JPS5988807A - Magnetic storage body - Google Patents

Magnetic storage body

Info

Publication number
JPS5988807A
JPS5988807A JP57198569A JP19856982A JPS5988807A JP S5988807 A JPS5988807 A JP S5988807A JP 57198569 A JP57198569 A JP 57198569A JP 19856982 A JP19856982 A JP 19856982A JP S5988807 A JPS5988807 A JP S5988807A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
thin film
metal
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57198569A
Other languages
Japanese (ja)
Other versions
JPH0580805B2 (en
Inventor
Masahiro Yanagisawa
雅広 柳沢
Hirotaka Yamaguchi
弘高 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57198569A priority Critical patent/JPS5988807A/en
Publication of JPS5988807A publication Critical patent/JPS5988807A/en
Publication of JPH0580805B2 publication Critical patent/JPH0580805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/722Protective coatings, e.g. anti-static or antifriction containing an anticorrosive material

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic storage body having a metal thin film medium which excels in corrosion proof property by providing the specified alloy thin film layer on non-magnetic metal layer or non-magnetic metal oxide layer formed on a metal disk. CONSTITUTION:A metal disk 1 made of aluminum alloy is covered with non- magnetic metal layer or non-magnetic metal oxide layer, for example, a nickel- phorphorus alloy or aluminum oxide alloy layer. Moreover, an alloy consisting of panadium, platinum and cobalt or an alloy consisting of tungsten, platinum and cobalt is provided thereon as an alloy thin film medium 3. Next, the alloy thin film medium 3 is covered with a protection film 4 made of SiO2 etc. Thereby, a magnetic storage body having a metal thin film medium which excels in corrosion proof property can be formed.

Description

【発明の詳細な説明】 本発明は磁気的記憶装置(磁気ディスク装置および磁気
ドラム装置等)に用いられる磁気記憶体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic storage body used in a magnetic storage device (magnetic disk device, magnetic drum device, etc.).

現在実用化されている磁気記憶体は不連続媒体を有する
ものが主流である。この不連続媒体の磁気記憶媒体は、
r−kT’0□03.CrO,、、Fe、Fe−Co等
の磁性体粒子全有機樹脂からなる結合剤中に混合分数し
て、基体上に塗布・乾燥・焼成して製造するため、磁気
記憶媒体は磁性体粒子の大きさのレベルで不連続である
Most of the magnetic storage bodies currently in practical use have discontinuous media. This discontinuous medium magnetic storage medium is
r-kT'0□03. Magnetic particles such as CrO, Fe, Fe-Co, etc. are mixed in a binder made of an all-organic resin, coated on a substrate, dried, and fired. It is discontinuous at the level of magnitude.

しかし、近年磁気記憶媒体の高記録密度化の要請により
、連続薄膜媒体からなる磁気記憶媒体の研究開発が盛ん
に行なわれている。この連続薄膜媒体は主にメッキ、真
空蒸着、スパッタ、イオンブレーティング等の手法によ
り作られる金属薄膜からなるものと、Jlt、空蒸着、
スパッタ、イオンブレーティング等の手法により作られ
る”e304又はr−Fe2O2等の金属酸化物薄膜か
らなるものが知られている。金属薄膜からなる磁気記録
媒体(以下金属薄膜媒体と称する)は高温、高湿下の様
な劣悪な雰囲気では腐食し易く、十分耐食性のある金属
薄膜媒体はまだ知られていない。
However, in recent years, due to the demand for higher recording densities in magnetic storage media, research and development of magnetic storage media consisting of continuous thin film media has been actively conducted. This continuous thin film medium mainly consists of metal thin films made by methods such as plating, vacuum evaporation, sputtering, and ion blating;
Magnetic recording media made of metal oxide thin films such as e304 or r-Fe2O2 made by sputtering, ion blating, etc. are known. Magnetic recording media made of metal thin films (hereinafter referred to as metal thin film media) are used at high temperatures, It is easy to corrode in a poor atmosphere such as a high humidity environment, and a metal thin film medium with sufficient corrosion resistance is not yet known.

本発明の目的は上述の現況に鑑み、優れた磁気特性度を
有しかつ耐食性がきわめて優れた金属薄膜媒体を有する
磁気記憶体を提供−Iるものである。
SUMMARY OF THE INVENTION In view of the above-mentioned current situation, an object of the present invention is to provide a magnetic memory having a metal thin film medium having excellent magnetic properties and extremely excellent corrosion resistance.

すなわち本発明の磁気記憶体は金属円盤上に非磁性金属
層又は非磁性金属酸化物層が抜機され、該非磁性金属層
又は非磁性金属酸化物l#上にバナジウムと白金とコバ
ルトからなる合金又はタングステンと白金とコバルトか
らなる合金の金属薄膜媒体が被覆され、該媒体上に保護
膜が被覆されて構成されている。
That is, in the magnetic memory of the present invention, a nonmagnetic metal layer or a nonmagnetic metal oxide layer is cut out on a metal disk, and an alloy consisting of vanadium, platinum, and cobalt or A metal thin film medium made of an alloy of tungsten, platinum, and cobalt is coated, and a protective film is coated on the medium.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の磁気記憶体の部分断面図である。FIG. 1 is a partial cross-sectional view of the magnetic storage body of the present invention.

第1図において磁気記憶体の金属円盤1と1−てアルミ
合金が軽くて加工性が良く安価なことがら最も良く用い
られるが、場合によってはチタン合金が用いられること
もある。基盤表面は機械加工により小さなうねり(円周
方向で50 m以下、半径方向で100m以下)を有す
る面に仕上けられている。
In FIG. 1, metal disks 1 and 1 of the magnetic memory are most often made of aluminum alloy because they are light, easy to work with, and inexpensive, but titanium alloy may be used in some cases. The surface of the base is machined into a surface with small undulations (less than 50 m in the circumferential direction and less than 100 m in the radial direction).

次にこの基盤1の上に非磁性金属層2としてニッケルー
 合金又は酸化アルミがめっきにより被&され、この下
地体2の表面は機械的研磨により最大表面粗さ0.03
 m 以下に鏡面仕上げされる。
Next, a non-magnetic metal layer 2 of nickel-alloy or aluminum oxide is plated on top of this base 1, and the surface of this base 2 is mechanically polished to a maximum surface roughness of 0.03.
Mirror finish to less than m.

次に上記下地体2の鏡面研磨面上に金属磁性媒体3とし
てバナジウムまたはタングステンおよび白金を含むコバ
ルトからなる金属薄膜媒体が高周波スパーツタ法により
被覆される。次に上記金属薄膜媒体3の上にSiOに代
表される保il!膜4が高周波スパッタ法により被覆さ
れる。
Next, a metal thin film medium made of vanadium or cobalt containing tungsten and platinum is coated as a metal magnetic medium 3 on the mirror-polished surface of the base body 2 by a high frequency sputter method. Next, on the metal thin film medium 3, a film typified by SiO is placed. A film 4 is applied by high frequency sputtering.

金属薄膜媒体は抗磁力(Ha) 5’00〜1200Q
θにルステッド)、飽和磁束密度(B8)10,0OO
G(ガラス)以下角形比(8%8)0.7〜0.9  
保磁力角形比(S*) 0.7〜09の範囲の磁気記録
媒体と1〜て優れたヒステリシス特性を示す。上記特性
は金初薄膜よび角形性の、金属薄膜媒体中のバナジウム
またはタングステンの原子パーセントによる変化を示し
たものでバナジウム又はタングステンがそれぞれ1〜3
Q at、%、又は1〜2Qat係の範囲で昼記録密度
可能な磁気記憶媒体として使用出来る。
Metal thin film media has coercive force (Ha) 5'00~1200Q
Rusted on θ), saturation magnetic flux density (B8) 10,0OO
G (glass) Squareness ratio (8%8) 0.7 to 0.9
A magnetic recording medium with a coercive force squareness ratio (S*) of 0.7 to 09 and a coercive force squareness ratio of 1 to 1 exhibits excellent hysteresis characteristics. The above characteristics indicate the change in gold initial thin film and squareness depending on the atomic percentage of vanadium or tungsten in the metal thin film medium, and vanadium or tungsten is 1 to 3, respectively.
It can be used as a magnetic storage medium capable of daytime recording density in the range of Qat, %, or 1 to 2 Qat.

以上の様に白金を含み、かつバナジウム父はタングステ
ン全それぞれ30原子パーセント以下、又は20原子パ
ーセント以下含むコバルト合金からなる金属薄膜は磁気
記録媒体として優れていることが分る。
As described above, it can be seen that a metal thin film made of a cobalt alloy containing platinum and vanadium containing 30 atomic percent or less or 20 atomic percent or less of tungsten in total is excellent as a magnetic recording medium.

金属薄膜媒体3の上に被覆される保護膜は硬質であるこ
とが望ましく、オスミウム、ルテニウム、5− イリジウム、マンガン、タングステン等の金属あるいは
ケイ素、チタン、タンタルまたはハフニウムの酸化物、
窯化物または炭化物あるいけホウ素、炭素またけホウ素
と炭素の合金あるいけポリ珪酸が望寸しい さらに保護膜4の上にR−G(RはC数10〜40の飽
和又は不飽和炭化水素又けふり素化炭化水素Gけcoo
pr、 OHNH2、coof、 Sl < 017”
)3、CONH2などの官能基)からなる潤滑剤あるい
はフッ素化アルキルポリエーテル、ポリテトラ70ロエ
チレンテロマー等の潤滑剤全塗布することも出来る。
The protective film coated on the metal thin film medium 3 is preferably hard, and is made of metals such as osmium, ruthenium, 5-iridium, manganese, and tungsten, or oxides of silicon, titanium, tantalum, or hafnium,
A silicide or carbide, boron, carbon, an alloy of boron and carbon, or polysilicic acid is preferable. Kefluorinated hydrocarbon Gkecoo
pr, OHNH2, coof, Sl < 017”
)3, a functional group such as CONH2) or a lubricant such as fluorinated alkyl polyether or polytetra-70-roethylene telomer can be completely coated.

次にいくつかの例をあけて本発明を説明する。Next, the present invention will be explained with reference to some examples.

実施例1 合金円盤1として旋盤加工および熱矯正によって十分小
さなうねり(円 方向で50 m以下および半径方向で
10 rn以下)を有する面に仕上げられたディスク状
アルミニウム合金盤上に非磁性合金2としてニッケルー
燐合金を約50 mの厚さにめっきし、このニッケルー
燐めつき膜を最大表面粗さ0.02  m厚さ30 m
まで鏡面研磨仕上げした。
Example 1 A non-magnetic alloy 2 was placed on a disc-shaped aluminum alloy disc that had been finished with sufficiently small waviness (50 m or less in the circular direction and 10 rn or less in the radial direction) by lathe processing and thermal straightening as the alloy disc 1. Nickel-phosphorus alloy is plated to a thickness of approximately 50 m, and this nickel-phosphorus plating film has a maximum surface roughness of 0.02 m and a thickness of 30 m.
Finished with mirror polish.

6− 次にこのニッケルー燐めつき膜の上に金属磁性媒体3と
して高周波スパッタ法によりアルゴン圧4 X 10 
torr、パワー密度I W/crIにて膜厚・511
 OAのバナジウムを9原子パーセント、白金全20原
子パーセント含むコバルト合金薄膜全被覆1.た。
6- Next, a metal magnetic medium 3 is formed on this nickel-phosphorus plating film by high-frequency sputtering at an argon pressure of 4×10
film thickness at torr, power density I W/crI: 511
Full coating of cobalt alloy thin film containing 9 atomic percent vanadium and 20 atomic percent total platinum in OA 1. Ta.

さらにこの金属磁性媒体3の上に5ifl、 f 20
OAの膜厚に高周波スパッタ法により被覆して磁気ディ
スクを作った。抗磁力HC,残留磁束密度13r、* 角形性Sおよび保磁力角形性Sけそれぞれ9600θ、
6500G 、 0.85.0,85であった。
Furthermore, 5ifl, f 20 on top of this metal magnetic medium 3
A magnetic disk was fabricated by coating the OA film with a high frequency sputtering method. Coercive force HC, residual magnetic flux density 13r, *squareness S and coercive force squareness S 9600θ, respectively.
It was 6500G, 0.85.0.85.

実施例2 実施例1と同様に但し金属磁性媒体3としてタングステ
ンを6原子パーセント、白金を32原子パーセント含む
コバルト合金薄膜y 5oonの膜厚にて被覆して磁気
ディスクを作った。)lc、 Br、 Sおよび?はそ
れぞれ9500111.4500GXO,8、OBであ
った。
Example 2 A magnetic disk was fabricated in the same manner as in Example 1, except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 6 atomic percent of tungsten and 32 atomic percent of platinum to a thickness of 5 mm. ) lc, Br, S and ? were 9500111.4500GXO, 8, and OB, respectively.

実施例3 実施例1と同様に但し金属磁性媒体3としてタングステ
ンを3原子パーセント、白金を32原子パーセント含む
コバルト合金薄膜を膜厚5ooXにて被覆して磁気ディ
スクを作った。
Example 3 A magnetic disk was fabricated in the same manner as in Example 1 except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 3 atomic percent of tungsten and 32 atomic percent of platinum to a thickness of 50X.

Ha、 BrX5XS*はそれぞれ12000s、 5
’1OO(Es O,85,085であった。
Ha, BrX5XS* are respectively 12000s and 5
'1OO (Es O, 85,085.

実施例4 実施例1と同様に但し金属磁性媒体3としてバナジウム
を2原子パーセント、白金全20原子パーセント含むコ
バルト合金薄膜を膜厚300Xにて被* 覆して磁気ディスクを作った。HQ、 Br、 SXS
はそれぞれ11000θ、9600 G、0.85.0
85であった。
Example 4 A magnetic disk was fabricated in the same manner as in Example 1, except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 2 atomic percent vanadium and 20 atomic percent total platinum to a thickness of 300×. HQ, Br, SXS
are 11000θ, 9600G, and 0.85.0 respectively.
It was 85.

実施例5 実施例1と同様に但し金属磁性媒体3としてタングステ
ンを10原子パーセント、白金1に32原子パーセント
含むコバルト合金薄膜を膜厚tsoofにて被覆して磁
気ディスクを作った。He、 13r、 S。
Example 5 A magnetic disk was fabricated in the same manner as in Example 1, except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 10 atomic percent of tungsten and 32 atomic percent of platinum 1 to a film thickness of tsoof. He, 13r, S.

Sはそれぞれ60000.3200G、 0.80.0
.80であったO 実施例6 実施例1と同様に但し金属磁性媒体3としてバナジウム
を13原子パーセント、白金全20原子パーセント含む
コバルト合金薄膜を膜厚800Aにて被覆して磁気ディ
スクを作った。He、 nr、 s、 E”はそれぞれ
c+oooc、 5000G、 0.85.0.85で
あった。
S is 60000.3200G and 0.80.0 respectively
.. Example 6 A magnetic disk was prepared in the same manner as in Example 1, except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 13 atomic percent of vanadium and 20 atomic percent of total platinum to a thickness of 800 Å. He, nr, s, and E” were c+oooc, 5000G, and 0.85.0.85, respectively.

実施例7 実施例1と同様に但し金属磁性媒体3としてタングステ
ン’+1−10原子パーセント、白金を20原子パーセ
ント含むコバルト合金薄膜を膜厚2(lnOAにて被覆
して磁気ディスクを作った )IC,Br、 S、?は
それぞれ8000e、3200G、 0.80.0.8
0fあツェ。
Example 7 A magnetic disk was fabricated in the same manner as in Example 1, except that as the metal magnetic medium 3, a cobalt alloy thin film containing tungsten'+1-10 atomic percent and platinum at 20 atomic percent was coated with a film thickness of 2 (lnOA) IC. ,Br,S,? are 8000e, 3200G, 0.80.0.8 respectively
0f atse.

実施例8 実施例1と同様に但し金属磁性媒体3と1−でバナジウ
ムを25原子パーセント、白金を20原子パーセント含
むコバルト合金薄膜を膜厚500A’にて被覆して磁気
ディスクを作った。I(a、 Br、S、 d’はそれ
ぞれ7000θ、2000 G、 0.80.0.80
であった。
Example 8 A magnetic disk was fabricated in the same manner as in Example 1, except that metal magnetic media 3 and 1- were coated with a cobalt alloy thin film containing 25 atomic percent vanadium and 20 atomic percent platinum to a thickness of 500 A'. I (a, Br, S, d' are respectively 7000θ, 2000G, 0.80.0.80
Met.

実施例9 実施例1と同様に但し金属磁性媒体3としてタングステ
ンを15原子パーセント、白金に20IjA子パーセン
ト含むコバルト合金薄膜を膜厚s O(l Aにて被覆
して磁気ディスクを作った。HQ、、 13r、 & 
S*はそれぞれ5500θ、2000α0.80.0.
80であった9一 実施例10 実施例1と同様にして但しアルゴン圧4X10torr
、パワー密度15 W//ctlにて磁気ディスクを作
った。
Example 9 A magnetic disk was fabricated in the same manner as in Example 1, except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 15 atomic percent of tungsten and 20 atomic percent of platinum at a film thickness of s O (l A.HQ). ,, 13r, &
S* is 5500θ, 2000α0.80.0, respectively.
80 Example 10 Same as Example 1 except that the argon pressure was 4×10 torr.
, a magnetic disk was made at a power density of 15 W//ctl.

実施例11 実施例1と同様にして但しアルゴン圧8X10torr
、パワー密度15W/iにて磁気ディスクを作った。
Example 11 Same as Example 1 except that the argon pressure was 8×10 torr.
A magnetic disk was manufactured at a power density of 15 W/i.

実施例12 実施例2と同様にして但しアルゴン圧4X10torr
Example 12 Same as Example 2 except that the argon pressure was 4 x 10 torr.
.

パワー密度15 W/iにて磁気ディスクを作った。A magnetic disk was made at a power density of 15 W/i.

実施例13 実施例2と同様にして但しアルゴン圧8X10tOrr
Example 13 Same as Example 2 except that the argon pressure was 8 x 10 tOrr.
.

パワー密度1sW/iにて磁気ディスクを作った。A magnetic disk was made at a power density of 1 sW/i.

実施例14 実施例」または2と同様にして但し非磁性合金層として
アルミニウム合金円盤1表面を陽極酸化により非磁性金
属酸化物層と1〜で酸化アルミf被覆しこの酸化アルミ
を最大表面粗さ0.02  +nまで鏡面研磨仕上げし
て、磁気ディスクを作った。
Example 14 In the same manner as in Example 1 or 2, except that the surface of the aluminum alloy disk 1 was coated with aluminum oxide f by anodic oxidation as a non-magnetic alloy layer and a non-magnetic metal oxide layer 1 to 1, and this aluminum oxide was coated with the maximum surface roughness. A magnetic disk was produced by mirror polishing to 0.02 +n.

実施例15 実施例1または2と同様にして但し保護膜として10− 次の物質全それぞれスパッタ法により5ooAの厚比較
例1 実施例1と同様にして但しニッケルー燐めっき膜の上に
膜厚1 mのクロムを介して金属磁性媒体3としてコバ
ルトに膜厚5OOXで被覆して磁気ディスク全作った。
Example 15 Same as Example 1 or 2, but as a protective film, all of the following materials were sputtered to a thickness of 5ooA Comparative Example 1 Same as Example 1, but a film thickness of 1 was formed on the nickel-phosphorus plating film. The entire magnetic disk was fabricated by coating cobalt as a metal magnetic medium 3 with a film thickness of 5OOX through chromium of m.

抗磁力HQS残留磁束密度Br、角形性S、保磁力角形
性?はそれぞれ6000θ、136000108.08
であった。
Coercive force HQS residual magnetic flux density Br, squareness S, coercive force squareness? are respectively 6000θ and 136000108.08
Met.

比較例2 実施例1と同様に1−て白金を35at、%残りがコバ
ルトからなるコバルト合金薄膜を膜厚5oofで被覆し
て磁気ディスク全作った。抗磁力HC,残留磁束密度B
r、角形性S、保磁力角形性s%それぞれ8000θ、
11000 G、 0.80.0.80であった。
Comparative Example 2 In the same manner as in Example 1, a magnetic disk was entirely coated with a cobalt alloy thin film consisting of 35 att of platinum and the balance of cobalt to a film thickness of 500 %. Coercive force HC, residual magnetic flux density B
r, squareness S, coercive force squareness s% each 8000θ,
It was 11000 G, 0.80.0.80.

以上実施例1〜15および比較例1.2で示した磁気デ
ィスクを用いて電磁変換特性およびへ、ドとの摩耗試験
および環境試験および水浸漬属食試験を行なった結果、
次の特性を得た。電磁み変換特性についてけ実施例1〜
15のディスク1(ついて40.000〜80,0(I
OFRPIの記録密度が得られたが、比較例1.2のデ
ィスクでU 20,000 FRPIの記録密度しか得
られなかった。ヘッドとの摩耗試験は2万回のコンタク
トスタートストップテスト全行なったところディスク表
面に傷は全く見られなかった。又、温度80°C1相対
湿度90%で6ケ月放置する環境試験全行な″)たとこ
る実施例1〜15および比較例2についてはエラーの増
加数は全て0であったが、比較例1のディスクはエラー
が100倍に増加(−た。最後に実施例1〜15および
比較例1.2のディスクを切断して15 ran X 
15mmの切片全作り、1ケ月間2ICの水中に浸漬し
て飽和磁束密度Bllの変化を調べたところ、第4図の
様な結果が得られた。第4図は磁気記憶体音29Cの水
中に浸漬した時の飽和磁束密度13sの変化率(8% 
。、BOは浸漬前の飽和磁束密度)の時間変化を示1−
たものであり、値が10に近い程耐食性が良い。す乃、
わち実施例1〜15は1ケ月の水中浸漬後も「伯の変化
は全くなかったが比較例1は50%、比較例2け25 
% HBが減少j−た。υ上の結果から本発明の磁気記
憶体は優れた・耐食性(耐環境性)及び耐摩耗性及び高
記録密度特性を有していることが分った。
Using the magnetic disks shown in Examples 1 to 15 and Comparative Example 1.2, we conducted electromagnetic conversion characteristics, friction tests, environmental tests, and water immersion metal corrosion tests.
The following properties were obtained. Example 1 regarding electromagnetic conversion characteristics
15 disks 1 (40.000~80.0 (I
A recording density of OFRPI was obtained, but only a recording density of U 20,000 FRPI was obtained with the disk of Comparative Example 1.2. As for the wear test with the head, no scratches were observed on the disk surface after 20,000 contact start-stop tests were performed. In addition, all the environmental tests were carried out in which the temperature was 80°C and the relative humidity was 90% for 6 months.'') For Examples 1 to 15 and Comparative Example 2, the increase in the number of errors was 0, but for the Comparative Example The error of the disc No. 1 increased by 100 times (-).Finally, the discs of Examples 1 to 15 and Comparative Example 1.2 were cut and 15 ran
When all sections of 15 mm were made and immersed in 2 IC water for one month and changes in the saturation magnetic flux density Bll were investigated, the results shown in Figure 4 were obtained. Figure 4 shows the rate of change (8%
. , BO indicates the time change of saturation magnetic flux density before immersion)1-
The closer the value is to 10, the better the corrosion resistance. Suno,
In other words, in Examples 1 to 15, even after being immersed in water for one month, there was no change in the ratio at all, but Comparative Example 1 showed 50% change, Comparative Example 2
% HB decreased. From the results above, it was found that the magnetic memory of the present invention has excellent corrosion resistance (environmental resistance), wear resistance, and high recording density characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記憶体の一実施例の部分断面図。 図中、1は基鈑、2は非磁性合金層、3は金属薄膜媒体
、4は保護膜である。第2図および3図は本磁気記憶体
に用いられる金属薄膜媒体に一13= おける飽和磁束密度、抗磁力、および角形性の金属薄膜
媒体中のバナジウムまたはタングステンの原子パーセン
トによる変化を示した特性図。 第4図(は本磁気記憶体に用いられる金属薄膜媒体の水
浸漬時間による飽和磁束密度の変化率を示した特性図。 14− 第1図 第2図 ■の含有量(αt、%) 第3図 酋じp波て薊猶斗番
FIG. 1 is a partial cross-sectional view of an embodiment of the magnetic storage body of the present invention. In the figure, 1 is a base plate, 2 is a nonmagnetic alloy layer, 3 is a metal thin film medium, and 4 is a protective film. Figures 2 and 3 show the saturation magnetic flux density, coercive force, and characteristics of the metal thin film medium used in this magnetic storage body, as well as changes depending on the atomic percentage of vanadium or tungsten in the rectangular metal thin film medium. figure. Figure 4 is a characteristic diagram showing the rate of change in saturation magnetic flux density depending on the water immersion time of the metal thin film medium used in this magnetic storage body. 14- Content (αt, %) in Figure 1 and Figure 2 3. Take note of the p wave

Claims (1)

【特許請求の範囲】 1、金属円盤上に非磁性金属層又は非磁性金属酸化物層
が被覆され、該非磁性金楓 又は非磁性金属酸化物層上
にバナジウムと白金とコバルトからなる合金又はタング
ステンと白金とコバルトからなる合金の合金薄膜媒体が
被覆され、該合金薄膜媒体上に保#膜が被覆されて構5
+i、されたこと(r l+!f徴とする磁気記憶体。 2、非磁性金属層がニッケルー燐である特許請求の範囲
第1−項記載の磁気記憶体。 3、非磁性酸化物I―が醸化アルミである柚許請求の範
囲第1項記載の磁気記憶体。 4 保護膜〃・オスミウム、ルテニウム、イリジウム、
マンガン、タングステンである特許請求の範囲ml!J
l記載の磁気記憶体。 5、保護膜がケイ素、チタン、タンタルオたなまハフニ
ウムの酸化物、窒化物または炭化物である特許請求の範
囲第1項記載の磁気記憶体、。 6 保護膜がホウ素、炭素またはホウ素と炭素の合金で
ある特許請求の範囲第1項記載の磁気記憶体0 7、保護膜がポリ珪酸である特許請求の範囲第1項記載
の磁気記憶体。
[Scope of Claims] 1. A metal disk is coated with a non-magnetic metal layer or a non-magnetic metal oxide layer, and an alloy consisting of vanadium, platinum and cobalt or tungsten is coated on the non-magnetic gold maple or non-magnetic metal oxide layer. An alloy thin film medium of an alloy consisting of platinum and cobalt is coated, and a # retaining film is coated on the alloy thin film medium.
2. A magnetic memory body according to claim 1, wherein the nonmagnetic metal layer is nickel-phosphorous. 3. A nonmagnetic oxide I- The magnetic memory body according to claim 1, wherein the material is fermented aluminum. 4. Protective film: osmium, ruthenium, iridium,
Claims ml which are manganese and tungsten! J
The magnetic storage body according to l. 5. The magnetic memory according to claim 1, wherein the protective film is an oxide, nitride or carbide of silicon, titanium, tantalum or hafnium. 6. The magnetic memory body according to claim 1, in which the protective film is made of boron, carbon, or an alloy of boron and carbon. 7. The magnetic memory body according to claim 1, in which the protective film is made of polysilicate.
JP57198569A 1982-11-12 1982-11-12 Magnetic storage body Granted JPS5988807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57198569A JPS5988807A (en) 1982-11-12 1982-11-12 Magnetic storage body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198569A JPS5988807A (en) 1982-11-12 1982-11-12 Magnetic storage body

Publications (2)

Publication Number Publication Date
JPS5988807A true JPS5988807A (en) 1984-05-22
JPH0580805B2 JPH0580805B2 (en) 1993-11-10

Family

ID=16393357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198569A Granted JPS5988807A (en) 1982-11-12 1982-11-12 Magnetic storage body

Country Status (1)

Country Link
JP (1) JPS5988807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010490A1 (en) * 2019-07-18 2021-01-21 田中貴金属工業株式会社 Sputtering target for magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140899A (en) * 1974-05-01 1975-11-12
JPS57158036A (en) * 1981-03-24 1982-09-29 Nec Corp Magnetic storage body
JPS57183004A (en) * 1981-05-07 1982-11-11 Fuji Photo Film Co Ltd Magnetically recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140899A (en) * 1974-05-01 1975-11-12
JPS57158036A (en) * 1981-03-24 1982-09-29 Nec Corp Magnetic storage body
JPS57183004A (en) * 1981-05-07 1982-11-11 Fuji Photo Film Co Ltd Magnetically recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010490A1 (en) * 2019-07-18 2021-01-21 田中貴金属工業株式会社 Sputtering target for magnetic recording medium

Also Published As

Publication number Publication date
JPH0580805B2 (en) 1993-11-10

Similar Documents

Publication Publication Date Title
JPS5988806A (en) Magnetic storage body
JPS5961106A (en) Magnetic memory body
JPS61142525A (en) Magnetic recording medium
JPH0474772B2 (en)
JPS5988807A (en) Magnetic storage body
JPS5961107A (en) Magnetic memory body
JPS61199224A (en) Magnetic recording medium
JPS6018817A (en) Magnetic storage medium
JP2540479B2 (en) Magnetic memory
JPH0556006B2 (en)
JPS62141628A (en) Magnetic recording medium
JPH0556007B2 (en)
JPS59180829A (en) Magnetic storage body
JPS61199233A (en) Magnetic recording medium
JPS6035332A (en) Magnetic storage body
JPH0467251B2 (en)
JPH0467250B2 (en)
JPS60193124A (en) Magnetic recording medium
JPH0467252B2 (en)
JPS5988805A (en) Magnetic storage body
JPH0467249B2 (en)
JPS59116923A (en) Magnetic storage medium
JPH0268712A (en) Thin film magnetic recording medium
JPS62150523A (en) Magnetic recording medium
JPS62150520A (en) Magnetic recording medium