JPS6243832A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPS6243832A JPS6243832A JP18256685A JP18256685A JPS6243832A JP S6243832 A JPS6243832 A JP S6243832A JP 18256685 A JP18256685 A JP 18256685A JP 18256685 A JP18256685 A JP 18256685A JP S6243832 A JPS6243832 A JP S6243832A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- alloy
- recording medium
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
本発明は、非磁性基体上にCo合金からなる磁性層を有
し、磁気記録装置等に用いられる磁気ディスク等の磁気
記録媒体に関する。The present invention relates to a magnetic recording medium, such as a magnetic disk, which has a magnetic layer made of a Co alloy on a nonmagnetic substrate and is used in a magnetic recording device or the like.
磁気ディスク装置などに用いられる磁気記録媒体の記録
の高密度化に伴って、磁気記録媒体の磁性層をこれまで
の約1−程度から0.1 tna以下に薄くし、保磁力
(llc)も向上させる必要がある。これと共に磁性層
の形成方法も、スピンコード法に代わって薄膜化の容易
なスパッタリングやめっき法が注目され、磁性薄膜の材
料としても従来の鉄酸化物からCo系の合金が使用され
ようとしている。
しかし、合金磁性薄膜が研究されるにつれて、磁気特性
は優れるが耐食性が問題となり、腐食。
磁気特性の劣化がみられるため実用化されていないのが
現状である。耐食性の点からいえば、スパッタリング法
により形成される鉄酸化物磁性薄膜が優れているが、そ
の磁気特性、特に残留磁束密度Brが低いこと、この製
法の複雑さ、特にスパッタ条件や熱処理などに問題があ
ることなどの欠点をもつ。従ってCo合金磁性層の耐食
性の不足を補うことが望まれる。このために、保護皮膜
を表面 □に形成し、磁性層を保護する方法がと
られる。しかし磁気ヘッドとの潤滑性、保護のための薄
膜状 □態での硬さや緻密性も考慮する必要があ
り、これらを同時に満足する保護皮膜はまだ見られない
。
そこでCo合金にクロムを添加して耐食性を向上さU、
保護皮膜と併用して磁気特性お31、びNi7食性の優
れた磁気記録媒体の開発が進められる。−・般に耐食性
を向−トさせるためにCrを添力llすることは、金属
の分野でよく行われるが、Crでけでは耐食1?1は向
l−刷るものの、磁気特性の劣化を招きやすい。With the increase in the recording density of magnetic recording media used in magnetic disk devices, etc., the magnetic layer of magnetic recording media has been thinned from about 1-tna to 0.1 tna or less, and the coercive force (llc) has also increased. Need to improve. At the same time, sputtering and plating methods, which can easily form thin films, are attracting attention in place of spin-coding methods for forming magnetic layers, and Co-based alloys are being used instead of conventional iron oxides as materials for magnetic thin films. . However, as alloy magnetic thin films have been researched, although they have excellent magnetic properties, corrosion resistance has become a problem. Currently, it is not put into practical use because its magnetic properties deteriorate. In terms of corrosion resistance, iron oxide magnetic thin films formed by sputtering are excellent, but their magnetic properties, especially the low residual magnetic flux density Br, and the complexity of this manufacturing method, especially the sputtering conditions and heat treatment, etc. It has drawbacks such as problems. Therefore, it is desired to compensate for the lack of corrosion resistance of the Co alloy magnetic layer. For this purpose, a method is used in which a protective film is formed on the surface □ to protect the magnetic layer. However, it is also necessary to consider the lubricity with the magnetic head and the hardness and density of the thin film for protection, and a protective film that satisfies both of these requirements has not yet been found. Therefore, chromium is added to Co alloy to improve corrosion resistance.
When used in combination with a protective film, magnetic recording media with excellent magnetic properties and Ni7 erodibility are being developed. - Generally, adding Cr to improve corrosion resistance is often done in the field of metals, but Cr alone improves corrosion resistance by 1 to 1, but causes deterioration of magnetic properties. Easy to invite.
本発明は、Co合金磁性層の磁性を低下させないで耐食
性を向1−させることにより、保護皮膜と併用し−C耐
食性および磁気特性の優れた(n気記録媒体を提供する
ことを目的とする。An object of the present invention is to improve the corrosion resistance of a Co alloy magnetic layer without lowering its magnetism, thereby providing a recording medium that is used in combination with a protective film and has excellent corrosion resistance and magnetic properties. .
【発明の要点]
本発明によれば、磁性層がNI+ Cr、 Moを含む
c。
合金よりなることにより、磁性層の耐食性を向」−させ
てL記の目的を達成する。このような磁性層はノF−磁
性基体−I−にスパッタリング法によって形成された非
磁性下地層の上に連続して行われるスパッタリング法に
より形成されることが望ましい。
【発明の実施例】
第1図は本発明による磁気記録媒体の部分断面図である
。本発明による磁気記録媒体は、非磁性基板11−に2
1体表面層2が被IWさね1、)1(体表面層1−にさ
らにJl[f目4金属ド池層3を介L−(+5目’を層
4が被覆され、この(イ目71層とL −C41介1明
にIリフ11]、及びモリブデンを含む=1パル1 ;
ノリル自岱もイを性薄膜4が用いられる。さらにm !
’P +’!v1191に保EW潤滑層5が被覆されて
構成されている。■気記録媒体の非Cfl性)、(+I
i、 1としてアル、ミニウJ、白金基板が良く用いら
れているが、場合によっCはプ、>スチソク)S板を使
用t−ることもiiJ能である。この基板を所定の面I
11さ、平行度、平面度じイ11げた後、基体表面層?
を被覆する。この層は?−ノ’y−ルーりん合金をめっ
きしたものや、アルマイト皮膜が望ましく、一定の硬さ
が必要とされ、表1fiは機械的研磨により鏡面仕トげ
4−る。次にノ1(体表面IM2のLにクロムにより代
表される非(イ主性金属(・−地層3がスパッタリング
法等により形成ずろが、り111 J、の他にビスマス
や錫を使用することができる。
この下地層3は金属磁性薄膜4の保(、!タカ(II
Oを高める作用があり、またこの下地層3の厚さに、k
=+ても磁性層4の保磁力が飽和する(1向にあり、
飽和する厚さは材質等によっても大きく異なる。例えば
Crの場合約7000人であるが、Blの場合は500
人程度である。次に下地層3の一トにNi+ Crおよ
びMoを含むCoからなる磁性層4をスパッタリング法
により形成する。最後に金属磁性薄膜4の上に炭素、5
IOI、 513N4. SiCなどの保護潤滑皮膜5
をスパッタリング法により被覆する。
Co−N1−Cr−Mo磁性層の磁気特性は、保磁力(
llc)300〜10000s、残留磁束密度(Br)
450(1〜9500Gs。
保磁力角形比(S”)0.7〜0.9の範囲にあり、C
rおよびMoの量により大きく変化する。Co−Ni合
金磁性薄膜では約30原子%Ni近辺で最大の保磁力を
示し、Co−30原子%Ni合金磁性薄膜にCrを添加
した場合、約8原子%Cr近辺で最大の保磁力を示す。
さらにこの合金薄膜にMoを添加することにより、4原
子%Mo近辺で最大の保磁力を示しており、この結果か
らMoとして2〜8原子%の範囲で高密度記録が可能な
磁気記録媒体として使用できることが知られた。
以下実施例および比較例を挙げ、それらの試験結果を述
べる。
実施例1:
非磁性基板1として、旋盤加工及び加圧焼鈍により、十
分小さな、すなわち円周、半径方向共に20n以下のう
ねりをもつ面に仕トげられたディスク状アルミニウム円
板上に基体表面層2としてN1−P合金を無電解めっき
法にて約30pの厚さまで形成し、この後N1−Pめっ
き膜を平均表面粗さ0.02廂。
厚さ15−まで鏡面研磨仕上げをして非磁性基体を作製
した。この非磁性基体の上に下地層3として成した後、
最後に表面保護潤滑層としてCを500人の厚さにスパ
ッタリング法により被覆して磁気ディスク媒体を作製し
た。磁気特性の保磁力Hc。
残留磁束密度Brはそれぞれ7000e、 9500G
sであった。
実施例2:
実施例1と同様にして非磁性基体を作製した後、その非
磁性基体上に下地層にしてBiを500人、続けて磁性
層としてCo−30%Ni−8%Cr−4%Mo −合
金を600人の厚さに、最後に表面保護潤滑層としてS
IO□を500人の厚さにそれぞれスパッタリング法に
より連続形成して磁気ディスク媒体を作製したe ti
c、Brはそれぞれ7000e、 9500Gsであっ
た。
比較例1:
実施例1と同様であるが、Cr層3の膜厚を5000人
として、さらに磁性層4をCoのみとして、連続スパッ
タリング法により磁気ディスク媒体を作製した。llc
、Brはそれぞれ6000e、 l100OGsであっ
た。
比較例2:
実施例1と同様であるが、Cr層3の膜厚を2000人
として、さらに磁性M4をCo−30%N1合金にして
連続スパッタリング法により(n気ディスク媒体を作製
した。)lc、Brはそれぞれ6500e、 l100
OGsであった。
比較例3:
実施例1と同様であるが、Cr層3の膜厚を1000人
として、さらに磁性層4をCo−30%N+−8%Cr
合金にして連続スパッタリング法により磁気ディスク媒
体を作製した。Ilc、Brはそれぞれ7000e。
9500Gsであった。
比較例4:
実施例1と同様であるが、下地N3としてCrを形成し
た後、一度スバッタリング槽に空気を導入し、再び真空
に引き、所定のスパッタリングガス圧にしてから磁性層
4にしてGo −30%N+−8%Cr4%Mo合金を
下地N3の上にスパッタした。その後再びスパッタリン
グ槽内に空気を入れ、さらに真空引きをし、所定のスパ
ッタガス圧にした後、磁性層4の上に保護潤滑層5とし
てC膜をスパッタし、磁気ディスク媒体を作製した。各
層の膜厚は実施例1と同じとした。Hc、 Brはそれ
ぞれ2000e、 8000Gsであった。
実施例1と比較例4かられかるように下地層3をスパッ
タしてから磁性層4をスパッタするまでに大気にさらす
ことにより、下地層の効果が薄れ、保持力が700(l
eから200[1eに低下する。このことは下地層3と
スパッタした後、大気にさらさなくてもスパッタリング
槽内に長時間放置した場合と同様である。
第2図は実施例1および比較例1〜3の下地層の厚さを
変えた場合の保持力の変化を示し、本発明の実施例では
Crの厚さの増加により飽和する保磁力の値が比較例に
比して高く、このことは磁気記録媒体を作製するために
下地層の厚さを薄くしてその形成時間を短く抑え、安定
した磁気特性が得られることを示す。
実施例および比較例によって得られた磁気記録媒体を、
実際の磁気ディスク装置に組込んでC8S試験および環
境試験を行った場合に、実施例の媒体ではディスク表面
に傷の発生が見られず、また再生出力の低下も少なく十
分耐久性のあることがわかった。しかし比較例4の媒体
では表面に傷が発生した。環境試験は、25℃水中に浸
漬して磁気ディスク媒体としてのエラー個数の変化をみ
たもので、第3図に示した通りエラーの発生数からみて
も本発明の実施例の媒体は十分耐食性のあることが分か
った。
【発明の効果]
本発明は、非磁性基体上にCrおよびMoを添加したC
o−N1合金連続薄膜(n性層とさらにその上に保護潤
滑層を設けるもので、特に下地層を介して連続スパッタ
リングにより形成される磁性層自体が優れた磁気特性と
耐食性を有しているので、耐久性のある磁気特性の優れ
た磁気記録媒体が得られる。さらに下地層の厚さを従来
より薄く抑えることができるため、より安価な磁気記録
媒体の作製が可能となる。[Summary of the Invention] According to the present invention, the magnetic layer contains NI+Cr, Mo. By forming the magnetic layer from an alloy, the corrosion resistance of the magnetic layer is improved and the object described in item L is achieved. It is desirable that such a magnetic layer be formed by a sputtering method continuously performed on a non-magnetic underlayer formed by a sputtering method on the magnetic substrate-I. DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partial cross-sectional view of a magnetic recording medium according to the present invention. The magnetic recording medium according to the present invention has two
1 Body surface layer 2 is coated with IW tongue 1,) 1 (Body surface layer 1- is further coated with layer 4 through Jl[f-th 4 metal dome layer 3, 71 layer and L-C41 layer 1 light, and contains molybdenum = 1 pal 1;
A thin film 4 made of Noryl resin is used. More m!
'P+'! v1191 is coated with an EW retaining lubricant layer 5. ■ Non-Cfl property of recording medium), (+I
Aluminum, mini-J, and platinum substrates are often used as I, 1, but it is also possible to use S plates in some cases. This board is placed on a predetermined surface I.
11 After increasing parallelism and flatness, the substrate surface layer?
Cover. What is this layer? -No'y-Ruphorous alloy plating or alumite coating is desirable, and a certain level of hardness is required, and in Table 1fi, a mirror finish is achieved by mechanical polishing. Next, No. 1 (L of the body surface IM2 is a non-primitive metal represented by chromium. This underlayer 3 is used to protect the metal magnetic thin film 4 (,! Taka (II).
It has the effect of increasing O, and the thickness of this base layer 3 has a k
Even if = +, the coercive force of the magnetic layer 4 is saturated (in one direction,
The saturated thickness varies greatly depending on the material and other factors. For example, in the case of Cr, there are about 7,000 people, but in the case of Bl, there are 500 people.
It is about the size of a person. Next, a magnetic layer 4 made of Co containing Ni+Cr and Mo is formed on one part of the underlayer 3 by sputtering. Finally, carbon, 5
IOI, 513N4. Protective lubricant film such as SiC5
is coated by sputtering method. The magnetic properties of the Co-N1-Cr-Mo magnetic layer are determined by the coercive force (
llc) 300-10000s, residual magnetic flux density (Br)
450 (1~9500Gs. Coercive force squareness ratio (S") is in the range of 0.7~0.9, C
It varies greatly depending on the amount of r and Mo. A Co-Ni alloy magnetic thin film shows the maximum coercive force near about 30 atomic% Ni, and when Cr is added to a Co-30 atomic% Ni alloy magnetic thin film, it shows the largest coercive force near about 8 atomic% Cr. . Furthermore, by adding Mo to this alloy thin film, it shows the maximum coercive force around 4 atomic % Mo, and from this result, it can be used as a magnetic recording medium that can perform high-density recording in the range of 2 to 8 atomic % Mo. known to be usable. Examples and comparative examples will be given below, and their test results will be described. Example 1: As a non-magnetic substrate 1, a substrate surface was formed on a disk-shaped aluminum disk whose surface had sufficiently small waviness, that is, 20 nm or less in both the circumferential and radial directions, by lathe processing and pressure annealing. As layer 2, an N1-P alloy was formed to a thickness of about 30p by electroless plating, and then a N1-P plating film was formed with an average surface roughness of 0.02 square meters. A nonmagnetic substrate was prepared by mirror polishing to a thickness of 15 mm. After forming the underlayer 3 on this non-magnetic substrate,
Finally, a magnetic disk medium was fabricated by coating C as a surface protective lubricant layer to a thickness of 500 mm by sputtering. Coercive force Hc of magnetic properties. Residual magnetic flux density Br is 7000e and 9500G, respectively.
It was s. Example 2: After producing a non-magnetic substrate in the same manner as in Example 1, 500 pieces of Bi were added as an underlayer on the non-magnetic substrate, followed by Co-30%Ni-8%Cr-4 as a magnetic layer. %Mo-alloy to a thickness of 600mm, and finally S as a surface protective lubricating layer.
A magnetic disk medium was fabricated by continuously forming IO□ to a thickness of 500 mm using a sputtering method.
c and Br were 7000e and 9500Gs, respectively. Comparative Example 1: A magnetic disk medium was fabricated in the same manner as in Example 1, except that the thickness of the Cr layer 3 was 5000 mm, and the magnetic layer 4 was made of only Co, using a continuous sputtering method. llc
, Br were 6000e and 1100OGs, respectively. Comparative Example 2: Same as Example 1, except that the thickness of the Cr layer 3 was 2000 mm, and the magnetic M4 was a Co-30% N1 alloy by continuous sputtering method (an n-type disk medium was fabricated). lc and Br are 6500e and l100 respectively
They were OGs. Comparative Example 3: Same as Example 1, but the thickness of the Cr layer 3 was set to 1000, and the magnetic layer 4 was made of Co-30%N+-8%Cr.
A magnetic disk medium was fabricated using an alloy using a continuous sputtering method. Ilc and Br are each 7000e. It was 9500Gs. Comparative Example 4: Same as Example 1, but after forming Cr as the base N3, air was once introduced into the sputtering tank, the vacuum was drawn again, and the sputtering gas pressure was set to a predetermined level, and then the magnetic layer 4 was formed. A Go-30%N+-8%Cr4%Mo alloy was sputtered onto the base N3. Thereafter, air was again introduced into the sputtering tank and the tank was further evacuated to a predetermined sputtering gas pressure, and then a C film was sputtered as a protective lubricant layer 5 on the magnetic layer 4 to produce a magnetic disk medium. The thickness of each layer was the same as in Example 1. Hc and Br were 2000e and 8000Gs, respectively. As shown in Example 1 and Comparative Example 4, by exposing the underlayer to the atmosphere after sputtering the underlayer 3 and before sputtering the magnetic layer 4, the effect of the underlayer is weakened and the coercive force is 700 (l).
e to 200[1e. This is the same as when the base layer 3 is sputtered and then left in a sputtering bath for a long time without being exposed to the atmosphere. Figure 2 shows the change in coercive force when the thickness of the underlayer in Example 1 and Comparative Examples 1 to 3 is changed. is higher than that of the comparative example, which indicates that stable magnetic properties can be obtained by reducing the thickness of the underlayer and shortening the formation time to produce a magnetic recording medium. The magnetic recording media obtained in Examples and Comparative Examples were
When installed in an actual magnetic disk drive and subjected to a C8S test and an environmental test, the media of the example showed no scratches on the disk surface, and showed sufficient durability with little reduction in playback output. Understood. However, in the medium of Comparative Example 4, scratches occurred on the surface. In the environmental test, the magnetic disk medium was immersed in water at 25°C to observe the change in the number of errors.As shown in Figure 3, the medium of the embodiment of the present invention had sufficient corrosion resistance, judging from the number of errors that occurred. I found out something. Effects of the Invention The present invention provides a C
o-N1 alloy continuous thin film (N layer and a protective lubricant layer on top of it; in particular, the magnetic layer itself, which is formed by continuous sputtering through the underlayer, has excellent magnetic properties and corrosion resistance. Therefore, a magnetic recording medium that is durable and has excellent magnetic properties can be obtained.Furthermore, since the thickness of the underlayer can be kept thinner than before, it becomes possible to manufacture a magnetic recording medium at a lower cost.
第1図は本発明の一実施例の部分断面図、第2図は本発
明の実施例および比較例の磁性r#膜の下地層厚さによ
る保持力の変化を示す線図、第3図は本発明の実施例お
よび比較例の環境試験におけるエラー数の変化を示す線
図である。
1:非磁性基板、2;基体表面層、3:非磁性金属下地
層、4 : Co−N1−Cr−Mo合金(イ支性層、
5:保護潤滑層。
イ質人弁理士 山 口 京FIG. 1 is a partial cross-sectional view of an example of the present invention, FIG. 2 is a diagram showing changes in coercive force depending on the thickness of the underlying layer of the magnetic r# film of the example of the present invention and a comparative example, and FIG. 3 1 is a diagram showing changes in the number of errors in environmental tests of Examples and Comparative Examples of the present invention. 1: Nonmagnetic substrate, 2: Substrate surface layer, 3: Nonmagnetic metal underlayer, 4: Co-N1-Cr-Mo alloy (supporting layer,
5: Protective lubricant layer. Quality Patent Attorney Kyo Yamaguchi
Claims (1)
おいて、磁性層がNi、Cr、Moを含むCo合金より
なることを特徴とする磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において、磁性層
が非磁性基体上にスパッタリング法によって形成された
非磁性下地層の上に連続して行われるスパッタリング法
によって形成されたことを特徴とする磁気記録媒体。[Scope of Claims] 1) A magnetic recording medium having a Co alloy magnetic layer covered with a protective film, characterized in that the magnetic layer is made of a Co alloy containing Ni, Cr, and Mo. 2) The medium according to claim 1, characterized in that the magnetic layer is formed by sputtering continuously on a non-magnetic underlayer formed by sputtering on a non-magnetic substrate. magnetic recording media.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18256685A JPS6243832A (en) | 1985-08-20 | 1985-08-20 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18256685A JPS6243832A (en) | 1985-08-20 | 1985-08-20 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6243832A true JPS6243832A (en) | 1987-02-25 |
Family
ID=16120515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18256685A Pending JPS6243832A (en) | 1985-08-20 | 1985-08-20 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6243832A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61230851A (en) * | 1985-04-08 | 1986-10-15 | Shibayama Kikai Kk | Polishing device for wafer on grinding machine |
JPS61257749A (en) * | 1985-05-08 | 1986-11-15 | Shibayama Kikai Kk | Oscillating spindle shaft in automatic surface grinder for semiconductor wafer |
-
1985
- 1985-08-20 JP JP18256685A patent/JPS6243832A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61230851A (en) * | 1985-04-08 | 1986-10-15 | Shibayama Kikai Kk | Polishing device for wafer on grinding machine |
JPS61257749A (en) * | 1985-05-08 | 1986-11-15 | Shibayama Kikai Kk | Oscillating spindle shaft in automatic surface grinder for semiconductor wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5988806A (en) | Magnetic storage body | |
JPS6243832A (en) | Magnetic recording medium | |
JPS59201224A (en) | Magnetic recording medium | |
JPS61199224A (en) | Magnetic recording medium | |
JPS62157323A (en) | Magnetic recording medium | |
JPS62149024A (en) | Magnetic recording medium | |
JPS61246914A (en) | Magnetic recording medium and its production | |
JPH03273525A (en) | Production of magnetic recording medium | |
JPS62150524A (en) | Magnetic recording medium | |
JPS61224122A (en) | Magnetic recording medium and its production | |
JPS62141628A (en) | Magnetic recording medium | |
JPH09147357A (en) | Production of magnetic recording medium | |
JPS62239419A (en) | Magnetic recording medium | |
JPH0315254B2 (en) | ||
JPS62149025A (en) | Magnetic recording medium | |
JPS61184725A (en) | Magnetic recording medium and its production | |
JPS62141629A (en) | Magnetic recording medium | |
JPH0467249B2 (en) | ||
JPS6364623A (en) | Magnetic recording medium | |
JPS63269318A (en) | Magnetic recording medium | |
JPH03237613A (en) | Magnetic recording medium and its production | |
JPS61224120A (en) | Magnetic recording medium and its production | |
JPS62150523A (en) | Magnetic recording medium | |
JPS5988807A (en) | Magnetic storage body | |
JPS62112211A (en) | Magnetic recording medium |