JPH0467251B2 - - Google Patents
Info
- Publication number
- JPH0467251B2 JPH0467251B2 JP28973985A JP28973985A JPH0467251B2 JP H0467251 B2 JPH0467251 B2 JP H0467251B2 JP 28973985 A JP28973985 A JP 28973985A JP 28973985 A JP28973985 A JP 28973985A JP H0467251 B2 JPH0467251 B2 JP H0467251B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic layer
- recording medium
- magnetic recording
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004544 sputter deposition Methods 0.000 claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 10
- 229910020630 Co Ni Inorganic materials 0.000 claims description 7
- 229910002440 Co–Ni Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000000314 lubricant Substances 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- 239000010408 film Substances 0.000 description 20
- 239000010409 thin film Substances 0.000 description 19
- 239000011651 chromium Substances 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- 235000013980 iron oxide Nutrition 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 229910000858 La alloy Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- 229910001004 magnetic alloy Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は磁気記録装置に用いられる磁気デイス
クなどの磁気記録媒体に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.
近年磁気記録装置に用いられる磁気デイスクな
どの磁気記録媒体は、ますます高記録密度となる
傾向にあり、これに伴い磁気記録媒体の磁性層の
膜厚を従来の約1μm程度から0.1μm以下まで薄く
し、保磁力Hcもより高くする必要がある。その
ため磁気記録媒体の製造方法もサブミクロンオー
ダでは磁性層の膜厚が不均一になるスピンコート
法に代つて、均一な薄膜を容易に形成することが
可能なスパツタ法やメツキ法が注目されるととも
に、従来の鉄酸化物例えばγ−Fe2O3の磁性層
は、その磁気特性、特に残留磁束密度が小さく出
力が低いということから、磁性層としてスパツタ
法によつて形成されるコバルトCo系合金例えば
コバルト−ニツケルNi合金磁性薄膜が使用され
るようになつた。Ni含有量の範囲は20〜30at%
がよいことが知られている。
In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have tended to have higher and higher recording densities, and as a result, the thickness of the magnetic layer of magnetic recording media has been reduced from the conventional approximately 1 μm to 0.1 μm or less. It is necessary to make it thinner and to have a higher coercive force Hc. For this reason, as a manufacturing method for magnetic recording media, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention instead of the spin coating method, which causes the thickness of the magnetic layer to be uneven in the submicron order. At the same time, conventional magnetic layers made of iron oxides such as γ-Fe 2 O 3 have low magnetic properties, especially residual magnetic flux density, and low output. Alloys such as cobalt-nickel Ni alloy magnetic thin films have come into use. Ni content ranges from 20 to 30at%
is known to be good.
第6図に例えばCo−Ni合金磁性薄膜の磁性層
を備えたデイスク状磁気記録媒体の要部構成断面
図を示す。 FIG. 6 shows a sectional view of the main part of a disk-shaped magnetic recording medium having a magnetic layer made of, for example, a Co--Ni alloy magnetic thin film.
第6図の磁気記録媒体は合金基板1上に非磁性
基体層2を被覆し、この非磁性基体層2の上に、
さらに非磁性金属下地層3を介してCo−Ni合金
薄膜の磁性層4aを被覆し、磁性層4a上に保護
潤滑膜5を被覆したものである。 The magnetic recording medium shown in FIG. 6 has a non-magnetic base layer 2 coated on an alloy substrate 1, and on this non-magnetic base layer 2,
Furthermore, a magnetic layer 4a of a Co--Ni alloy thin film is coated via a non-magnetic metal underlayer 3, and a protective lubricant film 5 is coated on the magnetic layer 4a.
このように構成された磁気記録媒体の合金基板
1にはアルミニウム合金が多用されているが、場
合によつてはプラスチツクを用いてもよく、所定
の面粗さ、平行度および平面度に仕上げられる。
非磁性基体層2はニツケル−りんNi−P合金を
無電解メツキしたもの、もしくは基板1自体をア
ルマイト処理して得たものが好ましく、いずれも
所定の硬さを必要とし、表面は機械的研磨により
鏡面仕上げを行なう。非磁性金属下地層3は一般
にクロムCrを用いてスパツタ法などにより形成
する。この下地層3はCo−Ni合金薄膜磁性層4
aの保磁力Hcを高める作用をもつものであり、
下地層3の厚さによつても磁性層4aの保磁力が
変化する。下地層3は膜厚の増加とともに磁性層
4aの保磁力を飽和させる傾向があり、その保磁
力を飽和させる下地層3の膜厚は材料によつて大
きく異なる。したがつて実用的な磁気記録媒体を
作製するときは下地層3の膜厚はあまり厚くする
ことなく薄膜の形成時間を短かくし適当な保磁力
を磁性層4aに付与するようにしている。下地層
3に磁性層4aをスパツタにより形成した後、引
続き最後にカーボンもしくは二酸化珪素SiO2な
どの保護潤滑膜5を連続して被覆する。 Aluminum alloy is often used for the alloy substrate 1 of the magnetic recording medium constructed in this way, but plastic may also be used in some cases, and it can be finished to a predetermined surface roughness, parallelism, and flatness. .
The nonmagnetic base layer 2 is preferably obtained by electroless plating of a nickel-phosphorous Ni-P alloy or by alumite treatment of the substrate 1 itself. Both require a certain hardness, and the surface is mechanically polished. A mirror finish is achieved. The nonmagnetic metal underlayer 3 is generally formed using chromium Cr by a sputtering method or the like. This underlayer 3 is a Co-Ni alloy thin film magnetic layer 4.
It has the effect of increasing the coercive force Hc of a,
The coercive force of the magnetic layer 4a also changes depending on the thickness of the underlayer 3. The underlayer 3 tends to saturate the coercive force of the magnetic layer 4a as its thickness increases, and the thickness of the underlayer 3 that saturates the coercive force varies greatly depending on the material. Therefore, when producing a practical magnetic recording medium, the film thickness of the underlayer 3 is not made too thick, the time for forming the thin film is shortened, and an appropriate coercive force is imparted to the magnetic layer 4a. After forming the magnetic layer 4a on the underlayer 3 by sputtering, a protective lubricant film 5 of carbon, silicon dioxide, SiO 2 or the like is continuously coated.
以上のようにして得られるCo−Ni合金薄膜を
スパツタ法により形成した磁性層をもつ磁気記録
媒体は良好な磁気特性を示すという点で有効なも
のである。しかしながら、このCo−Ni合金薄膜
についてその後の研究が進むにつれて、初期の磁
気特性はすぐれているが、薄膜磁性層自体の耐食
性が十分でないために、使用される環境によつて
は遂には磁気特性の劣化を起こすことがわかつ
た。 A magnetic recording medium having a magnetic layer formed by sputtering a Co--Ni alloy thin film obtained as described above is effective in that it exhibits good magnetic properties. However, as further research progressed on this Co-Ni alloy thin film, it was found that although the initial magnetic properties were excellent, the corrosion resistance of the thin film magnetic layer itself was insufficient, and the magnetic properties could eventually deteriorate depending on the environment in which it was used. It was found that it causes deterioration of
これに対して種々な対策も試みられている。そ
の一つは耐食性という点からみれば鉄酸化物は周
囲環境に対して安定しているから、例えばγ−
Fe2O3をスパツタによつて薄膜化するのがよい
が、その反面前述のように鉄酸化膜は磁気特性の
とくに残留磁束密度が低く、しかも鉄酸化物をス
パツタ法により薄膜として形成するにはスパツタ
条件や熱処理など複雑な手順を要するので問題点
が多く好ましくない。第2の対策は例えば金属材
料の分野で屡々行なわれているようにクロムCr
を添加することによつて耐食性を向上させるとい
う手法を利用することであるが、Co系合金にCr
を単独添加しても耐食性は向上するものの、逆に
磁気特性が低下するのを避けることができない。
第3の対策として、Co−Ni合金薄膜の表面に周
囲環境の影響を完全に遮断することのできる保護
膜を形成することも効果的とみられるが、磁気ヘ
ツドとの潤滑性や薄膜状の保護膜に必要な硬さや
緻密性を保持することなどを同時に満足する保護
膜は末だ見られない。 Various countermeasures against this problem have been attempted. One is that iron oxides are stable in the surrounding environment in terms of corrosion resistance, so for example, γ-
It is better to form Fe 2 O 3 into a thin film by sputtering, but on the other hand, as mentioned above, iron oxide film has low magnetic properties, especially residual magnetic flux density, and it is difficult to form iron oxide as a thin film by sputtering. Since this method requires complicated procedures such as sputtering conditions and heat treatment, it has many problems and is not preferred. The second countermeasure is, for example, chromium Cr, which is often taken in the field of metal materials.
The method is to improve corrosion resistance by adding Cr to Co-based alloy.
Although the corrosion resistance is improved even if the addition of Cr is added alone, it is impossible to avoid deterioration of the magnetic properties.
As a third measure, forming a protective film on the surface of the Co-Ni alloy thin film that can completely block out the influence of the surrounding environment seems to be effective. A protective film that simultaneously maintains the required hardness and density has yet to be found.
これらのことから、磁気記録媒体にスパツタ法
により形成される磁性層は、保護膜には補助的な
効果を期待し、従来相反関係にあるとみなされて
いた磁気特性と耐食性を両立させたすぐれたもの
を開発する必要がある。 For these reasons, the magnetic layer formed on magnetic recording media by the sputtering method is expected to have an auxiliary effect as a protective film, and is an excellent material that combines magnetic properties and corrosion resistance, which were previously considered to be in a contradictory relationship. It is necessary to develop something new.
本発明は上述の点に鑑みてなされたものであ
り、その目的はCo系合金の磁気特性を損うこと
なく、耐食性も向上した薄膜磁性層を形成した磁
気記録媒体を提供することにある。
The present invention has been made in view of the above points, and its object is to provide a magnetic recording medium in which a thin magnetic layer is formed that has improved corrosion resistance without impairing the magnetic properties of the Co-based alloy.
本発明は不活性ガス雰囲気中でアルミニウム基
板上のNi−P層の上に連続的にスパツタして形
成した下地層、磁性層および保護潤滑膜からなる
積層薄膜の磁性層として、ランタンLaを適量含
有したCo−Ni合金磁性薄膜を形成することによ
り達せられる。
In the present invention, an appropriate amount of lanthanum La is used as the magnetic layer of a laminated thin film consisting of an underlayer, a magnetic layer, and a protective lubricant film formed by continuous sputtering on a Ni-P layer on an aluminum substrate in an inert gas atmosphere. This can be achieved by forming a magnetic thin film containing a Co--Ni alloy.
以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.
第1図に本発明により得られた磁気記録媒体の
要部構成断面図を示し第6図と共通部分を同一符
号で表わしてある。第1図は第6図と基本的な構
成は同じであるが、第1図が第6図と異なる点は
磁性層4にCo−Ni−La合金薄膜を用いた所にあ
る。 FIG. 1 shows a cross-sectional view of the main part of a magnetic recording medium obtained according to the present invention, and parts common to those in FIG. 6 are designated by the same reference numerals. The basic structure of FIG. 1 is the same as that of FIG. 6, but the difference between FIG. 1 and FIG. 6 is that a Co--Ni--La alloy thin film is used for the magnetic layer 4.
まず非磁性合金基板1として旋盤加工および加
圧焼鈍により、十分に小さなうねり、すなわち円
周・半径方向とも20μm以下の面に仕上げたデイ
スク状アルミニウム板を用い、この上にNi−P
合金の無電解メツキを約30μmの厚さに被膜し、
メツキ被膜を平均表面粗さ0.02μm、厚さ15μmま
で鏡面仕上げを行なうことにより非磁性基体2を
形成する。次いで非磁性基体2の上に非磁性金属
下地層3としてCrをスパツタして形成するがCr
膜の厚さは前述のように磁性層4の磁気特性に影
響を与えるので0.1μm間隔で0.8μmまで変化させ
た。下地層3を形成した後、直ちに引続き同じス
パツタ槽内で磁性層4として本発明によるCo−
30at%Ni−La合金をスパツタにより下地層3の
上に500Åの厚さに設けた。この磁性合金薄膜に
ついてはLaを添加する効果を明らかにするため、
La含有量を5at%おきに15at%まで変えたものを
作製した。この際、下地層3に続いて磁性層4を
スパツタするまでにあまりに長い時間スパツタ槽
内に放置したり、大気に曝したりすると、下地層
3の効果を発揮することができず、磁性層4の必
要とする大きな保磁力が得られなくなる。例えば
下地層3を形成した後、大気に曝して磁性層4を
その上に形成した場合、磁性層4の保磁力は僅か
200Oeにしかならない。これはスパツタ槽内に長
時間放置したときも同様の結果となるから、下地
層3の形成後は直ちに磁性層4のスパツタを実施
しなければならない。最後に表面保護潤滑膜5と
してカーボンをスパツタして膜厚500Åに形成す
ることにより、この磁気記録媒体を作製した。 First, as the non-magnetic alloy substrate 1, a disc-shaped aluminum plate finished with sufficiently small waviness, that is, 20 μm or less in both the circumferential and radial directions, was used by lathe processing and pressure annealing.
Electroless plating of alloy is coated to a thickness of approximately 30μm,
The nonmagnetic substrate 2 is formed by mirror-finishing the plating film to an average surface roughness of 0.02 μm and a thickness of 15 μm. Next, a nonmagnetic metal underlayer 3 is formed on the nonmagnetic substrate 2 by sputtering Cr.
Since the thickness of the film affects the magnetic properties of the magnetic layer 4 as described above, it was varied up to 0.8 μm at intervals of 0.1 μm. Immediately after forming the underlayer 3, a Co-layer according to the present invention is applied as a magnetic layer 4 in the same sputtering bath.
A 30at% Ni-La alloy was provided on the base layer 3 to a thickness of 500 Å by sputtering. In order to clarify the effect of adding La to this magnetic alloy thin film,
We created samples in which the La content was changed every 5 at% up to 15 at%. At this time, if the magnetic layer 4 is left in the sputtering bath for too long or exposed to the atmosphere before sputtering the magnetic layer 4 following the underlayer 3, the effect of the underlayer 3 will not be exhibited, and the magnetic layer 4 will The large coercive force required by the magnetic field cannot be obtained. For example, if the underlayer 3 is formed and then the magnetic layer 4 is formed thereon by exposing it to the atmosphere, the coercive force of the magnetic layer 4 is small.
It will only be 200Oe. The same result occurs even when the magnetic layer 4 is left in a sputtering tank for a long time, so the magnetic layer 4 must be sputtered immediately after the underlayer 3 is formed. Finally, this magnetic recording medium was fabricated by sputtering carbon to form a surface protective lubricant film 5 to a thickness of 500 Å.
次に以上のごとくして得られた磁気記録媒体の
諸特性について述べる。 Next, various characteristics of the magnetic recording medium obtained as described above will be described.
第2図a〜dは磁性層4として設けたCo−
30at%Ni−La合金のLa含有量を変えたときの磁
気特性との関係を示した線図であり、いずれも横
軸を5at%間隔でLa含有量とし、縦軸を磁気特性
としてプロツトしたものである。すなわち、La
含有量に対して第2図aは保磁力、第2図bは角
形比Sおよび保磁力角形比S*、第2図cは残留
磁束密度Brと膜厚δとの積、第2図dは飽和磁
束密度Bsと膜厚δとの積の関係線図である。た
だし、このときその他の条件は全て同じに設定し
てあり、いずれもRFスパツタ装置を用いて出力
500W、全ガス圧4.0×10-2Torr、基板温度は室温
である。なお下地層3のCrの膜厚はすべて3000
Åとした。 Figures 2 a to d show Co-
This is a diagram showing the relationship with magnetic properties when changing the La content of a 30at% Ni-La alloy. In both cases, the horizontal axis is plotted as La content at 5at% intervals, and the vertical axis is plotted as magnetic properties. It is something. That is, La
Figure 2 a shows the coercive force for the content, Figure 2 b shows the squareness ratio S and coercive force squareness ratio S * , Figure 2 c shows the product of the residual magnetic flux density Br and the film thickness δ, and Figure 2 d is a relationship diagram of the product of saturation magnetic flux density Bs and film thickness δ. However, at this time, all other conditions were set the same, and both outputs were made using an RF sputtering device.
500W, total gas pressure 4.0×10 -2 Torr, and substrate temperature at room temperature. The thickness of Cr in base layer 3 is all 3000.
It was set as Å.
第2図a〜dからわかるようにLa含有量に対
して最も大きく変る磁気特性はa図のHcであつ
て磁気記録媒体として有効な900Oe以上の得られ
るLa含有量の範囲は0.5〜12.5at%であり1000Oe
を超える最も好ましい範囲は2〜11at%である。
この範囲のLa含有量についてみるとc図のBr・
δ,d図のBs・δはいずれも低下の傾向にある。
しかしこの程度の低下は磁気特性の上でとくに問
題となることはない。 As can be seen from Figure 2 a to d, the magnetic property that changes the most with respect to La content is Hc in Figure a, and the range of La content that can obtain 900 Oe or more, which is effective as a magnetic recording medium, is 0.5 to 12.5 at. %1000Oe
The most preferred range is 2 to 11 at%.
Regarding the La content in this range, Br・
Both Bs and δ in the δ and d diagrams tend to decrease.
However, this degree of decrease does not pose any particular problem in terms of magnetic properties.
次に下地層3として設けたCr被膜の厚さに対
する磁性層4のHcの変化を第3図の線図に示す。
この場合は磁性層4は前述の第2図aの結果に基
づきCo−30at%Ni−5at%Laを選び、その他の
条件も一定とした。第3図において横軸は0.1μm
間隔に目盛つたCr被膜の厚さ、縦軸に磁性層4
のHcとして示してあるが、第3図ではほかに二
つの比較例を併記し本発明と従来例とを対比させ
本発明の有効性を明らかにしている。 Next, the change in Hc of the magnetic layer 4 with respect to the thickness of the Cr film provided as the underlayer 3 is shown in the diagram of FIG.
In this case, Co-30at%Ni-5at%La was selected for the magnetic layer 4 based on the results shown in FIG. 2a, and other conditions were kept constant. In Figure 3, the horizontal axis is 0.1μm
Thickness of Cr coating scaled at intervals, magnetic layer 4 on vertical axis
However, in FIG. 3, two other comparative examples are also shown to compare the present invention and the conventional example to clarify the effectiveness of the present invention.
比較例1の磁気記録媒体の製造方法は上述の実
施例の場合と全く同様であるが、磁性層がCo単
独の薄膜である点のみが異なり、比較例2では同
様に磁性層をCo−30at%Niの薄膜としLaを添加
してないものである。 The manufacturing method of the magnetic recording medium of Comparative Example 1 is exactly the same as that of the above-mentioned Example, except that the magnetic layer is a thin film made of Co alone, and in Comparative Example 2, the magnetic layer is made of Co-30at. It is a thin film of %Ni and does not contain La.
第3図から本発明に係るCo−30at%Ni−5at%
Laの磁性層は下地のCr被膜によりHcを高くする
効果が顕著であり、Cr膜厚0.3μm以上でHcが大
きな値で飽和に達することがわかる。これに対し
て比較例1および比較例2はCr膜厚を増しても
磁性層のHcはあまり大きくならず、本発明実施
例におけるLa添加効果が明瞭である。また下地
層3はCrの代りにBiを用いることができるが、
Biの膜厚を500Å程度とすることにより、Crの場
合と同様の効果が得られる。 From Figure 3, Co-30at%Ni-5at% according to the present invention
It can be seen that the La magnetic layer has a remarkable effect of increasing Hc due to the underlying Cr coating, and that Hc reaches saturation at a large value when the Cr film thickness is 0.3 μm or more. On the other hand, in Comparative Examples 1 and 2, even if the Cr film thickness was increased, the Hc of the magnetic layer did not increase so much, and the effect of La addition in the examples of the present invention is clear. Also, Bi can be used instead of Cr for the base layer 3, but
By setting the Bi film thickness to about 500 Å, the same effect as in the case of Cr can be obtained.
さらに本発明の磁気記録媒体の磁性層の耐食性
について言及する。 Furthermore, the corrosion resistance of the magnetic layer of the magnetic recording medium of the present invention will be mentioned.
第4図は温度40℃、相対湿度80%の雰囲気中に
曝したCo−30at%Ni−5at%Laの磁気記録媒体
の磁気特性の変化を示した線図であり、第5図は
同じくこの条件に曝した磁気記録媒体を記録装置
に用いたときのエラー個数の変化を示した線図で
あるが第4図、第5図の場合も比較のために第3
図のときと同じ比較例1と比較例2を併記した。 Figure 4 is a diagram showing the change in magnetic properties of a Co-30at%Ni-5at%La magnetic recording medium exposed to an atmosphere with a temperature of 40℃ and a relative humidity of 80%, and Figure This is a diagram showing the change in the number of errors when a magnetic recording medium exposed to the conditions is used in a recording device.
Comparative Example 1 and Comparative Example 2, which are the same as in the figure, are shown together.
第4図は磁気記録媒体の放置期間に対する磁性
層のBr・δおよびHcの変化を示したものであ
り、磁気特性の初期値はそれぞれ異なるが、放置
時間経過に対する変化の割合はあまり変らない。
しかしながら第5図にみられるようにエラー個数
は本発明の記録媒体は12weeks放置してはじめて
僅かにエラーがカウントされるのに対して、比較
例1、比較例2のものは短い日数のうちにエラー
個数が急激に増加し使用に耐えなくなる。このこ
とは磁性層全体の磁気特性は環境条件によつて比
較的長時間大きな変化を示すことはないが、湿気
などの雰囲気に曝されたとき、従来の磁性層は表
面の微小な局部から順次腐食されて変質すること
に起因している。これに対しLaを適量添加した
磁性層を有する本発明の磁気記録媒体は第5図か
ら耐食性もすぐれたものであることがわかる。な
お第5図には図示してないが0.5〜12.5at%の範囲
でLaを添加したものについて同様の結果を得る
ことができる。 FIG. 4 shows changes in Br, δ, and Hc of the magnetic layer with respect to the storage period of the magnetic recording medium.Although the initial values of the magnetic properties are different, the rate of change over the storage period does not change much.
However, as can be seen in Figure 5, the number of errors in the recording medium of the present invention is only slightly counted after being left unused for 12 weeks, whereas the number of errors in Comparative Examples 1 and 2 is counted within a short number of days. The number of errors increases rapidly, making it unusable. This means that the magnetic properties of the entire magnetic layer do not change significantly over a relatively long period of time depending on environmental conditions, but when exposed to an atmosphere such as humidity, conventional magnetic layers gradually change from tiny localized areas on the surface. This is caused by corrosion and deterioration. On the other hand, it can be seen from FIG. 5 that the magnetic recording medium of the present invention having a magnetic layer containing an appropriate amount of La has excellent corrosion resistance. Although not shown in FIG. 5, similar results can be obtained when La is added in a range of 0.5 to 12.5 at%.
また本発明の磁気記録媒体を磁気記録装置に組
み込んでCSS試験を行なつた結果、2万回のコン
タクト・スタート・ストツプに対しても記録媒体
表面になんら傷を発生せず、再生出力もほとんど
低下することなく、十分な耐久性をもつているこ
とがわかつた。 Furthermore, as a result of conducting CSS tests by incorporating the magnetic recording medium of the present invention into a magnetic recording device, no scratches occurred on the surface of the recording medium even after 20,000 contact starts and stops, and the playback output was almost constant. It was found that it had sufficient durability without any deterioration.
以上説明してきたように、本発明の磁気記録媒
体はすぐれた磁気特性と耐食性を兼備したものと
いうことができる。 As explained above, the magnetic recording medium of the present invention can be said to have both excellent magnetic properties and corrosion resistance.
磁気デイスクなどの磁気記録媒体は記録密度を
あげるために磁性層の膜厚を薄くし、磁気特性を
向上させるためにスパツタによるCo−Ni系合金
薄膜が用いられるようになつたが、一方でこの磁
性層はCo−Ni系合金では使用環境における耐食
性が例えば鉄酸化物膜などより劣るという欠点を
もつていたのに対し、本発明はCo−Ni系合金に
0.5〜12.5at%のLaを含んだ磁性層を用いて、基
板上に非磁性基体層、下地層、磁性層および保護
潤滑膜をこの順に堆積してなる磁気記録媒体とし
て従来と同様に構成したものであつて、磁性層の
Co−Ni系合金にLaを添加したことにより、Cr下
地層が磁性層のHcを高めるのに極めて効果的に
働くと同時に磁性層自体の耐食性を著しく向上さ
せ、磁気特性と耐食性という従来相反関係にあつ
た問題を一挙に解決し、この両者を一つの記録媒
体で兼ね備えることができ、しかも本発明の記録
媒体は製造効率もよく記録装置の出力も十分であ
り、長寿命を保持することができるという多くの
点で大きな利点を有するものである。
For magnetic recording media such as magnetic disks, the thickness of the magnetic layer has been reduced to increase the recording density, and sputtered Co-Ni alloy thin films have been used to improve magnetic properties. Co-Ni alloys have a magnetic layer that has a disadvantage in that their corrosion resistance in the usage environment is inferior to, for example, iron oxide films.
A magnetic recording medium was constructed in the same manner as before, using a magnetic layer containing 0.5 to 12.5 at% La, and depositing a nonmagnetic base layer, an underlayer, a magnetic layer, and a protective lubricant film in this order on a substrate. of the magnetic layer.
By adding La to the Co-Ni alloy, the Cr underlayer works extremely effectively to increase the Hc of the magnetic layer, while at the same time significantly improving the corrosion resistance of the magnetic layer itself. The above problems can be solved at once, and both of these can be achieved in one recording medium. Moreover, the recording medium of the present invention has good manufacturing efficiency, sufficient output from the recording device, and has a long lifespan. It has great advantages in many ways.
第1図は本発明の磁気記録媒体の要部構成断面
図、第2図は磁性層のLa含有量と磁気特性との
関係を示す線図、第3図は下地層の厚さに対する
磁性層のHcの変化を示す線図、第4図は温度40
℃、相対湿度80%の雰囲気中に曝した磁気記録媒
体の磁気特性の変化を示す線図、第5図は同じく
エラー個数の変化を示す線図、第6図は従来の磁
気記録媒体の要部構成断面図である。
1……合金基板、2……非磁性基体層、3……
非磁性金属下地層、4,4a……磁性層、5……
保護潤滑膜。
Fig. 1 is a cross-sectional view of the main part of the magnetic recording medium of the present invention, Fig. 2 is a diagram showing the relationship between the La content of the magnetic layer and magnetic properties, and Fig. 3 is a diagram showing the relationship between the thickness of the magnetic layer and the thickness of the underlayer. Figure 4 shows the change in Hc at temperature 40
℃ and 80% relative humidity. Figure 5 is a diagram showing changes in the number of errors. Figure 6 is a diagram showing the main points of conventional magnetic recording media. FIG. 3 is a partial cross-sectional view. 1...Alloy substrate, 2...Nonmagnetic base layer, 3...
Non-magnetic metal underlayer, 4, 4a...Magnetic layer, 5...
Protective lubricating film.
Claims (1)
非磁性金属下地層、磁性層および保護潤滑膜をこ
の順に連続スパツタして積層形成した磁気記録媒
体において、前記磁性層がLaを0.5〜12.5at%含
むCo−Ni合金からなることを特徴とする磁気記
録媒体。 2 特許請求の範囲第1項記載の媒体において磁
性層のLa含有量を2〜11at%とすることを特徴
とする磁気記録媒体。 3 特許請求の範囲第1項または第2項記載の媒
体において、非磁性金属下地層としてCrを用い
ることを特徴とする磁気記録媒体。 4 特許請求の範囲第1項または第2項記載の媒
体において、非磁性金属下地層としてBiを用い
ることを特徴とする磁気記録媒体。[Claims] 1. On a non-magnetic substrate covering the main surface of a substrate,
A magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, and a protective lubricant film are laminated by successive sputtering in this order, characterized in that the magnetic layer is made of a Co-Ni alloy containing 0.5 to 12.5 at% La. magnetic recording medium. 2. A magnetic recording medium according to claim 1, wherein the magnetic layer has a La content of 2 to 11 at%. 3. A magnetic recording medium according to claim 1 or 2, characterized in that Cr is used as the non-magnetic metal underlayer. 4. A magnetic recording medium according to claim 1 or 2, characterized in that Bi is used as the non-magnetic metal underlayer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28973985A JPS62149024A (en) | 1985-12-23 | 1985-12-23 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28973985A JPS62149024A (en) | 1985-12-23 | 1985-12-23 | Magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62149024A JPS62149024A (en) | 1987-07-03 |
JPH0467251B2 true JPH0467251B2 (en) | 1992-10-27 |
Family
ID=17747129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28973985A Granted JPS62149024A (en) | 1985-12-23 | 1985-12-23 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62149024A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4138106B2 (en) | 1998-10-22 | 2008-08-20 | セイコーエプソン株式会社 | Printer for electronic paper |
US7293344B2 (en) * | 2004-07-08 | 2007-11-13 | Headway Technologies, Inc. | Process of making CD uniformity in high track density recording head |
-
1985
- 1985-12-23 JP JP28973985A patent/JPS62149024A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62149024A (en) | 1987-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5252367A (en) | Method of manufacturing a magnetic recording medium | |
US5122423A (en) | Magnetic recording medium comprising a chromium underlayer deposited directly on an electrolytic abrasive polished high purity aluminum alloy substrate | |
JPH0467251B2 (en) | ||
JPS61199224A (en) | Magnetic recording medium | |
JPS62157323A (en) | Magnetic recording medium | |
JPH0514325B2 (en) | ||
JPH0474772B2 (en) | ||
JPH0467252B2 (en) | ||
JP2540479B2 (en) | Magnetic memory | |
JPH0467250B2 (en) | ||
JPH0467249B2 (en) | ||
JPS62150521A (en) | Magnetic recording medium | |
JPS61199236A (en) | Magnetic recording medium | |
JPS62150520A (en) | Magnetic recording medium | |
JPS62150522A (en) | Magnetic recording medium | |
JPS62150524A (en) | Magnetic recording medium | |
JPS63269318A (en) | Magnetic recording medium | |
JPS62150523A (en) | Magnetic recording medium | |
JP2990975B2 (en) | Magnetic recording media | |
JPS62239419A (en) | Magnetic recording medium | |
JPH01237925A (en) | Magnetic recording medium | |
JPH0268712A (en) | Thin film magnetic recording medium | |
JPS62239420A (en) | Magnetic recording medium | |
JPH03102616A (en) | Magnetic recording medium | |
JPH04137217A (en) | Magnetic disk having excellent magnetic characteristic and production thereof |