JPS5961106A - Magnetic memory body - Google Patents

Magnetic memory body

Info

Publication number
JPS5961106A
JPS5961106A JP57171694A JP17169482A JPS5961106A JP S5961106 A JPS5961106 A JP S5961106A JP 57171694 A JP57171694 A JP 57171694A JP 17169482 A JP17169482 A JP 17169482A JP S5961106 A JPS5961106 A JP S5961106A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
coated
medium
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57171694A
Other languages
Japanese (ja)
Other versions
JPH0572727B2 (en
Inventor
Masahiro Yanagisawa
雅広 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57171694A priority Critical patent/JPS5961106A/en
Publication of JPS5961106A publication Critical patent/JPS5961106A/en
Publication of JPH0572727B2 publication Critical patent/JPH0572727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/722Protective coatings, e.g. anti-static or antifriction containing an anticorrosive material

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide magnetic memory body being excellent in anti-corrosion, anti-abrasion and high recording density, by a method wherein non-magnetic alloy layer, thin film medium of specified alloy and a protective film are coated in sequence onto alloy substrate. CONSTITUTION:A non-magnetic alloy layer 2 of nickel-phosphorus alloy, for example, is coated by plating on a substrate 1 of aluminium alloy or the like, and surface of the base layer 2 is finished in mirror surface by mechanical grinding. Mirror grinding surface of the base layer 2 is coated with a metal magnetic medium 3 being a thin film medium of alloy of nickel, platinum and cobalt or alloy of iron, platinum and cobalt by means of high-frequency sputtering method, for example. A protective film 4 of SiO2 or the like is coated on the metal thin film medium 3 by means of high-frequency sputtering, for example.

Description

【発明の詳細な説明】 本発明は磁気的記憶装置(磁気ディスク装置および磁気
ドラム装置等)に用いられる磁気記憶体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic storage body used in a magnetic storage device (magnetic disk device, magnetic drum device, etc.).

現在実用化されている磁気記憶体は不連続媒体を有する
ものが主流である。この不連続媒体の磁気記憶媒体は、
γ−Fez O−1CrOt 、 Fe、’ Fe −
C。
Most of the magnetic storage bodies currently in practical use have discontinuous media. This discontinuous medium magnetic storage medium is
γ-FezO-1CrOt, Fe,'Fe-
C.

等の磁性体粒子を有機樹脂からなる結合剤中に混合分散
して、基体上に塗布・幹燥・焼成して製造するため、磁
気記憶媒体は磁性体粒子の大きさのレベルで不連続であ
る。
Magnetic storage media are manufactured by mixing and dispersing magnetic particles such as in a binder made of organic resin, coating it on a substrate, drying it, and firing it, so magnetic storage media are discontinuous at the level of the size of the magnetic particles. .

しかし、近年磁気記憶媒体の高記録密度化の要請により
、連続薄膜媒体からなる保磁力の大きい磁気記憶媒体の
研究開発が盛んに行なわれている。
However, in recent years, due to the demand for higher recording densities in magnetic storage media, research and development of magnetic storage media with large coercive force made of continuous thin film media has been actively conducted.

この連続薄膜媒体は主にメッキ、真空蒸着、スパッター
イオンブレーティング等の手法によシ作られる金属薄膜
からなるものと、真空蒸着、スパッタ、イオンブレーテ
ィング等の手法により作られるFe504又はrF、e
yOs等の金属酸化物薄膜からなるものが知られている
。金属酸化物薄膜は残留磁束密度が小さいため磁性膜中
の反磁界が小さく。
This continuous thin film medium mainly consists of metal thin films made by methods such as plating, vacuum evaporation, sputter ion blating, etc., and Fe504, rF, e, etc. made by methods such as vacuum evaporation, sputtering, and ion blating.
Those made of metal oxide thin films such as yOs are known. Metal oxide thin films have a small residual magnetic flux density, so the demagnetizing field in the magnetic film is small.

磁化遷移中が小さいが大きな再生出力が得られず高記録
密度の面で制約を受ける。他方金属薄膜からなる磁気記
録媒体(以下金属薄膜媒体と称する)は残留磁束密度が
金属酸化物薄膜に比べ大きく有望であるが、高温・高湿
下の様な劣悪な雰囲気では腐食し易く、十分耐食性のあ
る金属薄膜媒体はまだ知られていない。
Although the magnetization transition is small, large reproduction output cannot be obtained and there are restrictions in terms of high recording density. On the other hand, magnetic recording media made of metal thin films (hereinafter referred to as metal thin film media) have a higher residual magnetic flux density than metal oxide thin films and are promising, but they are susceptible to corrosion in poor atmospheres such as high temperature and high humidity, and are not fully developed. Corrosion-resistant metal thin film media are not yet known.

本発明の目的は上述の現況に鑑み、7000ガウス程度
の適度な残留磁束密度と保磁力と優れた角形性を有しか
つ耐食性がきわめて優れた金属薄膜媒体を有する磁気記
憶体を提供するものである。
In view of the above-mentioned current situation, an object of the present invention is to provide a magnetic storage body having a metal thin film medium having an appropriate residual magnetic flux density of about 7000 Gauss, coercive force, excellent squareness, and extremely excellent corrosion resistance. be.

すなわち本発明の磁気記憶体は合金基板上に非磁性合金
層又は非磁性酸化物層が被覆され、該非磁性合金層又は
非磁性酸化物層上にニッケル、白金及びコバルトからな
る合金又は鉄、白金及びコバルトからなる合金の薄膜媒
体が被覆され、さらに該媒体上に保護膜が被覆されて構
成されている。
That is, in the magnetic memory of the present invention, an alloy substrate is coated with a non-magnetic alloy layer or a non-magnetic oxide layer, and an alloy consisting of nickel, platinum and cobalt or iron and platinum is coated on the non-magnetic alloy layer or non-magnetic oxide layer. and cobalt, and a protective film is further coated on the medium.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の磁気記憶体の部分断面図である。FIG. 1 is a partial cross-sectional view of the magnetic storage body of the present invention.

第1図において磁気記憶体の合金基板1としてアルミ合
金が軽くて加工性が良く安価なことから最も良く用いら
れるが、場合によってはチタン合金が用いられることも
ある。基盤表面は機械加工によシ小さなうねシ(円周方
向で50μmn以下、半径方向で100μm以下)を有
する面に仕上げられている。次にこの基盤1の上に非磁
性合金層2としテニッケルー燐合金がめっきにより被覆
され、この下地体2の表面は機械的研磨により最大表面
粗さ0.03μm以下に鏡面仕上げされる。次に上記下
地体2の鏡面研磨面上に金属磁性媒体3としてニッケル
、白金及びコバルトからなる合金又は鉄。
In FIG. 1, an aluminum alloy is most often used as the alloy substrate 1 of the magnetic memory body because it is light, has good workability, and is inexpensive, but a titanium alloy may be used in some cases. The surface of the base is machined to have small ridges (50 μm or less in the circumferential direction, 100 μm or less in the radial direction). Next, a non-magnetic alloy layer 2 of a tennickel-phosphorus alloy is coated on the base 1 by plating, and the surface of the base body 2 is mirror-finished to a maximum surface roughness of 0.03 μm or less by mechanical polishing. Next, an alloy consisting of nickel, platinum, and cobalt or iron is deposited on the mirror-polished surface of the base body 2 as a metal magnetic medium 3.

白金及びコバルトからなる合金の薄膜媒体が高周波スパ
ッタ法により被覆される。次に上記金属薄膜媒体3の上
に:5iO7に代表される保護膜4が高周波スパッタ法
により被覆される。
A thin film medium of an alloy consisting of platinum and cobalt is coated by radio frequency sputtering. Next, a protective film 4 typified by 5iO7 is coated on the metal thin film medium 3 by high frequency sputtering.

前記、金属薄膜媒体は抗磁力()(c)300〜120
0、.2にルステッド)、飽和磁束密度(BS ) 8
000〜12000G(ガラス)、角形比(Br/13
c) 0.7〜09、保磁力角形比(S*)0.7〜0
.9の範囲の磁気記録媒体として優れたヒステリシス特
性を示す。しかも上記特性は金属薄膜媒体中の白金およ
びニッケル又は鉄の量に犬きく依存する。
The metal thin film medium has a coercive force (c) of 300 to 120.
0,. Rusted 2), saturation magnetic flux density (BS) 8
000~12000G (glass), squareness ratio (Br/13
c) 0.7-09, coercive force squareness ratio (S*) 0.7-0
.. It exhibits excellent hysteresis characteristics as a magnetic recording medium in the range of 9. Moreover, the above properties are highly dependent on the amount of platinum and nickel or iron in the metal thin film medium.

第2図は飽和磁束密度、抗磁力および角形性の金属薄膜
媒体中のニッケルの原子ノく一セントによる変化を白金
の原子パーセントをノくラメータとして示したものでニ
ッケルO〜18 at−%の範囲で高記録密度可能な磁
気記憶媒体として使用出来る。
Figure 2 shows changes in saturation magnetic flux density, coercive force, and atomic percent of nickel in a rectangular metal thin film medium using the atomic percent of platinum as a parameter. It can be used as a magnetic storage medium capable of high recording density within a range.

第3図は抗磁力の膜厚依存性を示したものでFe又はN
1を添加しないCOとptのみの膜でけHcが高過ぎて
、オーバーライド特性が悪くなる。高記録密度可能した
膜厚は1000八以下であるのでFe又はNi添加の効
果が大きいことが分る。
Figure 3 shows the dependence of coercive force on film thickness.
In a film made only of CO and PT without addition of 1, Hc is too high, resulting in poor override characteristics. It can be seen that the effect of adding Fe or Ni is large because the film thickness that enables high recording density is 10008 or less.

以上の様に白金を35原子パーセント以下及び鉄又はニ
ッケルを20原子パーセント以下含むコバルト合金から
なる金属薄膜は磁気記録媒体として優れていることが分
った。金属薄膜媒体3の上に被覆される保護膜は硬質で
あることが望ましく。
As described above, it has been found that a metal thin film made of a cobalt alloy containing 35 atomic percent or less of platinum and 20 atomic percent or less of iron or nickel is excellent as a magnetic recording medium. The protective film coated on the metal thin film medium 3 is preferably hard.

オスミウム、ルデニウム、イリジウム、マンガン。Osmium, Rudenium, Iridium, Manganese.

タングステン等の金属あるいはケイ素、チタン。Metals such as tungsten, silicon, and titanium.

タンタルまたはノ・フニウムの酸化物、窒化物または炭
化物あるいはホウ素、炭素また°rまホウ素と炭素の合
金あるいけポリ珪酸が望ましIへ。
An oxide, nitride or carbide of tantalum or nitride, boron, carbon or an alloy of boron and carbon, or polysilicic acid is preferred.

さらに保護膜4の上にR−G (几は炭素数10〜40
の飽和又は不飽和炭化水素又はふつ素化炭化水素、Gけ
C0OH、OH、NHt 、C0OR’、5i(OR’
)、。
Further, on top of the protective film 4, R-G
saturated or unsaturated hydrocarbons or fluorinated hydrocarbons, COOH, OH, NHt, COOR', 5i(OR'
),.

C0NH,などの官能基)からなる潤滑剤あるいけフッ
素化アルキルポリエーテル、ポリテトラフロロエチレン
テロマー等の潤滑剤を塗布することも出来る。
It is also possible to apply a lubricant consisting of a functional group such as CONH, fluorinated alkyl polyether, polytetrafluoroethylene telomer, or the like.

次にいくつかの例をあげて本発明を説明する。Next, the present invention will be explained by giving some examples.

実施例1 合金円盤1として旋盤加工および熱矯正によつて十分小
さなうねり(円周方向で50μm以下および半径方向で
10μm以下)を有する面に仕上げられたディスク状ア
ルミニウム合金盤上に非磁性合金2としてニッケルー燐
合金を約50μmの厚さ釦めっきし、このニッケルー燐
めっき膜を最大表面粗さ0.02μm、厚さ30μmま
で鏡面研磨仕上げした。次にこのニッケルー燐めっき膜
の上に金属磁性媒体3として高周波スパンタ法によりア
ルゴン圧4X10−2ton、パワー密度4.7W/c
r!にこて膜厚500人の、白金を20原子パーセント
及びニッケルを10原子パーセント含むコバルト合金薄
膜を被覆した。さら忙この金属磁性媒体3の上に5iO
zを200Aの膜厚に高周波スパッタ法により被覆して
磁気ディスクを作った。抗磁力)−1c、残留磁束密度
Br(BsXS)はそれぞれ9000e、7200Gで
あった。
Example 1 Non-magnetic alloy 2 was placed on a disc-shaped aluminum alloy disc 1 which had been finished with sufficiently small waviness (50 μm or less in the circumferential direction and 10 μm or less in the radial direction) by lathe processing and thermal straightening. The button was plated with a nickel-phosphorus alloy to a thickness of about 50 μm, and the nickel-phosphorus plating film was mirror-polished to a maximum surface roughness of 0.02 μm and a thickness of 30 μm. Next, on this nickel-phosphorus plating film, a metal magnetic medium 3 was applied using a high frequency spanner method at an argon pressure of 4 x 10-2 tons and a power density of 4.7 W/c.
r! A thin film of a cobalt alloy containing 20 atomic percent of platinum and 10 atomic percent of nickel was coated with a thickness of 500 mm. 5iO on top of this metal magnetic medium 3
A magnetic disk was fabricated by coating Z to a thickness of 200A by high frequency sputtering. The coercive force)-1c and residual magnetic flux density Br (BsXS) were 9000e and 7200G, respectively.

実施例2 実施例1と同様に但し金属磁性媒体3として白金を10
原子パーセント及びニッケルを10原子パーセント含む
コバルト合金薄膜を被覆して磁気ディスクを作った。H
c、Brはそれぞれ900crp。
Example 2 Same as Example 1 except that 10% of platinum was used as the metal magnetic medium 3.
A magnetic disk was made by coating a cobalt alloy thin film containing 10 atomic percent of nickel and 10 atomic percent of nickel. H
c and Br are each 900 crp.

9000Gであった。It was 9000G.

実施例3 実施例1と同様に但し金属磁性媒体3として白金を7原
子パーセント及びニッケルを10原子パーセント含むコ
バルト合金薄膜を被覆して磁気ディスクを作った。Hc
、Brはそれぞれ500ce。
Example 3 A magnetic disk was fabricated in the same manner as in Example 1 except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 7 atomic percent of platinum and 10 atomic percent of nickel. Hc
, Br is 500ce each.

10000Gであった。It was 10,000G.

実施例4 実施例1と同様にして但し金属磁性媒体3として白金を
35原子パーセント及びニッケルを10原子パーセント
含むコバルト合金薄膜を被覆して磁気ディスクを作った
。Hc、Brはそれぞれ500で、7000Gであった
Example 4 A magnetic disk was produced in the same manner as in Example 1 except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 35 atomic percent of platinum and 10 atomic percent of nickel. Hc and Br were each 500 and 7000G.

実施例5 実施例1と同様にして但し金属磁性媒体3として白金を
20原子パーセント、ニッケルを20原子パーセント含
むコバルト合金薄膜を被覆した。
Example 5 The same procedure as in Example 1 was carried out except that the metal magnetic medium 3 was coated with a cobalt alloy thin film containing 20 atomic percent of platinum and 20 atomic percent of nickel.

Hc、Brはそれぞれ450 ce、5200Gでアラ
た。
Hc and Br were at 450 ce and 5200 G, respectively.

実施例6 実施例1と同様にして但し金属磁性媒体3として白金を
10原子パーセント、ニッケAを20原子パーセント含
むコバルト合金薄膜を被覆した。
Example 6 A cobalt alloy thin film containing 10 atomic percent of platinum and 20 atomic percent of nickel A was coated as the metal magnetic medium 3 in the same manner as in example 1.

Hc、Brはそれぞれ400 ce、 6400 Gで
あった。
Hc and Br were 400 ce and 6400 G, respectively.

実施例7 実施例1と同様にして但し金属磁性媒体3として白金を
20原子パーセント、鉄を10原子ノ<−セント含むコ
バルト合金薄膜を被覆した。Hc、Brはそれぞれ90
0oe、8000Gであった、。
Example 7 The magnetic metal medium 3 was coated in the same manner as in Example 1, except that a cobalt alloy thin film containing 20 atomic percent of platinum and 10 atomic percent of iron was coated. Hc and Br are each 90
It was 0oe, 8000G.

実施例8 実施例2と同様にして但しニッケルの代シに鉄を用いて
磁気ディスクを作った。Hc*Brはそれぞれ950■
、IQOOOGであった。
Example 8 A magnetic disk was made in the same manner as in Example 2, except that iron was used instead of nickel. Hc*Br is 950■ each
, IQOOOG.

実施例9 実施例4と同様にし但しニッケルの代りに鉄を用いて磁
気ディスクを作った。He、Brはそれぞれ600 c
e 、8500Gであった。
Example 9 A magnetic disk was made in the same manner as in Example 4, except that iron was used instead of nickel. He, Br are each 600 c
e, it was 8500G.

実施例10 実施例5と同様にして但しニッケルの代りに鉄を用いて
磁気ディスクを作った。Hc、r−1rはそれぞれ50
0 ce 、 6500 Gであった。
Example 10 A magnetic disk was made in the same manner as in Example 5, except that iron was used instead of nickel. Hc and r-1r are each 50
It was 0 ce and 6500 G.

実施例11 実施例1と同n、に、シて但し非磁性合金層としてアル
ミニウム合金円盤1表面を陽極酸イヒによりlト磁性金
属酸化物層として酸化アルミを被覆しこの酸化アルミを
最大表面粗さ0.02μm′りで鏡面研磨仕上げした。
Example 11 Same as Example 1, except that the surface of the aluminum alloy disk 1 was coated with aluminum oxide as a magnetic metal oxide layer by anodic oxidation as a non-magnetic alloy layer, and the aluminum oxide was coated with aluminum oxide to give the maximum surface roughness. Mirror-polished finish with a thickness of 0.02 μm.

実施例12 実施例1と同様にして但し保護膜として次の物質をそれ
ぞれスノくツタ法により200人の厚さに被覆してそれ
ぞれ磁気ディスクを作った。
Example 12 Magnetic disks were prepared in the same manner as in Example 1, except that each of the following materials was coated as a protective film to a thickness of 200 mm using the vine ivy method.

実施例13 実施例1と同様忙して但し保護膜としCテトラヒドロ上
フシラン2.0重量パーセントアルコール溶液をスピー
ン塗布法によシ塗布した後、200”C3時間焼成して
磁気ディスクを作った。
Example 13 A magnetic disk was prepared in the same manner as in Example 1, except that a 2.0 weight percent alcoholic solution of C tetrahydrofusilan was applied as a protective film by spin coating, and then baked at 200" C for 3 hours to produce a magnetic disk.

実施例14 実施例5と同様にして但し金属磁性媒体3を膜厚20〇
八で被覆して磁気ディスクを作った。Hc。
Example 14 A magnetic disk was produced in the same manner as in Example 5, except that the metal magnetic medium 3 was coated with a film thickness of 20.8 mm. Hc.

Brはそれぞれ550 Ce、、 5200 Gであっ
た。
Br was 550 Ce and 5200 G, respectively.

比較例 実施例1と同様にして但し金属磁性媒体3としてコバル
ト薄膜を500人の膜厚で被覆して磁気ディ?りを作っ
た。He、Brはそれぞれ120■。
Comparative Example A magnetic disk was produced in the same manner as in Example 1, except that the metal magnetic medium 3 was coated with a cobalt thin film to a thickness of 500 mm. I made a ri. He and Br are each 120■.

12000 Gであった。以上実施例1〜14で示した
磁気ディスクを用いて電磁変換特性及びヘッドとの摩耗
試験及び環境試験を行なった結果1次の特性を得た。ヘ
ッドとの摩耗試験は2万回のコンタクトスタートストッ
プテストを行ないディスク表面に傷は全く見られなかっ
た。又11J境試験九ついて温度80 ’C、相対湿度
90%で6次月放置した時のエラーの増加数は全てOで
あり、十分な耐食性を有していることが分った。又。比
較例については抗磁力が低く十分な電磁変換特性が得ら
れなかったので比較の為、25℃の水中に浸漬して飽和
磁束密度Bsの変化を調べた所、第4図の様な結果が得
られ、比較例だ比べ、実施例は優れた耐食性を有するこ
とが分った。第4図で縦軸は飽和磁束密度Bsの変化率
(Bs/Bo、ただしBoは浸漬前の飽和磁束密度)又
、実施例1〜14のディスクについて20000〜50
000 B P IO高密度記録が出来たが、比較例は
抗磁力が小さく高密度記録を達成することは出来なかっ
た。
It was 12,000G. Using the magnetic disks shown in Examples 1 to 14 above, electromagnetic conversion characteristics, wear tests with heads, and environmental tests were conducted, and as a result, the following first-order characteristics were obtained. A wear test with the head was conducted through 20,000 contact start-stop tests, and no scratches were observed on the disk surface. In addition, in the 11J boundary test, the increase in the number of errors when left for six months at a temperature of 80'C and a relative humidity of 90% was all O, indicating that it had sufficient corrosion resistance. or. Regarding the comparative example, the coercive force was low and sufficient electromagnetic conversion characteristics could not be obtained, so for comparison, we immersed it in water at 25°C and examined the change in saturation magnetic flux density Bs, and the results shown in Figure 4 were obtained. It was found that the example had excellent corrosion resistance when compared with the comparative example. In FIG. 4, the vertical axis is the rate of change in the saturation magnetic flux density Bs (Bs/Bo, where Bo is the saturation magnetic flux density before immersion).
000 B P IO high-density recording was possible, but the comparative example had a small coercive force and could not achieve high-density recording.

以上の結果から本発明の磁気記憶体は優れた耐食性(耐
ポ境性)及び耐摩耗性及び高記録密度特性を有して(へ
ることが分った。
From the above results, it was found that the magnetic memory of the present invention has excellent corrosion resistance (pot resistance), abrasion resistance, and high recording density characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記憶体の部分断面図である。図中
、1は基板、2は非磁性合金属、3は金属薄膜媒体、4
は保護膜である。第2図は本磁気記憶体に川内られる金
属薄膜媒体における飽和磁束密度、抗磁力および角形性
の、金属薄膜媒体中のニッケルの原子パーセントによる
変化を白金の原子パーセントをパラメータとして示した
特性図である。第3図は本磁気記憶体に用いられる金属
薄膜媒体における抗磁力の膜厚依存性を示した特性図で
ある。第4図は本磁気記憶体に用いられる金属薄膜媒体
の水浸漬時間による飽和磁束密度の変化率を示した特性
図である。 第1 図 Hc (k Oe)、Bs (KCr)第3図 ΔC00,B  Pf O,2 ・  Co07 Ni O,j  PtO,20C00
θ NL D、I  Pt O,/口  CD07Fe
O,f  Pf:0.2胱厚(わ ニア1(ン4叶 〕貴  萌  間   (田つ手続補
正書(自発) 1、事件の表示   昭和57年 特詩願第17169
4号2、発明の名称  磁気記憶体 3、補正をする者 事件との関係       出 願 人東京都港区芝五
臼−133音1冴 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 〒108  東京都港区芝五J−目37計8冴 住友三
1.tlヒル5、補正の対象 図面 6 補正の内容 本願添付図面の第2図を別紙図面のように補正する。
FIG. 1 is a partial cross-sectional view of the magnetic storage body of the present invention. In the figure, 1 is a substrate, 2 is a non-magnetic alloy metal, 3 is a metal thin film medium, and 4
is a protective film. Figure 2 is a characteristic diagram showing the changes in the saturation magnetic flux density, coercive force, and squareness of the metal thin film medium used in this magnetic storage medium depending on the atomic percent of nickel in the metal thin film medium, using the atomic percent of platinum as a parameter. be. FIG. 3 is a characteristic diagram showing the film thickness dependence of coercive force in the metal thin film medium used in the present magnetic memory. FIG. 4 is a characteristic diagram showing the rate of change in the saturation magnetic flux density of the metal thin film medium used in the present magnetic memory according to the water immersion time. Fig. 1 Hc (k Oe), Bs (KCr) Fig. 3 ΔC00,B Pf O,2 ・Co07 Ni O,j PtO,20C00
θ NL D, I Pt O, /mouth CD07Fe
O, f Pf: 0.2 Bladder thickness (wania 1 (n4 Kano)) Takamoema (Tatsu procedure amendment (voluntary) 1, Indication of the case 1981 Special Poetry Request No. 17169
No. 4 No. 2, Title of the invention: Magnetic storage device 3, Relationship to the amended person's case Applicant: Shibagousu-133-on 1-sae, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent 108 Sumitomo 31, Shibago J-37, Minato-ku, Tokyo, total 8. tl Hill 5, Drawing to be amended 6 Details of the amendment Figure 2 of the drawings attached to this application will be amended as shown in the attached drawing.

Claims (1)

【特許請求の範囲】 1、合金基板上に非磁性合金層又は非磁性酸化物層が被
覆され、該非磁性合金層又は非磁性酸化物層上にニッケ
ル、白金及びコバルトからなる合金又は鉄、白金及びコ
バルトからなる合金の薄膜媒体が被覆され、さらに該媒
体上に保護膜が被覆されていることを特徴とする磁気記
憶体。 2、非磁性合金層がニッケルー燐である特許請求の範囲
第1項記載の磁気記憶体。 3、非磁性金属酸化物層が、酸化アルミニウムである特
許請求の範囲第1項記載の磁気記憶体。 4、 保護膜がオスミウム、ルテニウム、イリジウム、
マンガン、クンゲステンである特許請求の範囲第1項記
載の磁気記憶体。 5 保護膜がケイ素、チタン、タンタルオたはハフニウ
ムの酸化物、窒化物または炭化物である特許請求の範囲
第1項記載の磁気記憶体。 6、保護膜がホウ素、炭素またはホウ素と炭素の合金で
ある特許請求の範囲第1項記載の磁気記憶体。 7 保護膜がポリ珪酸である特許請求の範囲第1項記載
の磁気記憶体。
[Claims] 1. A non-magnetic alloy layer or a non-magnetic oxide layer is coated on an alloy substrate, and an alloy consisting of nickel, platinum and cobalt or iron and platinum is coated on the non-magnetic alloy layer or non-magnetic oxide layer. 1. A magnetic storage body comprising a thin film medium made of an alloy consisting of cobalt and cobalt, and further comprising a protective film coated on the medium. 2. The magnetic memory according to claim 1, wherein the nonmagnetic alloy layer is nickel-phosphorus. 3. The magnetic memory according to claim 1, wherein the nonmagnetic metal oxide layer is aluminum oxide. 4. The protective film is made of osmium, ruthenium, iridium,
The magnetic memory according to claim 1, which is manganese or kungesten. 5. The magnetic memory according to claim 1, wherein the protective film is an oxide, nitride or carbide of silicon, titanium, tantalum or hafnium. 6. The magnetic memory according to claim 1, wherein the protective film is made of boron, carbon, or an alloy of boron and carbon. 7. The magnetic memory according to claim 1, wherein the protective film is made of polysilicate.
JP57171694A 1982-09-30 1982-09-30 Magnetic memory body Granted JPS5961106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171694A JPS5961106A (en) 1982-09-30 1982-09-30 Magnetic memory body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171694A JPS5961106A (en) 1982-09-30 1982-09-30 Magnetic memory body

Publications (2)

Publication Number Publication Date
JPS5961106A true JPS5961106A (en) 1984-04-07
JPH0572727B2 JPH0572727B2 (en) 1993-10-12

Family

ID=15927952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171694A Granted JPS5961106A (en) 1982-09-30 1982-09-30 Magnetic memory body

Country Status (1)

Country Link
JP (1) JPS5961106A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126627A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Magnetic recording medium
JPS61210518A (en) * 1985-03-13 1986-09-18 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS6266417A (en) * 1985-09-19 1987-03-25 Nec Corp Magnetic recording medium
JPS62236116A (en) * 1986-04-08 1987-10-16 Denki Kagaku Kogyo Kk Magnetic recording medium
JPS62239420A (en) * 1986-04-11 1987-10-20 Fuji Electric Co Ltd Magnetic recording medium
JPS62250508A (en) * 1986-04-23 1987-10-31 Hitachi Ltd Magnetic recording medium
JPS634419A (en) * 1986-06-24 1988-01-09 Konica Corp Magnetic recording medium provided with protective layer having carbon-containing composition
US4749459A (en) * 1986-03-10 1988-06-07 Komag, Inc. Method for manufacturing a thin film magnetic recording medium
US4988578A (en) * 1986-03-10 1991-01-29 Komag, Inc. Method for manufacturing a thin film magnetic recording medium
JPH0383224A (en) * 1989-08-25 1991-04-09 Nec Corp Magnetic disk
US5030494A (en) * 1989-01-26 1991-07-09 International Business Machines Corporation Carbon overcoat for a thin film magnetic recording disk containing discrete clusters of tungsten (W) or tungsten carbide (WC) which project from the surface of the overcoat
US5180640A (en) * 1990-10-01 1993-01-19 Komag, Inc. Magnetic recording medium comprising a magnetic alloy layer of cobalt nickel, platinum and chromium formed directly on a nickel alloy amorphous underlayer
JPH07134821A (en) * 1984-11-26 1995-05-23 Hitachi Ltd Magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140899A (en) * 1974-05-01 1975-11-12
JPS5127824A (en) * 1974-08-31 1976-03-09 Sony Corp PIITEIIIENUAIISHIIOO GOKIN NO SEIZOHOHO
JPS5174605A (en) * 1974-12-24 1976-06-28 Suwa Seikosha Kk JIKIKIRO KUTAI
JPS57158036A (en) * 1981-03-24 1982-09-29 Nec Corp Magnetic storage body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140899A (en) * 1974-05-01 1975-11-12
JPS5127824A (en) * 1974-08-31 1976-03-09 Sony Corp PIITEIIIENUAIISHIIOO GOKIN NO SEIZOHOHO
JPS5174605A (en) * 1974-12-24 1976-06-28 Suwa Seikosha Kk JIKIKIRO KUTAI
JPS57158036A (en) * 1981-03-24 1982-09-29 Nec Corp Magnetic storage body

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533456B2 (en) * 1984-11-26 1993-05-19 Hitachi Ltd
JPS61126627A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Magnetic recording medium
JPH07134821A (en) * 1984-11-26 1995-05-23 Hitachi Ltd Magnetic recording medium
JPS61210518A (en) * 1985-03-13 1986-09-18 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH0556567B2 (en) * 1985-03-13 1993-08-19 Matsushita Electric Ind Co Ltd
JPS6266417A (en) * 1985-09-19 1987-03-25 Nec Corp Magnetic recording medium
US4749459A (en) * 1986-03-10 1988-06-07 Komag, Inc. Method for manufacturing a thin film magnetic recording medium
US4988578A (en) * 1986-03-10 1991-01-29 Komag, Inc. Method for manufacturing a thin film magnetic recording medium
JPS62236116A (en) * 1986-04-08 1987-10-16 Denki Kagaku Kogyo Kk Magnetic recording medium
JPS62239420A (en) * 1986-04-11 1987-10-20 Fuji Electric Co Ltd Magnetic recording medium
JPS62250508A (en) * 1986-04-23 1987-10-31 Hitachi Ltd Magnetic recording medium
JPS634419A (en) * 1986-06-24 1988-01-09 Konica Corp Magnetic recording medium provided with protective layer having carbon-containing composition
US5030494A (en) * 1989-01-26 1991-07-09 International Business Machines Corporation Carbon overcoat for a thin film magnetic recording disk containing discrete clusters of tungsten (W) or tungsten carbide (WC) which project from the surface of the overcoat
JPH0383224A (en) * 1989-08-25 1991-04-09 Nec Corp Magnetic disk
US5180640A (en) * 1990-10-01 1993-01-19 Komag, Inc. Magnetic recording medium comprising a magnetic alloy layer of cobalt nickel, platinum and chromium formed directly on a nickel alloy amorphous underlayer

Also Published As

Publication number Publication date
JPH0572727B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JPH0580804B2 (en)
JPS5961106A (en) Magnetic memory body
JPS5961107A (en) Magnetic memory body
JPH0474772B2 (en)
JP2540479B2 (en) Magnetic memory
JPS6018817A (en) Magnetic storage medium
JPH0556006B2 (en)
JPS61276116A (en) Magnetic recording medium and its production
JPH0556007B2 (en)
JPS59116923A (en) Magnetic storage medium
JPS6035332A (en) Magnetic storage body
JPH0580803B2 (en)
JPH0580805B2 (en)
JPS62141628A (en) Magnetic recording medium
JPS60193124A (en) Magnetic recording medium
JPS59180829A (en) Magnetic storage body
JP2644994B2 (en) Disk-shaped magnetic recording medium
JPS62149024A (en) Magnetic recording medium
JPS6364623A (en) Magnetic recording medium
JPS62150524A (en) Magnetic recording medium
JPS61184725A (en) Magnetic recording medium and its production
JPH03228220A (en) Magnetic recording medium
JPS61224120A (en) Magnetic recording medium and its production
JPH0467252B2 (en)
JPS6369019A (en) Magnetic recording medium