JPS6035332A - Magnetic storage body - Google Patents

Magnetic storage body

Info

Publication number
JPS6035332A
JPS6035332A JP58142934A JP14293483A JPS6035332A JP S6035332 A JPS6035332 A JP S6035332A JP 58142934 A JP58142934 A JP 58142934A JP 14293483 A JP14293483 A JP 14293483A JP S6035332 A JPS6035332 A JP S6035332A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
coated
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58142934A
Other languages
Japanese (ja)
Inventor
Hirotaka Yamaguchi
弘高 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58142934A priority Critical patent/JPS6035332A/en
Publication of JPS6035332A publication Critical patent/JPS6035332A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a nonmagnetic metallic base layer which has good contactness with an alloy substrate and is smaller than chromium in film thickness where the same coercive force is obtained by covering the alloy substrate with a nonmagnetic alloy layer, and forming the nonmagnetic metallic base layer made of molybdenum or tangsten thereupon. CONSTITUTION:An aluminum alloy disk which is so finished as to have a surface with sufficiently small undulations by lathe work and heat correction as the alloy disk 1 is plated with nonmagnetic alloy 2 and nickel-phosphorus alloy to about 50mum thickness, and this nickel-phosphorus plating film is polished into a specular surface up to 0.02mum maximum surface roughness and 30mum thickness. Then, this nickel-phosphorus plating film is coated with molybdenum as the metallic base layer 3 by a high-frequency sputtering method to 0.5mum. The base layer 3 increases the coercive force of the metallic magnetic medium 4 as shown in a figure. Then, the molybdenum sputtered film is coated with cobalt to 500Angstrom as the metallic magnetic medium 4 by the high-frequency sputtering method. Further, this metallic magnetic medium 4 is coated with SiO2 to 200Angstrom thickness by the high-frequency sputtering method to obtain a magnetic disk.

Description

【発明の詳細な説明】 本発明は磁気的記憶装置(磁気ディスク装置及び磁気ド
ラム装置等)ζこ用いられる磁気記憶体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic storage body used in magnetic storage devices (magnetic disk devices, magnetic drum devices, etc.).

現在主に実用化されている磁気記憶体は不連続媒体を有
するものである。この不連続媒体の磁気記憶体は、γ−
Fe203.0rb2、Fe、 、l’e−Co等゛の
磁性体粒子を有機樹脂からなる結合剤中に混合分散して
、基板上に塗布、乾燥、焼成して製造するため、磁気記
憶体は磁性粒子の大きさのレベルで不連続である・ し力)し、近年磁気記憶媒体の高記憶密度化の要請によ
り、連続薄膜媒体から1よる保磁力の大きい磁気記憶媒
体の研究開発が盛んにイテ7aJつわ、ている。
The magnetic storage bodies currently in practical use have discontinuous media. This discontinuous media magnetic storage body is γ-
Magnetic storage materials are manufactured by mixing and dispersing magnetic particles such as Fe203.0rb2, Fe, , l'e-Co, etc. in a binder made of organic resin, coating the mixture on a substrate, drying it, and firing it. In recent years, due to the demand for higher storage densities in magnetic storage media, research and development of magnetic storage media with a large coercive force of 1 from continuous thin film media has become active. Ite 7aJ Tsuwa, I'm here.

この連続薄膜媒体は主にメッキ、真空蒸着、スパッタ、
イオンブレーティング等の手法により作られる。W、T
、Maloney:IEBE Trans、Magn、
MAG−15,1135(1979”)においてガラス
暴板上にクロムを被接し、さらにその上ζこコバルト薄
膜を被覆した磁気記憶体が知られているが、クロムは基
板から剥離しやすく、高密度記録に適した保磁力を得る
クロムの膜厚は0.5μmと厚い。
This continuous thin film medium is mainly used in plating, vacuum evaporation, sputtering,
It is made using techniques such as ion blating. W,T
, Maloney: IEBE Trans, Magn.
In MAG-15, 1135 (1979''), a magnetic memory body is known in which a glass plate is coated with chromium, and then a thin cobalt film is coated on top of it, but chromium easily peels off from the substrate and has a high density. The thickness of the chromium film that provides a coercive force suitable for recording is as thick as 0.5 μm.

本発明は上述の現況ζこ鑑み、基板との密清性が良く、
保磁力が同じ値となる膜厚がクロムより薄い非磁性金属
下地層からなる磁気記憶体を提供するものである。
In view of the above-mentioned current situation, the present invention has good cleanliness with the substrate,
The present invention provides a magnetic memory comprising a nonmagnetic metal underlayer having a film thickness thinner than that of chromium and having the same coercive force.

Tf、にわち不発明の磁気記憶体は合金基板上に非磁性
合金層又は非磁性酸化物層が被覆され、該非磁性合金層
又は非磁性酸化物層上をこざらにモリブデンあるいはタ
ングステンの非磁性金属下地層を介して、磁性合金薄膜
媒体または磁性酸化物薄膜媒体が被覆され、該媒体上に
保護膜が被覆されて構成されている。
Tf, ie, the uninvented magnetic memory, has an alloy substrate coated with a non-magnetic alloy layer or a non-magnetic oxide layer, and a non-magnetic layer of molybdenum or tungsten is coated on the non-magnetic alloy layer or non-magnetic oxide layer. A magnetic alloy thin film medium or a magnetic oxide thin film medium is coated with a magnetic metal underlayer interposed therebetween, and a protective film is coated on the medium.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の磁気記憶体の部分断面図である。FIG. 1 is a partial cross-sectional view of the magnetic storage body of the present invention.

第1図において磁−気記憶体の合金基板1としてアルミ
合金が軽くて加工性が良く安価なことから最も良く用い
られるが、場合によってはチタン合金が用いられること
もある。基板表面は機械加工により小さなうねり(円周
方向で50μm以下、半径方向で100μへ以下)を有
する面に仕上けらMている。) 次にこの基板1の一ヒに非磁性合金層2としてニッケル
ー燐合金がめっきにより被fiされ、この下地体2の表
面は機械的研磨により最大表面粗さ0.03μn1以、
下に鏡面仕」二げされる。次ζこ上記非磁性合金層2の
鏡面研磨上にモリブデンあるいはタングステンの非磁性
金属下地層3が高周波スパッタ法ζこより被覆される。
In FIG. 1, aluminum alloy is most often used as the alloy substrate 1 of the magnetic memory because it is light, easy to work with, and inexpensive, but titanium alloy may also be used in some cases. The surface of the substrate is finished by machining into a surface having small undulations (50 μm or less in the circumferential direction and 100 μm or less in the radial direction). ) Next, a nickel-phosphorus alloy is plated on one side of this substrate 1 as a non-magnetic alloy layer 2, and the surface of this base body 2 is mechanically polished to a maximum surface roughness of 0.03 μn1 or more.
There is a mirror finish on the bottom. Next, a nonmagnetic metal underlayer 3 of molybdenum or tungsten is coated on the mirror-polished nonmagnetic alloy layer 2 by high frequency sputtering.

そのモリブデンあるいはタングステンの非磁性金属下地
層3は第2図に示すように下記金属磁性媒体4の保磁力
を高める。
The nonmagnetic metal underlayer 3 of molybdenum or tungsten increases the coercive force of the metal magnetic medium 4 as shown in FIG.

その幼果はクロムより大きく、下地層3の厚さにより磁
性媒体4の保磁力が変化するが、実用的な磁気記憶体を
製造するためには下地層の厚さは0.1μm以上必要と
する。一方、下地層3は膜厚0.8μmで磁性媒体4の
保磁力がほぼ飽和するので0.8μへ以下で十分で八。
Its young fruit is larger than chromium, and the coercive force of the magnetic medium 4 changes depending on the thickness of the underlayer 3, but the thickness of the underlayer is required to be 0.1 μm or more in order to manufacture a practical magnetic memory. do. On the other hand, since the coercive force of the magnetic medium 4 is almost saturated when the thickness of the underlayer 3 is 0.8 μm, a thickness of 0.8 μm or less is sufficient.

非磁性金属下地層3はモリブデンあるいはタングステン
を含む合金でも有効であることは明らかである。次をこ
上記非。
It is clear that an alloy containing molybdenum or tungsten is also effective for the non-magnetic metal underlayer 3. Next is the above.

磁性金属下地層3の上をこ金属磁性媒体4としてコバル
トに代表される金属薄膜媒体が高周波スパッタ法により
被覆される。次に上記金属薄膜媒体4の上に8i02に
代表される保護膜5が高周波スパッタ法により被覆され
る。
A metal thin film medium typified by cobalt is coated on the magnetic metal underlayer 3 as a metal magnetic medium 4 by high frequency sputtering. Next, a protective film 5 typified by 8i02 is coated on the metal thin film medium 4 by high frequency sputtering.

以上の様にモリブデンあるいはタングステンの非磁性金
属下地層は磁性薄膜媒体の保磁力を高め番 る効果があることがわかった。
As described above, it has been found that a nonmagnetic metal underlayer of molybdenum or tungsten has the effect of increasing the coercive force of a magnetic thin film medium.

金属薄膜媒体4の上に被覆される保護膜は硬質であるこ
とが梁丈しり、′オスミウム、ルテニウム、イリジウム
、マンガン、タングステン等の金属あるいはケイ素、チ
タン、タンタルま1こは)1フニウムの酸化物、窒化物
または炭化物あるいはホウ素、炭素またはホウ素と炭素
の合金あるいはポリ珪酸が望ましい・ さらに保護膜5の上にR−G(Rは炭素数10〜40の
飽和又は不飽和法化水素又はふっ素化炭化水素、Gは0
OOH,OH,NH2,0OOR,S+(OR’ )s
、0ONH,rlどの官能基)からなる潤滑剤を塗布す
ることもできる。
The protective film coated on the metal thin film medium 4 must be hard, and may be made of metals such as osmium, ruthenium, iridium, manganese, tungsten, or silicon, titanium, tantalum, or oxidation of 1fnium. Preferred are nitrides, carbides, boron, carbon, alloys of boron and carbon, or polysilicic acid.Furthermore, on the protective film 5, R-G (R is saturated or unsaturated hydrogen chloride or fluorine having 10 to 40 carbon atoms) is preferable. hydrocarbon, G is 0
OOH, OH, NH2, 0OOR, S+(OR')s
, 0ONH, rl, etc.) may also be applied.

次に具体的に実施例及び比較例により本発明を説明する
Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 合金円盤1としてQ盤加工および熱矯正によって十分小
さなうねり(円周方向で50μm以下および半径方向で
10μm以下)を右下る面に仕上げらイまたディスク状
アルミウム合金盤上に非磁性合金2としてニッケルー燐
合金を約50μmの厚さにめっきし、このニッケルー燐
めっき膜を最大表面粗さ0.02μm、厚さ30μmま
で鏡面研磨仕上げした。
Example 1 Alloy disk 1 was finished with sufficiently small waviness (50 μm or less in the circumferential direction and 10 μm or less in the radial direction) on the lower right surface by Q disk machining and thermal straightening. As No. 2, a nickel-phosphorus alloy was plated to a thickness of about 50 μm, and this nickel-phosphorus plating film was mirror-polished to a maximum surface roughness of 0.02 μm and a thickness of 30 μm.

次(ここのニッケルー燐めっき膜の上ζこ金属下地層3
としてモリブデンを高周波スパッタ法により0.5μm
被覆した。次にこのモリブデンスパッタ膜の上に金属磁
性媒体4として高周波スパッータ法によりコバルト%5
00A被覆した。さらにこの金属磁性媒体4の上に5i
02を20OAの膜厚に高周波スパッタ法により被覆し
て磁気ディスクを作った。保磁力HC2残留磁束密度B
r(BsXS)はそれぞt’L6000e、1200G
であッ1コ。
Next (metal base layer 3 on top of the nickel-phosphorus plating film)
0.5 μm of molybdenum by high frequency sputtering method.
coated. Next, on this molybdenum sputtered film, cobalt%5 was deposited as a metal magnetic medium 4 by high frequency sputtering.
00A coated. Furthermore, 5i is placed on top of this metal magnetic medium 4.
A magnetic disk was fabricated by coating 02 to a thickness of 20 OA by high frequency sputtering. Coercive force HC2 Residual magnetic flux density B
r(BsXS) are t'L6000e and 1200G respectively
So, one.

実施例2 実施例1と同様に但し金属磁性媒体4としてニッケル全
20原子パーセント及びモリブデンヲ゛12原子パーセ
ント含むコバルト合金薄膜を被覆して磁気ディスクを作
った。Hc、Brはそれぞれ9000e、4300 G
であった。
Example 2 A magnetic disk was fabricated in the same manner as in Example 1 except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing 20 atomic percent of nickel in total and 12 atomic percent of molybdenum. Hc and Br are 9000e and 4300G respectively
Met.

実施例3 実施例1と同様に但し金属磁性媒体4としてニッケルを
20原子パーセント及びロジウム全15原子パーセント
含むコバルト合金薄膜を被覆して磁気ディスクを作った
。Hc、Brはそれぞれ9500e、9000Gであっ
た。
Example 3 A magnetic disk was prepared in the same manner as in Example 1 except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing 20 atomic percent of nickel and 15 atomic percent of rhodium in total. Hc and Br were 9500e and 9000G, respectively.

実施例4 実施例1と同様に但し非磁性金属下地層3としてもモリ
ブデンを高周波スパッタ法により0.35μm被覆して
磁気ディスクを作った。He、Brは5500e、12
000Gであツタ。
Example 4 A magnetic disk was fabricated in the same manner as in Example 1, except that molybdenum was coated with a thickness of 0.35 μm as the nonmagnetic metal underlayer 3 by high frequency sputtering. He, Br is 5500e, 12
Ivy in 000G.

実施例5 実施例1と同様に但し非磁性金属下地層3としてタング
ステンを高周波スパッタ法により0.5μm被覆して磁
気ディスクを作った。Hc、Brは6000e、120
00Gであった。
Example 5 A magnetic disk was fabricated in the same manner as in Example 1, except that tungsten was coated with a thickness of 0.5 μm as the nonmagnetic metal underlayer 3 by high frequency sputtering. Hc, Br is 6000e, 120
It was 00G.

実施例6 実施例1と同様ζこ但し非磁性金属下地層3としてタン
グステンを高周波スパッタ法により0.35μm被覆し
て磁気ディスクを作った。Hc、Brは5500e。
Example 6 A magnetic disk was fabricated in the same manner as in Example 1 except that tungsten was coated with a thickness of 0.35 μm as the nonmagnetic metal underlayer 3 by high frequency sputtering. Hc and Br are 5500e.

12000 Gであっfこ。It's 12000G.

実施例7 実施例1と同様に但し非磁性金属下地層3としてアルミ
ニウム20原子パーセント含むモリブデン合金を被覆し
て磁気ディスクを作っ1こ・実施例8 実施例1と同様ζこ但し非磁性金属下地層3としてアル
ミニウム20原子パーセント含むタングステン合金を被
覆して磁気ディスクを作った。
Example 7 A magnetic disk was made in the same manner as in Example 1, except that a molybdenum alloy containing 20 atomic percent of aluminum was coated as the non-magnetic metal underlayer 3.Example 8 As in Example 1, however, a non-magnetic metal underlayer was coated with a molybdenum alloy containing 20 atomic percent of aluminum. A magnetic disk was made by coating a tungsten alloy containing 20 atomic percent of aluminum as the layer 3.

実施例9 実施例1と同様にして但し非磁性合金層としてアルミニ
ウム合金円盤′1表面を陽極酸化により非磁性金属酸化
物層とし酸化アルミを被覆して、この酸化アルミを最大
表面粗さ002μmまで鏡面研磨仕上げした。
Example 9 Same as Example 1, except that the surface of the aluminum alloy disk '1 was coated with aluminum oxide by anodizing to form a non-magnetic metal oxide layer as a non-magnetic alloy layer, and the aluminum oxide was coated with a maximum surface roughness of 002 μm. Finished with mirror polish.

実施例10 実施例1と同様ζこして但し保護膜として次の物質をそ
れぞれスパッタ法により200Aの厚さに被覆してそれ
ぞれ磁気ディスクを作った。
Example 10 Magnetic disks were prepared in the same manner as in Example 1, except that the following materials were coated as protective films to a thickness of 200 Å by sputtering.

実施例11 実施例1と同様にして但し保護膜としてテトラヒMc+
−1−ンシラン2.0重量パーセントアルコール溶液を
スビーン塗布法により塗布した後、20℃3時間焼成し
て磁気ディスクを作った。
Example 11 Same as Example 1 except that TetrahyMc+ was used as a protective film.
A 2.0 weight percent alcohol solution of -1-silane was applied by the Sveen coating method, and then baked at 20° C. for 3 hours to produce a magnetic disk.

実施例12 実施例1(l!:同様にして但し金属磁性媒体4を磁性
酸化物薄膜媒体としてγ−FezOs+被覆して磁気デ
ィスクを作った=Hc、Brはそれぞれ10000e、
2500 Grあっr:。
Example 12 Example 1 (l!) A magnetic disk was made in the same manner as in Example 1, except that the metal magnetic medium 4 was coated with γ-FezOs+ as a magnetic oxide thin film medium = Hc and Br were each 10000e,
2500 Gr:.

実施例13 実施例1(!:同様にして但しSin、を被覆しないで
磁気ディスクを作った。
Example 13 A magnetic disk was made in the same manner as Example 1 (!) except that it was not coated with Sin.

比較例 実施例1(!:同様にして但し金属下地層3としてクロ
ムを0.5μm 被覆して磁気ディスクを作った。
Comparative Example Example 1 (!) A magnetic disk was made in the same manner, except that 0.5 μm of chromium was coated as the metal underlayer 3.

He、Brはそれぞ、tL4500e、12000Gで
あツタ。
He and Br are tL4500e and 12000G respectively.

以上実施例1〜13で示した磁気ディスクを用いて!磁
変換特性及びヘッドとの摩耗試験及び環境試験を行なっ
た結果、次の特性を得た。ヘッドとの摩耗試験は2万回
のコンタクトスタートストップテストを行ない、ディス
ク表面に傷は全く見られなかった、又、環境試験につい
て温度80℃、相対湿度90%で6ケ月放置した時、基
板からの剥離は全く見られなかった。又、電磁変換特性
について30000〜70000 B P Iの高密度
記録ができたO それに比して比較例は、実施例の半分(15000BP
I)の記録密度しか達成できなかった。環境試験では温
度80℃、相対湿度90%で6ケ月放置した時、金属下
地層3のクロムが基板から剥離した。又、ヘッドとの摩
耗試験の2万回のコンタクトスタートストップテストで
は、途中でクロムが基板から剥離して、クラッシュを起
こし、クロムの付漬力が非常に劣っていることがわかっ
た。
Using the magnetic disks shown in Examples 1 to 13 above! As a result of magnetic conversion characteristics, head wear tests, and environmental tests, the following characteristics were obtained. A wear test with the head was performed with 20,000 contact start-stop tests, and no scratches were found on the disk surface.Also, in an environmental test, when left at a temperature of 80°C and relative humidity of 90% for 6 months, there was no damage from the board. No peeling was observed. In addition, regarding electromagnetic conversion characteristics, high-density recording of 30,000 to 70,000 BPI was achieved.
Only the recording density of I) could be achieved. In an environmental test, the chromium of the metal underlayer 3 peeled off from the substrate when it was left at a temperature of 80°C and a relative humidity of 90% for 6 months. In addition, in a 20,000-time contact start-stop test, which is a wear test with the head, chromium peeled off from the substrate midway through, causing a crash, and it was found that the sticking power of chromium was very poor.

又、ディスク表面を顕微鏡で観察したとCろ、クラック
が多数見られ、そのため、エラー数は実施例の1000
倍であった。
Furthermore, when the disk surface was observed under a microscope, many cracks were seen, and therefore the number of errors was higher than the 1000 in the example.
It was double that.

以上の結果から本発明の磁気記憶体は優れた耐環境性及
び#摩耗性及び高記録密度特性を有し、特にモリブデン
あるいはタングステンの排磁性金属下地層は優れた基板
さの密着性を有していることがわかった。
From the above results, the magnetic memory of the present invention has excellent environmental resistance, wear resistance, and high recording density characteristics, and in particular, the magnetically exclusive metal underlayer of molybdenum or tungsten has excellent adhesion to the substrate. I found out that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1項記載の磁気記憶体の部分断面図
である。図中、1は基板、2は非磁性合金層、3は非磁
性金属下地層、4は金属薄膜媒体、5は保護膜である。 第2図は本発明の第2項記載の磁気記憶体の部分断面図
である。図中、lは基板、2は非磁性合金層、3は非磁
性金属下地層、4は金属薄膜媒体である。第3図は金属
薄膜媒体がコバルトで膜厚が50OAの場合の非磁性金
属下地層の厚さに対下る磁性媒体の保磁力の変化を示し
た特性図である。 第1 図 第2図 第3図 O○25 0.50 075 1.00金属下地層3の
厚さ (μm)
FIG. 1 is a partial sectional view of the magnetic storage body according to the first aspect of the present invention. In the figure, 1 is a substrate, 2 is a nonmagnetic alloy layer, 3 is a nonmagnetic metal underlayer, 4 is a metal thin film medium, and 5 is a protective film. FIG. 2 is a partial sectional view of the magnetic storage body according to the second aspect of the present invention. In the figure, l is a substrate, 2 is a nonmagnetic alloy layer, 3 is a nonmagnetic metal underlayer, and 4 is a metal thin film medium. FIG. 3 is a characteristic diagram showing the change in the coercive force of the magnetic medium with respect to the thickness of the nonmagnetic metal underlayer when the metal thin film medium is made of cobalt and has a film thickness of 50 OA. Figure 1 Figure 2 Figure 3 O○25 0.50 075 1.00 Thickness of metal base layer 3 (μm)

Claims (1)

【特許請求の範囲】 (1)合金基板上にシト磁性合金層または非磁性酸化物
層が被接され、該非磁性合金層又は非磁性酸化物層上に
さらにモリブデンあるいはタングステンの非磁性金に^
下地層を介して、磁性合金薄膜媒体または磁性酸化物薄
膜媒体が被覆され、該媒体上に保護膜が被覆されて構成
されたことを特徴とする磁気記憶体。 (2)合金&板上に非磁性合金層または非磁性1変化物
層が被覆され、該非磁性合金層又は非磁性酸化物層上に
さらにモリブデンあるいはタングステンの非磁性金属下
地層を介して、磁性合金薄膜媒体または磁性酸化物薄膜
媒体が被覆されたことを特徴とする磁気記ta体。 (3)非磁性合金層がニッケルー燐合金である特許請求
の範囲第1項記載の磁気記憶体。 (4)非磁性合金層がニッケルー燐合金である特許請求
の範囲第2項記載の磁気記憶体。 (5)非磁性酸化物層が酸化アルミニウムである特許請
求の範囲第1項記載の磁気記憶体。 (6)非磁性酸化物層が酸化アルミニウムである特許請
求の範囲第2項記載の磁気記憶体。 (7)磁性合金薄膜媒体がコバルトまたはコバルトを含
む合金である特許請求の範囲第1項記載の磁気記憶体。 (8)磁性合金薄膜媒体がコバルトまたはコバルトを含
む合金である特許請求の範囲第2項記載の磁気記”1■
体。 (9) 磁性酸化物薄膜媒体がγ−Fe、、03である
特許請求の範囲第1項記載の磁気記憶体。 (1() 磁性酸化物薄膜媒体がγ−Fe2O3である
特許請求の範囲第2項記載の磁気記憶体。 (11) 保護膜がオスミウム、ルテニウム、イリジウ
ム、マンガンまたはタングステンである特許請求の範囲
第1項記載の磁気記憶体。 αり 保護膜がケイ累、チタン、タンタルまたはハフニ
ウムの酸化物、窒化物才たは炭化物である特許請求の範
囲第1項記載の磁気記憶体。 0■ 保護膜がホウ素、炭素またはホウ素さ炭素の合金
である特許請求の範囲第1項記載の磁気記憶体。 (I(イ)保護膜かポリ珪酸である特許請求の範囲第1
項記載の磁気記憶体。
[Claims] (1) A magnetic alloy layer or a non-magnetic oxide layer is coated on the alloy substrate, and a non-magnetic gold layer of molybdenum or tungsten is further applied on the non-magnetic alloy layer or the non-magnetic oxide layer.
1. A magnetic memory comprising a magnetic alloy thin film medium or a magnetic oxide thin film medium coated with an underlayer interposed therebetween, and a protective film coated on the medium. (2) A non-magnetic alloy layer or a non-magnetic single change substance layer is coated on the alloy & plate, and a non-magnetic metal underlayer of molybdenum or tungsten is further applied on the non-magnetic alloy layer or non-magnetic oxide layer. A magnetic recording body characterized by being coated with an alloy thin film medium or a magnetic oxide thin film medium. (3) The magnetic memory according to claim 1, wherein the nonmagnetic alloy layer is a nickel-phosphorus alloy. (4) The magnetic memory according to claim 2, wherein the nonmagnetic alloy layer is a nickel-phosphorus alloy. (5) The magnetic memory according to claim 1, wherein the nonmagnetic oxide layer is aluminum oxide. (6) The magnetic memory according to claim 2, wherein the nonmagnetic oxide layer is aluminum oxide. (7) The magnetic storage body according to claim 1, wherein the magnetic alloy thin film medium is cobalt or an alloy containing cobalt. (8) The magnetic recording medium according to claim 2, wherein the magnetic alloy thin film medium is cobalt or an alloy containing cobalt.
body. (9) The magnetic storage body according to claim 1, wherein the magnetic oxide thin film medium is γ-Fe,.03. (1() The magnetic memory according to claim 2, wherein the magnetic oxide thin film medium is γ-Fe2O3. (11) Claim 2, wherein the protective film is osmium, ruthenium, iridium, manganese, or tungsten. The magnetic memory body according to claim 1. The magnetic memory body according to claim 1, wherein the protective film is an oxide, nitride, or carbide of silicon, titanium, tantalum, or hafnium. 0■ Protective film The magnetic memory according to claim 1, wherein is boron, carbon, or an alloy of boron and carbon.
Magnetic storage medium described in Section 1.
JP58142934A 1983-08-04 1983-08-04 Magnetic storage body Pending JPS6035332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142934A JPS6035332A (en) 1983-08-04 1983-08-04 Magnetic storage body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142934A JPS6035332A (en) 1983-08-04 1983-08-04 Magnetic storage body

Publications (1)

Publication Number Publication Date
JPS6035332A true JPS6035332A (en) 1985-02-23

Family

ID=15327038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142934A Pending JPS6035332A (en) 1983-08-04 1983-08-04 Magnetic storage body

Country Status (1)

Country Link
JP (1) JPS6035332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372282A2 (en) * 1988-12-02 1990-06-13 Bayer Ag Process for the preparation of 1,5-dihydroxy and 1,5 diaminonaphthalene
US5703274A (en) * 1995-03-27 1997-12-30 Bromine Compounds Ltd. Process for the preparation of 5-hydroxyisophtalic acids

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148302A (en) * 1974-10-24 1976-04-26 Nippon Telegraph & Telephone KOKIROKUMITSUDOYOJIKIDEISUKUKIBAN
JPS5634141A (en) * 1979-08-25 1981-04-06 Hitachi Maxell Ltd Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148302A (en) * 1974-10-24 1976-04-26 Nippon Telegraph & Telephone KOKIROKUMITSUDOYOJIKIDEISUKUKIBAN
JPS5634141A (en) * 1979-08-25 1981-04-06 Hitachi Maxell Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372282A2 (en) * 1988-12-02 1990-06-13 Bayer Ag Process for the preparation of 1,5-dihydroxy and 1,5 diaminonaphthalene
US5703274A (en) * 1995-03-27 1997-12-30 Bromine Compounds Ltd. Process for the preparation of 5-hydroxyisophtalic acids

Similar Documents

Publication Publication Date Title
JPS61267929A (en) Magnetic recording medium
JPH0580804B2 (en)
JPS5961106A (en) Magnetic memory body
JPH09259418A (en) Magnetic recording medium and its production
JPS59142738A (en) Magnetic recording medium
US5122423A (en) Magnetic recording medium comprising a chromium underlayer deposited directly on an electrolytic abrasive polished high purity aluminum alloy substrate
JPS61142525A (en) Magnetic recording medium
JPS6035332A (en) Magnetic storage body
JPH0474772B2 (en)
JP2540479B2 (en) Magnetic memory
JPS6018817A (en) Magnetic storage medium
JPS5961107A (en) Magnetic memory body
JPS61276116A (en) Magnetic recording medium and its production
JPS59180829A (en) Magnetic storage body
JPS60193124A (en) Magnetic recording medium
JPS62117143A (en) Production of magnetic recording medium
JPH0556006B2 (en)
JPS6342021A (en) Magnetic recording medium
JPH0514325B2 (en)
JPH0580803B2 (en)
JPS6364623A (en) Magnetic recording medium
JPH0556007B2 (en)
JPS5988807A (en) Magnetic storage body
JPS6267719A (en) Magnetic recording medium
JPH0440620A (en) Magnetic recording disk and production thereof