JPS62149024A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62149024A
JPS62149024A JP28973985A JP28973985A JPS62149024A JP S62149024 A JPS62149024 A JP S62149024A JP 28973985 A JP28973985 A JP 28973985A JP 28973985 A JP28973985 A JP 28973985A JP S62149024 A JPS62149024 A JP S62149024A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic layer
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28973985A
Other languages
Japanese (ja)
Other versions
JPH0467251B2 (en
Inventor
Keiji Okubo
大久保 恵司
Hisashi Yamazaki
山崎 恒
Ikuo Nagasawa
永沢 郁郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28973985A priority Critical patent/JPS62149024A/en
Publication of JPS62149024A publication Critical patent/JPS62149024A/en
Publication of JPH0467251B2 publication Critical patent/JPH0467251B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve corrosion resistance without spoiling the magnetic characteristics of a Co alloy by adding La to the Co-Ni alloy of a magnetic layer. CONSTITUTION:Electroless plating of an Ni-P alloy is coated on a nonmagnetic substrate 1 for which a disk-shaped aluminum plate is used to form a nonmagnetic base body 2. Cr is sputtered on the base body 2 to form a nonmagnetic metallic underlying layer 3 and in succession, the magnetic layer 4 consisting of the Co-Ni alloy contg. 0.5-12.5at% La is provided thereon within the same sputtering vessel. Then the underlying layer 3 acts effectively to improve the Hc of the magnetic layer 4 and at the same time, the corrosion resistance of the magnetic layer 4 itself is improved.

Description

【発明の詳細な説明】 〔発明の属する技術71)野〕 本発明は磁気記録装置に用いられる磁気ディスクなどの
磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field 71) to which the invention pertains] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.

〔従来技術とその問題点〕[Prior art and its problems]

近年磁気記録装置に用いられる磁気ディスクなどの磁気
記録媒体は、゛ますます高記録密度となる頌同にあり、
これに伴い磁気記録媒体の磁性層の1jqiV &従来
の約1μm程度から0.1μm以丁まで薄くし、保磁力
(He)もよシ高くする必要がある。そのため磁気記録
媒体の製造方法もサブミクロンオーダでは磁性層の4々
厚が不均一になるスピンコード法に代って、均一な薄膜
を容易に形成することがaT徒なスパッタ法やメッキ法
か注目されるとともに、従来の鉄酸化物例えば1− F
ezesの磁1’lE’t!ば、その磁気特注、特に残
*磁束密度が小さく出力が低いということから、磁性層
としてスパッタ法によって形成されるコバルl−(Co
l系合令例えばコバルト−ニッケル(Ni )合金磁性
薄膜が使用されるようになった。N1含何寸の範囲H2
0〜3oat Xがよいことが知られている。
In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices are becoming more and more densely packed.
Accordingly, it is necessary to reduce the thickness of the magnetic layer of a magnetic recording medium from about 1 jqiV & the conventional approximately 1 μm to 0.1 μm or more, and to increase the coercive force (He). Therefore, in the manufacturing method of magnetic recording media, in the submicron order, instead of the spin code method in which the thickness of the magnetic layer is non-uniform, sputtering method or plating method, which is difficult to easily form a uniform thin film, is used. As well as attracting attention, conventional iron oxides such as 1-F
Ezes magnetic 1'lE't! For example, cobalt l- (Co
Magnetic thin films of cobalt-nickel (Ni) alloys, such as cobalt-nickel (Ni) alloys, have come into use. Size range H2 including N1
It is known that 0 to 3 oat X is good.

哨6図に例えばCo−Ni合金(滋:′も薄膜の磁性・
督を備えたディスク状磁気記録媒体の要部構成断面図を
示す。
Figure 6 shows, for example, a Co-Ni alloy (Shigeru: ' also shows the magnetic properties of a thin film.
1 is a sectional view showing a main part configuration of a disk-shaped magnetic recording medium equipped with a disk-shaped magnetic recording medium.

第6図の磁気記録媒体は合金基板1上に非磁性基体層2
を被覆し、この非磁性基体層2の上に、さらに非磁性金
属下地層3を介してCo −Ni合金薄膜の磁性層4a
を破覆し、磁性層4a上に保J1潤滑膜5を被覆したも
のである。
The magnetic recording medium shown in FIG. 6 has a non-magnetic base layer 2 on an alloy substrate 1.
On this non-magnetic base layer 2, a magnetic layer 4a of a Co--Ni alloy thin film is further formed via a non-magnetic metal underlayer 3.
The J1 lubricating film 5 is coated on the magnetic layer 4a.

このように構成された磁気記録媒体の合金基板1にはア
ルミニウム合金が多用されているが、場合によってはプ
ラスチックを用いてもよく、所定の面粗さ、平行度およ
び平面度に仕上げられる。
Aluminum alloy is often used for the alloy substrate 1 of the magnetic recording medium constructed in this way, but plastic may also be used in some cases, and the substrate is finished to a predetermined surface roughness, parallelism, and flatness.

非磁性基体層2はニッケルーりん(Ni −P)合金を
無?!屏メッキしたもの、もしくは基板l自体をアルマ
イト処理して得たものが好ましく、いずれも所定の硬さ
を必要とし、表面は機械的研・暦により鏡面仕上げを行
なう。非磁性金属下地層3は一般にクロム(Cr)を用
いてスパッタ法などにより形成する。この下地層3はC
o −Ni合金薄膜磁性層4aの保磁力(Hc)を寓め
る作用をもつものであり、下地層3の厚さによっても磁
性層4aの保磁力が変化する。下地層3はl漠1享の増
加とともに磁1生層4aの保磁力を飽和させる傾向があ
り、その保磁力を飽和させる下地層3の膜厚は材料によ
って犬きく異なる。したがって実用的な磁気記録媒体を
作製するときは下地層3の膜厚はあまり1$くすること
なく薄膜の形成時間を短かくし適当な保磁力を磁性層4
aに付与するようにしている。下地ノー3に磁性層4a
をスパッタにより形成した後、引続き最後にカーボンも
しくは二酸化珪素(SiO2)などの保j潤清膜5を連
続して被覆する。
Is the nonmagnetic base layer 2 free of nickel-phosphorus (Ni-P) alloy? ! It is preferable to use a screen-plated one or one obtained by alumite treatment of the substrate 1 itself. Both require a certain hardness, and the surface is mirror-finished by mechanical polishing and calendering. The nonmagnetic metal underlayer 3 is generally formed using chromium (Cr) by sputtering or the like. This base layer 3 is C
It has the effect of estimating the coercive force (Hc) of the o-Ni alloy thin film magnetic layer 4a, and the coercive force of the magnetic layer 4a also changes depending on the thickness of the underlayer 3. The underlayer 3 tends to saturate the coercive force of the magnetic primary layer 4a as the magnetic flux increases, and the thickness of the underlayer 3 that saturates the coercive force varies widely depending on the material. Therefore, when manufacturing a practical magnetic recording medium, the film thickness of the underlayer 3 should not be made too large by 1$, and the thin film formation time should be shortened to maintain an appropriate coercive force in the magnetic layer 4.
I am trying to give it to a. Magnetic layer 4a on base No. 3
After forming by sputtering, a moisturizing film 5 of carbon or silicon dioxide (SiO2) or the like is continuously coated.

以上のようにして得られるCo −Ni合金薄膜をスパ
ッタ法により形成した磁性層をもつ磁気記録媒体は良好
な磁気特性を示すという点で有効なものである。しかし
ながら、このCo −Ni合金薄膜についてその後の研
究が進むにつれて、初期の磁気特性はすぐれているが、
薄膜磁性層自体の耐食性が十分でないために、使用され
る環境によっては遂には磁気特性の劣化を起こすことが
わかった。
A magnetic recording medium having a magnetic layer formed by sputtering a Co--Ni alloy thin film obtained as described above is effective in that it exhibits good magnetic properties. However, as further research progressed on this Co-Ni alloy thin film, it became clear that although its initial magnetic properties were excellent,
It has been found that because the thin film magnetic layer itself does not have sufficient corrosion resistance, the magnetic properties may eventually deteriorate depending on the environment in which it is used.

これに対して種々な対策も試みられている。その一つは
耐食性という点からみれば鉄酸化物は周囲環境に対して
安定しているから、例えばγ−Fe2O3をスパッタに
よって薄膜化するのがよいが、その反面前述のように鉄
酸化膜は磁気特性のとくに残留磁束密度が低く、シかも
鉄酸化物をスパッタ法により薄膜として形成するにはス
パッタ条件や熱処理など複雑な手順を要するので間隠点
が多く好ましくない。第2の対策は例えば金属材料の分
野で屡々行なわれているよ・)にクロム(Cr) を添
加することによって耐食性全向上させるという手法を利
用することであるが、CO系合金にCrを単独添加して
も耐食性は向上するものの、逆に磁気特注が低Fするの
を避けることができない。第3の対策として、Co −
Ni合金薄膜の表面に周囲環境の影響を完全に遮断する
ことのできる保護膜を形成することも効果的とみられる
が、磁気ヘッドとの潤滑性や薄膜状の保護膜に必要な硬
さやe密l生を保持することなどを同時に満足する保護
膜は末だ見られない。
Various countermeasures against this problem have been attempted. One of them is that from the point of view of corrosion resistance, iron oxide is stable in the surrounding environment, so it is better to make a thin film of γ-Fe2O3 by sputtering, for example, but on the other hand, as mentioned above, iron oxide film is The magnetic properties, particularly the residual magnetic flux density, are low, and forming iron oxide as a thin film by sputtering requires complicated procedures such as sputtering conditions and heat treatment, which is undesirable because there are many hidden spots. The second countermeasure, for example, is to use a method that is often used in the field of metal materials to completely improve corrosion resistance by adding chromium (Cr) to CO-based alloys. Even if it is added, the corrosion resistance will improve, but on the other hand, it is not possible to avoid a low F of the magnetic special order. As a third measure, Co −
It seems to be effective to form a protective film on the surface of the Ni alloy thin film that can completely block out the effects of the surrounding environment, but there are issues with the lubricity with the magnetic head, the hardness and e-tightness required for the thin protective film. No protective film has yet been found that satisfies the requirements of preserving livability.

これらのことから、磁気記録媒体にスパッタ法により形
成される磁性層は、1tii漠には補助的な効果を期待
し、従来相反関係にあるとみなされていた磁気特性と耐
食性を両立させたすぐれたものを開発する必要がある。
For these reasons, a magnetic layer formed by sputtering on a magnetic recording medium is expected to have a vaguely auxiliary effect, and is an excellent material that combines magnetic properties and corrosion resistance, which were previously considered to be contradictory. It is necessary to develop something new.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に着みてなされたものであシ、その目
的はCO系合金の磁気特性を損うことなく、耐食性も向
上した薄膜磁性層を形成した磁気記録媒体を提供するこ
とにある。
The present invention has been made in view of the above points, and its purpose is to provide a magnetic recording medium in which a thin film magnetic layer is formed that has improved corrosion resistance without impairing the magnetic properties of a CO-based alloy. .

〔発明の要点〕[Key points of the invention]

本発明は不活性ガス雰囲気中でアルミニウム基板上のN
1−P層の上に連続的にスパッタして形成したド地層、
磁性層および1呆in潤滑1漠からなる債1−薄膜の磁
性層として、ランタン(La)をla +It含有した
Co −Ni合金磁性薄模を形成することにより達せら
れる。
The present invention deals with N on an aluminum substrate in an inert gas atmosphere.
1-A do layer formed by continuous sputtering on the P layer,
This is achieved by forming a Co--Ni alloy magnetic thin film containing lanthanum (La) as a thin film magnetic layer consisting of a magnetic layer and a layer of lubrication.

〔発明の実施例〕[Embodiments of the invention]

以F$発明を実施例に基づき説明する。 Hereinafter, the F$ invention will be explained based on examples.

第1図に本発明により得られたiia =;d記録媒体
の要部構成断面図金示し第61図と共・市部分全同−符
号で表わしである。@1図は@6図と基本的な構成は同
じであるが、第1図が第6図と異なる点は磁性層4にC
o −Ni −La合金薄膜を用いた所にある。
FIG. 1 is a cross-sectional view of the essential parts of the iia=;d recording medium obtained by the present invention, and the same reference numerals as in FIG. 61 are used to indicate the same parts. Figure @1 has the same basic configuration as Figure @6, but the difference between Figure 1 and Figure 6 is that the magnetic layer 4 has C.
o -Ni-La alloy thin film is used.

まず非磁性合金基板1として旋盤加工および加圧焼純に
よシ、十分に小さなうねり、すなわち円周・半径方向と
も20μm以下の而に仕上げたディスク状アルミニウム
板を用い、この上にNi −P合金の無電解メッキを約
30μmの厚さに被膜し、メッキ被膜を平均表面粗さ帆
02μm、厚さ15μmまで虎面仕上げを行なうことに
よシ非磁性基体2を形成する。次いで非磁性基体2の上
に非磁性金属下地層3としてCrをスパッタして形成す
るがCr膜の厚さは前述のように磁性Iii 4の磁気
特性に影響を与えるので0.1μm間隔で0.8μmま
で変化させた。下地層3を形成した後、I[ちに引続き
同じスパッタ槽内で磁性層4として本発明によるCo−
30at%Ni −La合金をスパッタによシ下地層3
の上に50OAの厚さに設けた。この磁性合金薄膜につ
いてはLaを添加する効果を明らかにするため、La含
有量を5atXおきに15 at%まで変えたものを作
製した。この際、下地層3に続いて磁性+44をスパッ
タするまでにあまりに長い時間スパッタ省内に放Rした
り、大気に曝したりすると、下地層3の効果を発揮する
ことができず、磁性1& 4の必要とする大きな保磁力
が得られなくなる。例えば下地層3を形成した後、大気
に曝して磁性層4をその上く形成した場合、磁性層4の
保磁力は僅か2000eにしかならない。これはスパッ
タ槽内に長時間放置したときも同様の結果となるから、
下地層3の形成後は直ちに磁性層4のスパッタを実施し
なければならない。最後に表面保護潤滑膜5としてカー
ボンをスパッタして膜厚500 Aに形成することKよ
り、この磁気記録媒体を作製した。
First, as the non-magnetic alloy substrate 1, a disk-shaped aluminum plate which has been lathe-processed and pressure-sintered and finished with sufficiently small waviness, that is, 20 μm or less in both the circumferential and radial directions, is used. The non-magnetic substrate 2 is formed by applying electroless plating of an alloy to a thickness of about 30 μm and finishing the plating film to an average surface roughness of 02 μm and a thickness of 15 μm. Next, Cr is sputtered to form a non-magnetic metal underlayer 3 on the non-magnetic substrate 2, but the thickness of the Cr film affects the magnetic properties of the magnetic III 4 as described above, so it is formed at intervals of 0.1 μm. The thickness was changed to .8 μm. After forming the underlayer 3, I [sequentially in the same sputtering bath as the magnetic layer 4, Co-
Underlayer 3 of 30 at% Ni-La alloy is sputtered.
A thickness of 50 OA was provided on top of the . In order to clarify the effect of adding La to this magnetic alloy thin film, films were prepared in which the La content was changed every 5 atX up to 15 at%. At this time, if the magnetic +44 is sputtered after the underlayer 3, if it is left in the sputtering chamber for too long or exposed to the atmosphere, the effect of the underlayer 3 will not be exhibited and the magnetic +44 will be sputtered. The large coercive force required by the magnetic field cannot be obtained. For example, if the underlayer 3 is formed and then the magnetic layer 4 is formed thereon by exposing it to the atmosphere, the coercive force of the magnetic layer 4 will be only 2000e. This is the same result when left in the sputter tank for a long time.
After forming the underlayer 3, the magnetic layer 4 must be sputtered immediately. Finally, carbon was sputtered to form a surface protective lubricant film 5 to a thickness of 500 Å, thereby producing this magnetic recording medium.

次に以上のごとぐして得られた磁気記録媒体の諸物件に
ついて述べる。
Next, various properties of the magnetic recording medium obtained as described above will be described.

第2図(a)〜(d)は磁性層4として設けたCo −
30at % Ni −La合金のLa含有量を変えた
ときの磁気特性との関係を示した線図であり、いずれも
横軸を5at%間隔でLa含有址とし、縦軸を磁気特性
としてプロットしたものである。すなわち、La含有量
に対して第2図(a)は保磁力、第2図(b)は角形比
(S)および保持力角形比(S“)、涯;2図(C)は
残留磁束密度(Br Pg厚(δ)との積、第2図(d
)は飽和磁束密度(Bs)と膜厚(δ)との積の関係線
図である。ただし、このときその他の条件d全で同じに
設定してあり、いずれもRFスパッタ装・崖を用いて出
力soo w 、全ガス圧4.Ox 10 Torr 
、基板温度は室温である。なお下地層3のCrの膜厚ば
すべて300OAとした。
FIGS. 2(a) to 2(d) show Co − provided as the magnetic layer 4.
It is a diagram showing the relationship with magnetic properties when changing the La content of a 30at% Ni-La alloy, in which the horizontal axis is plotted as La content at 5at% intervals, and the vertical axis is plotted as magnetic properties. It is something. In other words, Fig. 2 (a) shows the coercive force, Fig. 2 (b) shows the squareness ratio (S), coercive force squareness ratio (S"), and the difference in relation to the La content; Fig. 2 (C) shows the residual magnetic flux. Density (Br product of Pg thickness (δ), Figure 2 (d
) is a relationship diagram of the product of saturation magnetic flux density (Bs) and film thickness (δ). However, at this time, all other conditions d are set to be the same, and in all cases, an RF sputtering device/cliff is used, and the output is sooo w and the total gas pressure is 4. Ox 10 Torr
, the substrate temperature is room temperature. Note that the Cr film thickness of the underlayer 3 was all 300 OA.

第2図(a)〜(d)かられかるようにLa含有ttに
対して最も大きく変る磁気特性は(81図のHeであっ
て、磁気記録媒体として有効な9000s以上の得られ
るLa含有准の範囲は0.5〜12.5 +tt%であ
1)10000eを超える最も好ましい範囲は2〜11
 at 9f;である。
As can be seen from Fig. 2 (a) to (d), the magnetic properties that change the most with respect to La-containing tt are He (Fig. The range of
at 9f;

この範囲のLa含有量についてろると(C)図のBr・
δ。
Regarding the La content in this range, Br・
δ.

(d)図のBs・δはいずれも低下の何「向にある。し
かしこの程度の低下は磁気特性の上でとくに問題となる
ことはない。
Bs and δ in the figure (d) are both in the direction of decrease. However, this degree of decrease does not pose any particular problem in terms of magnetic properties.

次に下地層3として設けたCr被膜の厚さに対する磁性
層4のHCの変化を第3図の線図に示す。この場合は磁
性層4は前述の第2図(a)の結果に基づきCo −3
0at ′XNi −5at%Laを選び、その他の条
件も一定とし九第3図において横軸は0.1μm間隔に
目盛ったCr被膜の厚さ、縦軸に磁性層4のHcとして
示しであるが、第3図ではほかに二つの比較例を併記し
本発明と従来例とを対比させ本発明の有効性を明らかに
している。
Next, the change in HC of the magnetic layer 4 with respect to the thickness of the Cr film provided as the underlayer 3 is shown in the diagram of FIG. In this case, the magnetic layer 4 is made of Co-3 based on the results shown in FIG. 2(a).
0at' However, in FIG. 3, two other comparative examples are also shown to compare the present invention and the conventional example to clarify the effectiveness of the present invention.

比較例1の磁気記録媒体の製造方法は上述の実施例の場
合と全く同様であるが、磁性層がCo単独の薄膜である
点のみが異なり、比較例2では同様に磁性層をCo −
30at写Niの薄膜としLaを添加してないものであ
る。
The manufacturing method of the magnetic recording medium of Comparative Example 1 is exactly the same as that of the above-mentioned Examples, except that the magnetic layer is a thin film made of Co alone, and in Comparative Example 2, the magnetic layer is similarly made of Co.
It is a thin film of 30at Ni and does not contain La.

第3図から本発明に深るCo −30at%Ni−5a
t琴Laの磁性laは下地のCr液膜によりHeを高く
する効果が顕著であり、Cr ii蓮、IV 0 、3
μm以上でHcが大きな値で飽和に達することがわかる
。これ果が明瞭である。″また下地層3はCrの代りに
Biを用いることができるが、Bjの膜1gを500 
A程度とすることによシ、Crの場合と同様の効果が得
られる。
Co-30at%Ni-5a, which explains the present invention from Fig. 3
The magnetic la of the koto La has a remarkable effect of increasing He due to the underlying Cr liquid film, and Cr ii lotus, IV 0, 3
It can be seen that Hc reaches saturation at a large value above μm. The result is clear. ``Furthermore, Bi can be used instead of Cr for the base layer 3, but if 1 g of Bj film is
By setting it to about A, the same effect as in the case of Cr can be obtained.

さらに本発明の磁気記録媒体の磁性層の耐食性について
言及する。
Furthermore, the corrosion resistance of the magnetic layer of the magnetic recording medium of the present invention will be mentioned.

第4図は温度40℃、相対湿度80%の雰囲気中に曝し
たCo −30at % Ni −5at cXLa 
cQ磁気記録媒体の磁気特性の変化を示した線図であり
、第5図は同じくこの条件に曝し九磁気記録媒体を記録
装置に用いたときのエラー個数の変化を示しだ線図であ
るが第4図、第5図の場合も比較のために第3図のとき
と同じ比較例1と比較例2を併記した。
Figure 4 shows Co-30at%Ni-5atcXLa exposed to an atmosphere at a temperature of 40°C and a relative humidity of 80%.
FIG. 5 is a diagram showing changes in the magnetic properties of a cQ magnetic recording medium, and FIG. In the case of FIG. 4 and FIG. 5, Comparative Example 1 and Comparative Example 2, which are the same as in FIG. 3, are also shown for comparison.

第4図は磁気記録媒体の放f11期間に対する磁性層の
Br・δおよびHcの変化を示し丸ものであシ、磁気特
性の初期値はそれぞれ異なるが、放置時間経過に対する
変化の割合はあ1り変らない。しかしながら第5図にみ
られるようにエラー個数は本発明の記録媒体は12 w
eeks放・置してはじめて僅かにエラーがカウントさ
れるのに対して、比較例1゜比較例2のものは短い日数
のうちにエラー個数が急激に増加し使用に耐えなくなる
。このことは磁性層全体の磁気持回は環境条件によって
比較的長時間大きな変化を示すことはないが、湿気など
の雰囲気に1暴されたとき、従来の磁性層は表面の微小
な局部から頓次腐食されて変質することに起因している
。これに対しLaを適音添加した磁性層を有する本発明
の磁気記録媒体は第5図から耐食性もすぐれたものであ
ることがわかる。なお第5図には図示してないが0.5
〜12.5at%の範囲でLaを添加したものについて
同様の結果を得ることができる。
Figure 4 shows the changes in Br, δ and Hc of the magnetic layer with respect to the radiation f11 period of the magnetic recording medium.It is a circle.Although the initial values of the magnetic properties are different, the rate of change with the elapse of the standing time is about 1. It doesn't change. However, as shown in FIG. 5, the number of errors in the recording medium of the present invention is 12 w.
While the number of errors is only slightly counted after the eeks are left alone, the number of errors in Comparative Example 1 and Comparative Example 2 increases rapidly within a short period of time, making them unusable. This means that although the magnetic rotation of the entire magnetic layer does not show large changes over a relatively long period of time depending on environmental conditions, when exposed to an atmosphere such as humidity, conventional magnetic layers are This is due to subsequent corrosion and deterioration. On the other hand, it can be seen from FIG. 5 that the magnetic recording medium of the present invention having a magnetic layer to which a suitable amount of La is added also has excellent corrosion resistance. Although not shown in Fig. 5, 0.5
Similar results can be obtained when La is added in the range of ~12.5 at%.

また本発明の磁気記録媒体を磁気記録装置KMiみ込ん
でC8S試験を行なった結果、2万回のコンタクト・ス
タート・ストップに対しても記録媒体表面になんら傷を
発生せず、再生出力もほとんど低下することなく、十分
な耐久性をもっていることがわかった。
Furthermore, as a result of conducting a C8S test using the magnetic recording medium of the present invention inserted into a magnetic recording device KMi, no scratches occurred on the surface of the recording medium even after 20,000 contact starts and stops, and the reproduction output was almost constant. It was found that it had sufficient durability without any deterioration.

以上説明してきたように、本発明の磁気記録媒体はすぐ
れた磁気特性と耐食性を兼備したものということができ
る。
As explained above, the magnetic recording medium of the present invention can be said to have both excellent magnetic properties and corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

磁気ディスクなどの磁気記録媒体は記録密度をあげるた
めに磁性層の膜厚を釘くし、磁気特性を向上させるため
にスパッタによるCo −Ni系合金薄膜が用いられる
ようになつfr、が、一方でこの磁性層はCo−Ni系
合金では使用環境における耐食性が例えば鉄酸化物膜な
どより劣るという欠点をもっていたのに対し、本発明は
Co −Ni系合金に0.5〜12.5 at%のhを
含んだ磁性層を用いて、基板上に非磁性基体層、下地層
、vi磁性層よび保護潤滑1膜をこの頑に堆積してなる
1磁気記録媒本として従来と同様に構成したものであっ
て、磁性層のCo−Ni系合金にLaを添加したことに
より、Cr下池層が磁性層のHeを高めるのに隠めて効
果的に働くと同時に磁性層自体の耐食性を著しく向上さ
せ、磁気特性と耐食性という従来相反関係にあった問題
を一挙に解決し、この両者を一つの記録媒体で兼ね備え
ることができ、しかも本発明の記録媒体は製造効率もよ
く記録裟1置の出力も十分であり、長寿命を保持するこ
とができるという多くの点で大きな利点を有するもので
、らる。
In magnetic recording media such as magnetic disks, the thickness of the magnetic layer is increased to increase the recording density, and sputtered Co-Ni alloy thin films are used to improve magnetic properties. This magnetic layer has a drawback that the corrosion resistance in the usage environment is inferior to, for example, an iron oxide film in a Co-Ni alloy, whereas the present invention has a Co-Ni alloy with a magnetic layer of 0.5 to 12.5 at%. A magnetic recording medium is constructed in the same manner as before, using a magnetic layer containing h, and a non-magnetic base layer, an underlayer, a vi magnetic layer, and a protective lubricant film are deposited on a substrate. By adding La to the Co-Ni alloy of the magnetic layer, the Cr lower layer effectively works to increase He in the magnetic layer, while at the same time significantly improving the corrosion resistance of the magnetic layer itself. , the problems of magnetic properties and corrosion resistance, which have conventionally been contradictory, can be solved all at once, and both of these can be achieved in a single recording medium.Moreover, the recording medium of the present invention has good manufacturing efficiency and can achieve the output of a single recording medium. It has many great advantages in that it is durable and has a long service life.

【図面の簡単な説明】[Brief explanation of drawings]

嬉1図は本発明の磁気記録媒体の要部構成断面図、第2
図は磁性層のLa含有量と磁気特性との関係を示す線図
、第3図は下地層の厚さに対する磁性層のHaの変化を
示す線図、第4図は温度40℃2相対湿度80%の雰囲
気中に14シた磁気記録媒体の磁気特性の変化を示す線
図、第5図は同じくエラー個数の変化を示す線図、第6
図は従来の磁気記録媒体の要部構成断面図である。 1・・・合金基板、2・・・非磁性基体層、3・・・非
磁性金属下地層、4.4&・・・磁性層、5・・・保護
潤滑膜。 、・1.・6、:\ 第1図 (a)           (b) (c)           (d) 第4図 第5図 第6図
Figure 1 is a sectional view of the main part of the magnetic recording medium of the present invention;
The figure is a diagram showing the relationship between the La content and magnetic properties of the magnetic layer, Figure 3 is a diagram showing the change in Ha of the magnetic layer with respect to the thickness of the underlayer, and Figure 4 is a diagram showing the change in Ha of the magnetic layer with respect to the thickness of the underlayer. Figure 5 is a diagram showing changes in the magnetic properties of a magnetic recording medium exposed to an atmosphere of 80%. Figure 5 is a diagram showing changes in the number of errors.
The figure is a cross-sectional view of the main part of a conventional magnetic recording medium. DESCRIPTION OF SYMBOLS 1...Alloy substrate, 2...Nonmagnetic base layer, 3...Nonmagnetic metal base layer, 4.4&...Magnetic layer, 5...Protective lubricant film. ,・1.・6, :\ Figure 1 (a) (b) (c) (d) Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1)基板上の主表面を被覆した非磁性基体上に、非磁性
金属下地層、磁性層および保護潤滑膜をこの順に連続ス
パツタして積層成形した磁気記録媒体において、前記磁
性層がLaを0.5〜12.5at%含むCo−Ni合
金からなることを特徴とする磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において磁性層の
La含有量を2〜11at%とすることを特徴とする磁
気記録媒体。 3)特許請求の範囲第1項または第2項記載の媒体にお
いて、非磁性金属地下層としてCrを用いることを特徴
とする磁気記録媒体。 4)特許請求の範囲第1項または第2項記載の媒体にお
いて、非磁性金属下地層としてBiを用いることを特徴
とする磁気記録媒体。
[Scope of Claims] 1) A magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, and a protective lubricant film are successively laminated in this order on a nonmagnetic base coated with the main surface of a substrate. A magnetic recording medium characterized in that the magnetic layer is made of a Co-Ni alloy containing 0.5 to 12.5 at% of La. 2) A magnetic recording medium according to claim 1, wherein the magnetic layer has a La content of 2 to 11 at%. 3) A magnetic recording medium according to claim 1 or 2, characterized in that Cr is used as the non-magnetic metal sublayer. 4) A magnetic recording medium according to claim 1 or 2, characterized in that Bi is used as the nonmagnetic metal underlayer.
JP28973985A 1985-12-23 1985-12-23 Magnetic recording medium Granted JPS62149024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28973985A JPS62149024A (en) 1985-12-23 1985-12-23 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28973985A JPS62149024A (en) 1985-12-23 1985-12-23 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62149024A true JPS62149024A (en) 1987-07-03
JPH0467251B2 JPH0467251B2 (en) 1992-10-27

Family

ID=17747129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28973985A Granted JPS62149024A (en) 1985-12-23 1985-12-23 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62149024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114864B2 (en) 1998-10-22 2006-10-03 Seiko Epson Corporation Electronic paper printer
US7293344B2 (en) * 2004-07-08 2007-11-13 Headway Technologies, Inc. Process of making CD uniformity in high track density recording head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114864B2 (en) 1998-10-22 2006-10-03 Seiko Epson Corporation Electronic paper printer
US7381000B2 (en) 1998-10-22 2008-06-03 Seiko Epson Corporation Electronic paper printer
US7293344B2 (en) * 2004-07-08 2007-11-13 Headway Technologies, Inc. Process of making CD uniformity in high track density recording head

Also Published As

Publication number Publication date
JPH0467251B2 (en) 1992-10-27

Similar Documents

Publication Publication Date Title
JPH0916941A (en) Magnetic recording medium and manufacture
US5252367A (en) Method of manufacturing a magnetic recording medium
JPS62149024A (en) Magnetic recording medium
JPS62157323A (en) Magnetic recording medium
JPH0474772B2 (en)
JPS61199224A (en) Magnetic recording medium
JPH0514325B2 (en)
JP2540479B2 (en) Magnetic memory
JPS62149025A (en) Magnetic recording medium
JPH0650683B2 (en) Magnetic memory
JPH0467250B2 (en)
JPH0467249B2 (en)
JPS62150524A (en) Magnetic recording medium
JPS6243832A (en) Magnetic recording medium
JPH03162710A (en) Magnetic recording medium
JPS62150523A (en) Magnetic recording medium
JPS63269318A (en) Magnetic recording medium
JPS62150520A (en) Magnetic recording medium
JP2538124B2 (en) Fixed magnetic disk and manufacturing method thereof
JPS62150522A (en) Magnetic recording medium
JPS62239419A (en) Magnetic recording medium
JPS6342021A (en) Magnetic recording medium
JPS6364623A (en) Magnetic recording medium
JPS62150521A (en) Magnetic recording medium
JPS62239420A (en) Magnetic recording medium