、って同心円状の溝を設けるだけでは
、設けないより゛も記録再生特性に関して効果はあるも
のの、その効果は限られていた。特に、保磁力が大きい
場合、具体的には13000e以上の場合に、単に溝を
設けるだけでは、角型比が0.75〜0.88とあまり
大きくならず、不充分であり、それ故に更なる再生出力
の向上が望まれている。
width) and groove density (number of grooves per unit length in the radial direction)
The above-mentioned Japanese Patent Application Laid-Open No. 61-202324 discloses that the depth = 0,001
~0.2 μm, density = 400 to 1600 lines/hole, the recording and reproducing characteristics of the film-forming medium that provides the magnetic layer do not change much, therefore, simply providing concentric grooves does not. Although it is more effective in terms of recording and reproducing characteristics, the effect is limited. In particular, when the coercive force is large, specifically when the coercive force is 13,000e or more, simply providing a groove is insufficient because the squareness ratio is only 0.75 to 0.88, which is not so large. It is desired to improve the playback output.

このように、従来から提案されている手法は、磁性膜の
結晶磁気異方性を用いて角型比を向上せしめようとする
ものであったが、その目的を充分に達成するものではな
かった。
In this way, conventionally proposed methods have attempted to improve the squareness ratio by using the magnetocrystalline anisotropy of the magnetic film, but have not been able to fully achieve this objective. .

ここにおいて、本発明者らは、上述の事情に鑑み、同心
円状の溝を有する基板上に磁性膜を形成した場合に生じ
る磁気異方性の発現メカニズムについて詳細に検討した
結果、円周方向を磁化容易に軸とする磁気異方性は、磁
性膜に生じる歪の異方性を利用して、逆磁歪効果によっ
て高められ得、これにより従来より大きな磁気異方性を
得ることが出来、角型比の更なる改善、更には記録再生
特性の改善が可能となる事実を見い出し、本発明を完成
するに至った。
In view of the above-mentioned circumstances, the present inventors conducted a detailed study on the mechanism of magnetic anisotropy that occurs when a magnetic film is formed on a substrate having concentric grooves. Magnetic anisotropy, which is centered on the axis of easy magnetization, can be enhanced by the inverse magnetostriction effect by utilizing the anisotropy of strain that occurs in the magnetic film. The present invention was completed by discovering the fact that it is possible to further improve the mold ratio and further improve the recording and reproducing characteristics.

従って、本発明の目的は、磁気特性に優れた磁気ディス
ク及びその製造法を提供することにあり、また媒体の記
録再生特性のうち、再生出力電圧値、SN比に優れた磁
気記録媒体(磁気ディスク)を提供することにあり、特
に高密度記録用の高保磁カバードディスクにおける改善
を図ることにある。
Therefore, an object of the present invention is to provide a magnetic disk with excellent magnetic properties and a method for manufacturing the same, and also to provide a magnetic recording medium (magnetic The object of the present invention is to provide a high-coercivity covered disk for high-density recording.

(課題を解決するための手段) そして、本発明は、かかる課題解決のために、剛性のあ
るディスク状の非磁性基板上に、多結晶体金属薄膜から
なる磁性層が形成された磁気ディスクにおいて、該金属
薄膜の面内の磁歪定数が1.5X10−5以上であり、
ディスクの半径方向の格子歪と円周方向の格子歪との差
が負で、且つ、その絶対値が0.1〜0.7%であるこ
とを特徴とするものである。
(Means for Solving the Problem) In order to solve the problem, the present invention provides a magnetic disk in which a magnetic layer made of a polycrystalline metal thin film is formed on a rigid disk-shaped nonmagnetic substrate. , the in-plane magnetostriction constant of the metal thin film is 1.5X10-5 or more,
It is characterized in that the difference between the lattice strain in the radial direction and the lattice strain in the circumferential direction of the disk is negative, and its absolute value is 0.1 to 0.7%.

また、本発明は、かかる磁気ディスクを製造するために
、先ず、剛性のあるディスク状の非磁性基板に下地層と
してN1−Pメツキ層を形成した後、かかるN1−Pメ
ツキ層の表面を物理的に研磨して、ピッチが500人程
皮取下、深さが10〜50人程度の度板細な溝を半径方
向に設け、次いで、該N1−Pメツキ層上に、または該
NiPメツキ層上にCrを主成分とする中間層を150
〜2000人の厚さで成膜した後、該中間層上に、面内
の磁歪定数が1.5X10−5以上の金属磁性材料を成
膜することからなる手法を、採用するものである。
In addition, in order to manufacture such a magnetic disk, the present invention first forms an N1-P plating layer as an underlayer on a rigid disk-shaped nonmagnetic substrate, and then physically removes the surface of the N1-P plating layer. After polishing, the skin is removed with a pitch of about 500, and fine grooves with a depth of about 10 to 50 are created in the radial direction, and then on the N1-P plating layer or on the NiP plating layer. An intermediate layer containing Cr as a main component is placed on top of the layer.
After forming a film to a thickness of ~2,000 layers, a method is adopted in which a metal magnetic material having an in-plane magnetostriction constant of 1.5×10 −5 or more is formed on the intermediate layer.

(作 用) 要するに、本発明は、磁性膜に生じる歪の異方性を利用
して、逆磁歪効果により磁気異方性を高めるものであっ
て、次のような考え方に立脚する。
(Function) In short, the present invention utilizes the anisotropy of strain generated in a magnetic film to increase the magnetic anisotropy by the inverse magnetostriction effect, and is based on the following idea.

すなわち、先ず、逆磁歪効果による面内磁気異方性の大
きさ(Ku)は、次式にて表すことが出来る。
That is, first, the magnitude (Ku) of in-plane magnetic anisotropy due to the inverse magnetostriction effect can be expressed by the following equation.

K u = 3 / 2λE(Eθ−cr)但し、λ:
磁歪定数 E:弾性率 εθ:円周方向結晶格子歪 Cr:半径方向結晶格子歪 従って、逆磁歪効果により結晶磁気異方性を高めるには
、(a)λ〉0且つ(εθ−εr)〉0即ち、λの大き
い磁性膜を用いて、且つ円周方向に大きな引張り歪を付
与する手法と、(b)λ〈0且つ(εθ−εr)〈0即
ち、1λ1の大きい磁性膜を用いて円周方向に大きな圧
縮歪を付与する手法とが考えられるが、本発明では、上
記(a)の手法を利用した。
K u = 3/2λE (Eθ-cr) However, λ:
Magnetostriction constant E: Elastic modulus εθ: Circumferential crystal lattice strain Cr: Radial crystal lattice strain Therefore, in order to increase the magnetocrystalline anisotropy by the inverse magnetostriction effect, (a) λ〉0 and (εθ−εr)〉 0, that is, using a large magnetic film with a large λ and applying a large tensile strain in the circumferential direction, and (b) using a large magnetic film with λ<0 and (εθ−εr)<0, that is, 1λ1. Although a method of applying a large compressive strain in the circumferential direction may be considered, in the present invention, the above method (a) was used.

そして、このような(a)の手法を実現するために、本
発明では、磁気ディスクの磁性層を与える多結晶体金属
薄膜の面内の磁歪定数が1.5XLO−5以上となるよ
うにしたのであり、これよりも面内の磁歪定数が小さく
なると、逆磁歪効果が小さくなり、本発明の目的を充分
に達成し得なくなる。なお、そのような多結晶体金属薄
膜の面内の磁歪定数は、磁性金属材料により決まる。
In order to realize the method (a), in the present invention, the in-plane magnetostriction constant of the polycrystalline metal thin film that provides the magnetic layer of the magnetic disk is 1.5XLO-5 or more. If the in-plane magnetostriction constant becomes smaller than this, the inverse magnetostriction effect becomes smaller and the object of the present invention cannot be fully achieved. Note that the in-plane magnetostriction constant of such a polycrystalline metal thin film is determined by the magnetic metal material.

このように、上記(a)の手法を実現するために、磁歪
定数が正で且つその値を増大させるには、採用される磁
性材料として、磁性層がCrを主成分とする中間層上に
形成される場合、例えばCot。FezbTa4(原子
比)があり、また該中間層が形成されない場合、例えば
C0yo〜qoNi+o 〜30+ Co5s−ssN
i+o〜3゜Cr5−+s + C0qa−qacr5
−zoTa+ −b + Co5o−qoPts−3S
Crs〜15(原子比)がある。
In this way, in order to realize the method (a) above, in order to have a positive magnetostriction constant and increase its value, the magnetic material to be used is such that the magnetic layer is on an intermediate layer mainly composed of Cr. If formed, for example, Cot. If there is FezbTa4 (atomic ratio) and the intermediate layer is not formed, for example, C0yo~qoNi+o~30+ Co5s-ssN
i+o~3゜Cr5-+s+C0qa-qacr5
-zoTa+ -b + Co5o-qoPts-3S
There is Crs~15 (atomic ratio).

また、本発明にあっては、ディスクの半径方向の格子歪
(Cr)と円周方向の格子歪(εθ)との差が負で、且
つその絶対値が0.1〜0.7%となるようにされるが
、これは(εr−εθ)〈0とすると共に、半径方向に
大きな圧縮歪を付与している。なお、かかる(εr−ε
θ)の絶対値が0.1%よりも小さくなると逆磁歪効果
が低くなり、また(εr−εθ)の絶対値が0.7%を
越えるようになると、オーバーライド特性が劣化する等
の問題を惹起する。また、(εr−εθ)<Oと為し、
且つその絶対値を増大させる方策としては、例えばN1
−Pメンキ層等の下地層を物理的に研磨して、半径方向
に超微細な溝を設ける。なお、ここで言う超微細な溝と
は、従来から提案されているような表面粗さ計で計測出
来る溝ではなく、走査型トンネル顕微鏡を用いて測定す
る表面の凹凸のことを意味している。要するに、従来か
らの凹凸よりも遥かに小さな凹凸にて構成される溝を半
径方向に設けて、磁性膜に半径方向の圧縮歪を誘起させ
る。そして、このような超微細な溝を設けた基板上に、
または該基板上にCr膜等の中間金属層を成膜したその
上に、Co合金系等の磁性膜を成膜することによって(
εr−εθ)の絶対値を充分大きな植と為して、逆磁歪
効果を効果的に発現せしめ得る。
Further, in the present invention, the difference between the lattice strain (Cr) in the radial direction and the lattice strain (εθ) in the circumferential direction of the disk is negative, and the absolute value thereof is 0.1 to 0.7%. However, this makes (εr−εθ)<0 and gives a large compressive strain in the radial direction. Note that (εr−ε
When the absolute value of θ) becomes smaller than 0.1%, the inverse magnetostriction effect becomes low, and when the absolute value of (εr−εθ) exceeds 0.7%, problems such as deterioration of override characteristics occur. cause Also, (εr−εθ)<O,
In addition, as a measure to increase the absolute value, for example, N1
- Physically polish the underlying layer such as the P coating layer to form ultra-fine grooves in the radial direction. Note that the ultra-fine grooves mentioned here do not refer to grooves that can be measured with a surface roughness meter, as has been proposed in the past, but rather to surface irregularities that can be measured using a scanning tunneling microscope. . In short, grooves made up of irregularities that are much smaller than conventional irregularities are provided in the radial direction to induce compressive strain in the magnetic film in the radial direction. Then, on the substrate with such ultra-fine grooves,
Alternatively, by forming an intermediate metal layer such as a Cr film on the substrate and then forming a magnetic film such as a Co alloy type film on top of the intermediate metal layer such as a Cr film,
By making the absolute value of εr−εθ) sufficiently large, the inverse magnetostrictive effect can be effectively expressed.

ところで、かかる本発明に従う磁気ディスク、特にハー
ドディスクは、剛性のあるディスク状の非磁性基板上に
一般にN1−Pメツキ層等の下地層を有し、そしてこの
下地層の上に、または該下地層の上に、Crを主成分と
する合金からなる非磁性金属中間層を有するこの上に金
属薄膜磁性層、更にはその上に保護膜や潤滑膜が設けら
れているものであるが、そのような磁気ディスクの製造
に際して用いられる非磁性基板としては、A!若しくは
その合金、ガラス、セラミフクス、エンジニアリングプ
ラスチック等の公知のものの中から適宜に選択される。
By the way, the magnetic disk according to the present invention, particularly the hard disk, generally has a base layer such as an N1-P plating layer on a rigid disc-shaped non-magnetic substrate, and on this base layer or on the base layer. On top of this, there is a non-magnetic metal intermediate layer made of an alloy containing Cr as a main component, on top of which a metal thin film magnetic layer is provided, and furthermore, a protective film and a lubricating film are provided on top of this. As a non-magnetic substrate used in manufacturing magnetic disks, A! or their alloys, glass, ceramic fuchs, engineering plastics, and other known materials.

また、かかる基板の厚さは、般に0.5 mm〜1.9
画程度であり、ドーナツ型円板形状において用いられる
ものである。なかでも、基板材質としては、上記材質の
うちAA金合金一般的であり、そのような基板上に、所
定の下地層、例えばN1−Pメンキ層が無電解メツキ手
法にて形成される。
Further, the thickness of such a substrate is generally 0.5 mm to 1.9 mm.
It is about the size of a picture and is used in a donut-shaped disc shape. Among these, the substrate material is generally AA gold alloy among the above-mentioned materials, and a predetermined underlayer, for example, an N1-P coating layer, is formed on such a substrate by electroless plating.

そして、このような下地層を設けた基板には、従来と同
様に、適当な研磨操作が施され、磁気ヘッドの浮上量か
ら定められる磁気ディスクの表面粗さとされる。一般に
、ヘッド浮上時に基板上の突起と衝突しないようにする
には、表面粗さを低減することが有効であり、一方ヘッ
ドが基板と接触して生じる吸着を回避するには、表面粗
さを増大させる必要があり、それ故表面粗さ=Ra値は
、ディスクドライブのモータ起動トルク値の大きさ、ま
たヘッド浮上量から適正となるように選定される。
Then, the substrate provided with such an underlayer is subjected to an appropriate polishing operation as in the conventional case, and the surface roughness of the magnetic disk is determined from the flying height of the magnetic head. In general, it is effective to reduce surface roughness to prevent the head from colliding with protrusions on the substrate when it is flying; Therefore, the surface roughness (Ra value) is selected to be appropriate based on the magnitude of the motor starting torque value of the disk drive and the flying height of the head.

次いで、この通常の研磨操作が施された基板の下地層上
には、その凹凸の上に、(εr−εθ)〈0と為し、且
つその絶対値を増大させるべく、物理的な研磨によって
半径方向に超微細な溝が形成される。この超微細な溝は
、前述したように、従来の如き表面粗さ計で計測し得る
溝(凹凸)ではなく、それよりも温かに小さなものであ
って。
Next, on the base layer of the substrate that has been subjected to this normal polishing operation, physical polishing is performed to make (εr−εθ)<0 and increase the absolute value on the unevenness. Ultrafine grooves are formed in the radial direction. As mentioned above, these ultra-fine grooves are not grooves (irregularities) that can be measured with a conventional surface roughness meter, but are much smaller.

それは、走査型トンネル顕微鏡を用いて測定して(例え
ば、ナノスコープを用いて、横1.5X105倍/11
106倍)、通常言われている従来の如き溝のピンチ二
0.2μmより這かに細い、500人程度以下のピンチ
を有し、また深さ(高さ)にあっても、10〜50人程
度の度板あり、そのような超微細な溝が半径方向に存在
することによって、磁性層表面に圧縮歪を誘起させる作
用を有する。
It is measured using a scanning tunneling microscope (for example, using a nanoscope, horizontal 1.5 x 105 x / 11
106 times), it has a pinch of about 500 or less, which is narrower than the conventional groove pinch of 20.2 μm, and even if the depth (height) is 10 to 50 It has a diagonal plate the size of a human, and the presence of such ultra-fine grooves in the radial direction has the effect of inducing compressive strain on the surface of the magnetic layer.

なお、このように、超微細な溝は、従来の溝とは識別さ
れ得るところから、表面粗さ計を用いて計測される従来
の溝が、円周方向に設けられていても、また円周方向で
なく半径方向に沿って設けられていても、或いは等方的
に設けられていても、その上に上記の如き微細な溝が半
径方向に設けられておれば、磁性膜に圧縮歪を誘起させ
る作用を充分に発揮させることが可能である。
In addition, since ultra-fine grooves can be distinguished from conventional grooves, even if conventional grooves measured using a surface roughness meter are provided in the circumferential direction, they are also circular. Even if it is provided along the radial direction instead of the circumferential direction, or even if it is provided isotropically, if the above-mentioned fine grooves are provided in the radial direction, compressive strain will not occur in the magnetic film. It is possible to fully exhibit the effect of inducing .

また、かくの如き超微細な溝を設けた基板上に、または
該基板上にCrを主成分とするCr系膜等が中間層とし
て成膜されたその上に、Co合金系等の磁性膜(磁性層
)が成膜される。なお、中間金属層としてのCr系膜の
結晶配向は、従来例においては(110)面がディスク
面に平行であったのに対して、本発明においては(10
0)面がディスク面に平行となるようにされる。そのた
めには、従来においてCr系膜や磁性膜のスパッタ成膜
時の加熱温度が150〜250 ’Cであるのに対し、
それを250〜300″Cに高め、またスパッタチャン
バの到達真空度が5 X 10−6Torrであったの
に対して、本発明では、I X 10−”Torr以下
、好ましくは2 X 10−’ Torr以下とされる
In addition, on a substrate provided with such ultra-fine grooves, or on top of which a Cr-based film containing Cr as a main component is formed as an intermediate layer, a magnetic film such as a Co alloy-based film may be used. (magnetic layer) is formed. Note that the crystal orientation of the Cr-based film as the intermediate metal layer is that in the conventional example, the (110) plane is parallel to the disk surface, but in the present invention, the (110) plane is parallel to the disk surface.
0) The surface is parallel to the disk surface. To this end, while conventionally the heating temperature during sputter deposition of Cr-based films and magnetic films is 150 to 250'C,
The temperature is increased to 250-300"C, and the ultimate vacuum degree of the sputtering chamber is 5 X 10-6 Torr, whereas in the present invention, the vacuum level is less than I X 10-" Torr, preferably 2 X 10-' Torr or less.

また、スパッタ時のArガス圧力は、Cr系膜及び磁性
膜の何れの成膜に際しても、2〜10mmTorrが好
適に採用される。なお、スパッタ時のArガス圧力(ス
パッタ雰囲気圧力)が20〜40+nmTorrとなる
と、コバルト合金系等の磁性膜のC軸はディスク面内に
あるものの、その方向はランダムとなる。
Further, the Ar gas pressure during sputtering is preferably 2 to 10 mmTorr when forming either the Cr-based film or the magnetic film. Note that when the Ar gas pressure (sputtering atmosphere pressure) during sputtering is 20 to 40+nm Torr, the C axis of the cobalt alloy-based magnetic film or the like is within the disk plane, but its direction is random.

また、本発明においては、かかるスパッタ手法にて成膜
されるCr系膜等の中間金属層の膜厚が薄い方が(εr
−εθ)の絶対値が大きくなり、従って角型比が良くな
ることが認められているが、かかる膜厚が薄くなり過ぎ
ると、保磁力が低下しで好ましくない。本発明において
、(εr−とθ)の絶対値が充分大きく、逆磁歪効果を
有利に発現せしめるために、Cr系膜等の膜厚は、15
0人〜2000人とされる。
In addition, in the present invention, the thinner the intermediate metal layer such as a Cr-based film formed by such a sputtering method is (εr
Although it has been recognized that the absolute value of -εθ) increases and the squareness ratio improves, if the film thickness becomes too thin, the coercive force decreases, which is not preferable. In the present invention, in order to have a sufficiently large absolute value of (εr- and θ) and to advantageously exhibit the inverse magnetostriction effect, the thickness of the Cr-based film, etc. is 15
It is said to be between 0 and 2000 people.

その後、かかる磁性膜(磁性層)がスパッタ成膜された
後においては、その上に、更に、カーボン保護膜や潤滑
膜が、従来と同様にして順次成膜され、以て目的とする
磁気ディスクとされる。
Thereafter, after such a magnetic film (magnetic layer) is formed by sputtering, a carbon protective film and a lubricating film are sequentially formed on top of it in the same manner as in the past, thereby forming the intended magnetic disk. It is said that

本発明の磁気ディスクは、面内磁気異方性が大きく、従
って、磁気ディスクの記録再生特性を良くするが、これ
は、前記のような面内磁気異方性の向上のみならず周方
向の磁壁移動を妨げる保磁力の向上にも起因する。即ち
、この保磁力は、従来SN比と相関を有するものと考察
されていた周方向の保磁力の0,85〜1.0倍の値を
有し、SN比と相関を有する。前記の超微細な溝の形成
が周方向の磁壁移動を妨げる保磁力の向上にも寄与して
いると推察される。
The magnetic disk of the present invention has a large in-plane magnetic anisotropy, and therefore improves the recording and reproducing characteristics of the magnetic disk. This is also due to an increase in coercive force, which prevents domain wall movement. That is, this coercive force has a value of 0.85 to 1.0 times the coercive force in the circumferential direction, which was conventionally considered to have a correlation with the SN ratio, and has a correlation with the SN ratio. It is presumed that the formation of the ultra-fine grooves mentioned above also contributes to an improvement in the coercive force that prevents domain wall movement in the circumferential direction.

(実施例) 以下に、本発明の幾つかの実施例を示し、本発明を更に
具体的に明らかにする。
(Examples) Below, some examples of the present invention will be shown to clarify the present invention more specifically.

先ず、直径=130肛、厚さ:1.92鵬のAr−Mg
合金(JIS−A5024合金)基板を用い、この基板
上に、厚さ:18μmのN1−P下地層を公知の無電解
メツキ法にて形成した。その後、アルミナ遊離砥粒を研
磨材として、テキスチャ装置(米国: 5trassb
au社製)を用いてテキスチャ研磨を行ない、N1−P
メツキ下地層の表面に凹凸を付けた。このテキスチャ研
磨した下地層表面は、2.5μm角の触針を用いた表面
粗さ計にて測定される半径方向の表面粗さ(Ra)にお
いて40人であり、また円周方向の表面粗さ(Ra)で
は40人であった。
First, Ar-Mg with a diameter of 130 mm and a thickness of 1.92 mm.
An alloy (JIS-A5024 alloy) substrate was used, and an N1-P underlayer having a thickness of 18 μm was formed on this substrate by a known electroless plating method. After that, alumina free abrasive grains were used as an abrasive, and a texture device (USA: 5 trassb) was used.
(manufactured by au) to perform texture polishing, and
Irregularities were added to the surface of the base layer. The surface of this texture-polished base layer has a radial surface roughness (Ra) of 40 as measured by a surface roughness meter using a 2.5 μm square stylus, and a circumferential surface roughness of 40. In Ra, there were 40 people.

次いで、かかるテキスチャ研磨の施されたディスク基板
に対して、更に次のようにして超微細な凹凸を半径方向
に形成した。即ち、市販のファイナルテープポリッシュ
マシン(米国: ExclusiveDesign C
ompany社製)を用い、基板を回転させながら、研
磨テープを半径方向に振動させながら押し付け、基板表
面に半径方向の超微細な凹凸を付けた。なお、研磨テー
プとしては、ポリエステル系樹脂テープを用い、5回/
分の回転数、振動数:100回/分、コンタクト圧力=
2kg/cTITで、5分間加工した。また加工中は焼
付防止のため、冷却用潤滑油を付与した。
Next, ultrafine irregularities were further formed in the radial direction on the texture-polished disk substrate in the following manner. That is, a commercially available final tape polish machine (USA: ExclusiveDesign C
While rotating the substrate, a polishing tape was pressed against the substrate while vibrating in the radial direction, thereby forming ultrafine radial irregularities on the surface of the substrate. Note that polyester resin tape was used as the polishing tape, and the polishing was repeated 5 times/5 times.
Min rotation speed, vibration frequency: 100 times/min, contact pressure =
It was processed for 5 minutes at 2 kg/cTIT. Additionally, cooling lubricant was applied to prevent seizure during machining.

かくして得られたディスク基板において、その表面粗さ
は、上記超微細な凹凸加工が施されたにも拘わらず、そ
の加工工程前と変化なく、Raは半径方向及び円周方向
共に40人であった。しがしながら、この超微細な凹凸
加工工程を実施した場合(発明例1)とそのような工程
を省略した場合(比較例1)において、それぞれスパッ
タ成膜した後の基板を走査型トンネル顕微鏡を用いて観
察した結果、発明例Iの場合にあっては、ピッチ二80
人で、高さ:30A程度の凹凸が半径方向に生している
のが認められた。
In the thus obtained disk substrate, the surface roughness was unchanged from before the processing process despite the ultrafine unevenness processing described above, and the Ra was 40 in both the radial and circumferential directions. Ta. However, in the case where this ultra-fine unevenness processing step was implemented (Invention Example 1) and the case where such a step was omitted (Comparative Example 1), the substrate after sputtering film formation was examined using a scanning tunneling microscope. As a result of observation using
It was observed that unevenness with a height of about 30A was created in the radial direction.

そして、かくして得られた超微細な凹凸加工の施された
ディスク基板に対して、金属中間層、磁性層及びカーボ
ン保護層を順次スパッタ成膜した。
Then, a metal intermediate layer, a magnetic layer, and a carbon protective layer were sequentially formed by sputtering on the thus obtained disk substrate having ultrafine irregularities.

即ち、それら金属中間層、磁性層及びカーボン保護膜は
、ディスク基板を真空チャンバに入れ、円形のターゲッ
トと基板が同軸にて静止、対向した状態において、到達
真空度がI X 10−’ Torrとなるまで真空度
を上げた後、基板温度を290°Cまで上昇せしめて、
連続してスパッタ成膜して形成した。なお、金属中間層
はCr膜とし、その膜厚は300人であった。また、磁
性層は、co=70原子%、Fe:26原子%、Ta:
4原子%なる組成OCO系合金を用い、500人の膜厚
において設けた。この際、基板バイアスとして一300
■を印加した。更に、カーボン保護膜の膜厚は400人
であった。また、成膜時のArガス圧力は何れも5 m
mTorr、 D C電力は何れも3kWであった。
That is, the metal intermediate layer, the magnetic layer, and the carbon protective film are formed so that when the disk substrate is placed in a vacuum chamber and the circular target and the substrate are coaxially stationary and facing each other, the ultimate vacuum level is I x 10-' Torr. After increasing the degree of vacuum until
It was formed by continuous sputtering film formation. Note that the metal intermediate layer was a Cr film, and its thickness was 300. Further, the magnetic layer contains co=70 at%, Fe: 26 at%, Ta:
An OCO alloy having a composition of 4 atomic % was used, and the film thickness was 500 mm. At this time, the substrate bias is -300
■ was applied. Furthermore, the thickness of the carbon protective film was 400. In addition, the Ar gas pressure during film formation was 5 m
The mTorr and DC power were both 3kW.

かくして得られた磁気ディスクを発明例1とする一方、
前記超微細な凹凸加工が施されず、他は同様にして得ら
れた磁気ディスクを比較例1として、後の性能比較に用
いた。
While the thus obtained magnetic disk is referred to as Invention Example 1,
A magnetic disk obtained in the same manner except that the ultrafine unevenness processing was not performed was used as Comparative Example 1 for later performance comparison.

また、金属中間層としてのCr膜の膜厚を800人とし
たものを発明例2とすると共に、スバ、タ時の加熱温度
を295°Cとし、且つCr膜の膜厚を200人とした
磁気ディスクを発明例3とした。
Furthermore, the thickness of the Cr film as the metal intermediate layer was set to 800 layers as Invention Example 2, and the heating temperature at the time of melting and heating was set to 295°C, and the thickness of the Cr film was set to 200 layers. The magnetic disk was designated as Invention Example 3.

更に、金属中間層を成膜せず、磁性層としてCO:88
原子%、Cr:9原子%、Ta:3原子%なる組成のC
o系合金を用いた以外は発明例1と同様にした磁気ディ
スクを発明例4とした。
Furthermore, CO:88 was used as the magnetic layer without forming a metal intermediate layer.
C with a composition of atomic %, Cr: 9 atomic %, Ta: 3 atomic %
Invention Example 4 was a magnetic disk that was the same as Invention Example 1 except that an o-based alloy was used.

一方、上記と同様な工程においてCr膜の膜厚が300
0人とされた磁気ディスクを比較例2とした。またCo
ニア7原子%、Cr:20原子%、Ta:3原子%なる
組成のCo系合金を用いて、スパッタ成膜して得られる
磁歪定数の絶対値が小さな磁性層を有する磁気ディスク
を比較例3とした。
On the other hand, in the same process as above, the thickness of the Cr film was 300 mm.
Comparative Example 2 was a magnetic disk in which no person was detected. Also Co
Comparative Example 3: A magnetic disk having a magnetic layer with a small absolute value of magnetostriction constant obtained by sputtering film formation using a Co-based alloy having a composition of 7 at% Ni, 20 at% Cr, and 3 at% Ta. And so.

また、前記N1−Pメツキ下地層が形成されたディスク
基板に対して、前記の如きテキスチャ装置を用いずに、
テープ研磨装置(米国: ExclusiveDesi
gn Company社製)を用いて、ポリッシングテ
ープ番手#4000、コンタクト圧カニ0.8kg/c
f、半径方向の振動なし、ワーク回転数:140回/分
にてテープ研磨を実施し、かかるディスク基板に円周方
向の溝を形成した後、到達真空度:1 X 10−5T
orr 、加熱温度: 200 ’Cにて、Cr膜(金
属中間層)、及びCoニア0原子%、Fe:15原子%
、Cr : 11原子%、Ta:4原子%なる組成OC
O系合金からなる磁性層を成膜せしめ、かかるCr膜厚
が1500人のものを比較例4.500人のものを比較
例5とした。
Further, the disk substrate on which the N1-P plating underlayer is formed, without using the above-mentioned texturing device,
Tape polishing equipment (USA: ExclusiveDesi
gn Company), polishing tape number #4000, contact pressure crab 0.8 kg/c.
f, without radial vibration, tape polishing was performed at a work rotation speed of 140 times/min, and after forming circumferential grooves on the disk substrate, ultimate vacuum: 1 x 10-5T
orr, heating temperature: 200'C, Cr film (metallic intermediate layer), Conia 0 atomic%, Fe: 15 atomic%
, Cr: 11 at%, Ta: 4 at%.
Comparative Example 4 was obtained by depositing a magnetic layer made of an O-based alloy and the thickness of the Cr film was prepared by 1500 persons, and Comparative Example 5 was obtained by forming a magnetic layer made by 500 persons.

かくして得られた発明例1〜4の磁気ディスク及び比較
例1〜5の磁気ディスクについて、半径方向と円周方向
との格子歪の差(εr−εθ)についてそれぞれ測定し
で、その結果を、それぞれの磁気ディスクの記録再生特
性や磁気特性(磁性膜の磁歪定数、周方向の保磁力、周
方向の磁壁移動を妨げる保磁力)と共に、下記第1表に
示した。
For the thus obtained magnetic disks of Invention Examples 1 to 4 and Comparative Examples 1 to 5, the difference in lattice strain (εr−εθ) between the radial direction and the circumferential direction was measured, and the results were as follows. The recording and reproducing characteristics and magnetic properties (magnetostriction constant of the magnetic film, coercive force in the circumferential direction, coercive force that prevents domain wall movement in the circumferential direction) of each magnetic disk are shown in Table 1 below.

なお磁気ディスクの磁性膜(層)の格子歪は、シュルツ
法によるX線回折を用い、Co (1011)の格子面
間隔を半径方向及び円周方向の二方向(α′−40°、
β−0°、90°)で測定して、次の関係式に従って(
εr−εθ)の値を求めた。
The lattice strain of the magnetic film (layer) of the magnetic disk was determined by measuring the lattice spacing of Co (1011) in two directions (α'-40°,
β-0°, 90°), and according to the following relational expression (
The value of εr−εθ) was determined.

但し、dr:半径方向、α′−40°で測定した格子間
隔 dθ−円周方向、α′=40°で測定した格子間隔 下記第1表から明らかなように、発明例1〜4に係る磁
気ディスクは、記録再生特性(出力、分解能、SN比、
オーバーライド)及び磁気特性(角型比)の何れにおい
ても、比較例1〜5の磁気ディスクに比較して、優れて
いることが認められる。
However, dr: radial direction, lattice spacing measured at α'-40° dθ - circumferential direction, lattice spacing measured at α'=40° As is clear from Table 1 below, invention examples 1 to 4 Magnetic disks have different recording and reproducing characteristics (output, resolution, SN ratio,
It is recognized that the magnetic disks are superior to the magnetic disks of Comparative Examples 1 to 5 both in terms of override) and magnetic properties (squareness ratio).

(発明の効果) 以上の説明から明らかなように、本発明によれば、磁気
特性、更に記録再生特性、そのうちでも、再生出力電圧
値やSN比に優れた磁気ディスクが提供され得、以て磁
気ディスクの高密度記録の実現に大きく寄与し得る。
(Effects of the Invention) As is clear from the above description, according to the present invention, a magnetic disk can be provided which has excellent magnetic properties, and further has excellent recording and reproducing properties, particularly in the reproduction output voltage value and the S/N ratio. This can greatly contribute to the realization of high-density recording on magnetic disks.

出 願 人 住友金属鉱山株式会社 同   住友軽金属工業株式会社 同   住友金属工業株式会社Applicant: Sumitomo Metal Mining Co., Ltd. Sumitomo Light Metal Industries, Ltd. Sumitomo Metal Industries, Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)剛性のあるディスク状の非磁性基板上に、多結晶
体金属薄膜からなる磁性層が形成された磁気ディスクに
して、かかる金属薄膜の面内の磁歪定数が1.5×10
^−^5以上であり、ディスクの半径方向の格子歪と円
周方向の格子歪との差が負で、且つその絶対値が0.1
〜0.7%であることを特徴とする磁気特性に優れた磁
気ディスク。
(1) A magnetic disk in which a magnetic layer made of a polycrystalline metal thin film is formed on a rigid disk-shaped nonmagnetic substrate, and the in-plane magnetostriction constant of the metal thin film is 1.5 × 10.
^-^5 or more, the difference between the lattice strain in the radial direction and the lattice strain in the circumferential direction of the disk is negative, and its absolute value is 0.1
~0.7%. A magnetic disk with excellent magnetic properties.
(2)前記磁性層が、150〜2000Åの厚さを有す
る、Crを主成分とする中間層上に、形成されているこ
とを特徴とする請求項(1)記載の磁気ディスク。
(2) The magnetic disk according to claim 1, wherein the magnetic layer is formed on an intermediate layer mainly composed of Cr and having a thickness of 150 to 2000 Å.
(3)剛性のあるディスク状の非磁性基板に下地層とし
てNi−Pメッキ層を形成した後、かかるNi−Pメッ
キ層の表面を物理的に研磨して、ピッチが500Å程度
以下、深さが10〜50Å程度の超微細な溝を半径方向
に設け、次いで該Ni−Pメッキ層上に面内の磁歪定数
が1.5×10^−^5以上の金属磁性材料を成膜する
ことを特徴とする磁気特性に優れた磁気ディスクの製造
法。
(3) After forming a Ni-P plating layer as a base layer on a rigid disk-shaped nonmagnetic substrate, the surface of the Ni-P plating layer is physically polished to a pitch of about 500 Å or less and a depth of about 500 Å or less. Ultra-fine grooves with a diameter of approximately 10 to 50 Å are provided in the radial direction, and then a metal magnetic material having an in-plane magnetostriction constant of 1.5 x 10^-^5 or more is formed on the Ni-P plating layer. A method for manufacturing a magnetic disk with excellent magnetic properties.
(4)剛性のあるディスク状の非磁性基板に下地層とし
てNi−Pメッキ層を形成した後、かかるNi−Pメッ
キ層の表面を物理的に研磨して、ピッチが500Å程度
以下、深さが10〜50Å程度の超微細な溝を半径方向
に設け、次いで該Ni−Pメッキ層上にCrを主成分と
する中間層を150〜2000Åの厚さで成膜し、更に
その後、該中間層上に、面内の磁歪定数が1.5×10
^−^5以上の金属磁性材料を成膜することを特徴とす
る磁気特性に優れた磁気ディスクの製造法。
(4) After forming a Ni-P plating layer as an underlayer on a rigid disk-shaped nonmagnetic substrate, the surface of the Ni-P plating layer is physically polished to a pitch of about 500 Å or less and a depth of about 500 Å or less. ultrafine grooves with a diameter of about 10 to 50 Å are formed in the radial direction, and then an intermediate layer containing Cr as a main component is formed to a thickness of 150 to 2000 Å on the Ni-P plating layer, and then On the layer, the in-plane magnetostriction constant is 1.5×10
^-^ A method for manufacturing a magnetic disk with excellent magnetic properties, characterized by forming a film of a metal magnetic material of 5 or more.
JP2256854A 1990-09-28 1990-09-28 Manufacturing method of magnetic disk with excellent magnetic properties Expired - Lifetime JP3055795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2256854A JP3055795B2 (en) 1990-09-28 1990-09-28 Manufacturing method of magnetic disk with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256854A JP3055795B2 (en) 1990-09-28 1990-09-28 Manufacturing method of magnetic disk with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH04137217A true JPH04137217A (en) 1992-05-12
JP3055795B2 JP3055795B2 (en) 2000-06-26

Family

ID=17298338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256854A Expired - Lifetime JP3055795B2 (en) 1990-09-28 1990-09-28 Manufacturing method of magnetic disk with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3055795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905781B2 (en) 2000-11-29 2005-06-14 Fujitsu Limited Magnetic recording medium with Cr<110> preferred growth along a predetermined direction, method of producing the same and magnetic storage apparatus
JP2015198203A (en) * 2014-04-02 2015-11-09 株式会社豊田中央研究所 Coercive force improved permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905781B2 (en) 2000-11-29 2005-06-14 Fujitsu Limited Magnetic recording medium with Cr<110> preferred growth along a predetermined direction, method of producing the same and magnetic storage apparatus
US7115330B2 (en) 2000-11-29 2006-10-03 Fujitsu Limited Magnetic recording medium with CR <110> preferred growth along a predetermined direction, method of producing the same and magnetic storage apparatus
JP2015198203A (en) * 2014-04-02 2015-11-09 株式会社豊田中央研究所 Coercive force improved permanent magnet

Also Published As

Publication number Publication date
JP3055795B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6667118B1 (en) Texture-induced magnetic anisotropy of soft underlayers for perpendicular recording media
JP3018762B2 (en) Magnetic recording medium and method of manufacturing the same
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
JP4123806B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JPH04137217A (en) Magnetic disk having excellent magnetic characteristic and production thereof
JP2625169B2 (en) Method of manufacturing magnetic disk medium
JPH0413219A (en) Magnetic disk excellent in magnetic characteristics and its production
JPH04259908A (en) Magnetic disk substrate
JP3051851B2 (en) Substrate for magnetic disk
JP2906480B2 (en) Magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JPS62141628A (en) Magnetic recording medium
JPH0268711A (en) Magnetic recording medium
JP2000123345A (en) Magnetic recording medium and magnetic disk device
JPH0315254B2 (en)
JPH0793738A (en) Magnetic recording medium
JPH03142708A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
EP1111595A1 (en) Base for magnetic recording medium, magnetic recording medium, method for producing the same, and magnetic recorder
JPS6361411A (en) Magnetic recording medium
JPH0467251B2 (en)
JPH04113508A (en) Magnetic recording medium and magnetic storage device
JPH04195818A (en) Magnetic recording medium
JPH0467249B2 (en)
JPH03125322A (en) Magnetic recording medium