JPS60193124A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60193124A
JPS60193124A JP4782984A JP4782984A JPS60193124A JP S60193124 A JPS60193124 A JP S60193124A JP 4782984 A JP4782984 A JP 4782984A JP 4782984 A JP4782984 A JP 4782984A JP S60193124 A JPS60193124 A JP S60193124A
Authority
JP
Japan
Prior art keywords
magnetic
coated
medium
rhenium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4782984A
Other languages
Japanese (ja)
Inventor
Hirotaka Yamaguchi
弘高 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4782984A priority Critical patent/JPS60193124A/en
Publication of JPS60193124A publication Critical patent/JPS60193124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a small residual magnetic flux density, large coercive force, excellent squareness, high recording density and high S/N by constituting the titled medium of a non-magnetic layer coated with a thin film medium consisting of a cobalt alloy contg. simultaneously nickel and rhenium or coating the substrate with said medium via an underlying layer consisting of a non-magnetic metal. CONSTITUTION:A non-magnetic layer 2 is coated on a substrate 1 by plating of a nickel alloy and a thin metallic film medium 4 consisting of a cobalt alloy contg. simultaneously at least 10-30atom% nickel and 2-22atom% rhenium is coated as a metallic magnetic medium 4 on the layer 2 by a higher harmonic sputtering method. The thin metallic film medium manufactured in such a way has >=5,000 (oersted) coercive force, <=1,200 (gauss) satd. magnetic flux density, 0.7-0.9 squareness ratio and a ratio between the coercive force and the squareness ranging 0.7-0.9 and exhibits and excellent hysteresis characteristic as a magnetic recording medium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気的記憶装置(i気ディスク装置及び磁気ド
ラム装置等)忙用いられる磁気記憶体に関する本のであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a book relating to magnetic storage bodies that are commonly used in magnetic storage devices (i-disk devices, magnetic drum devices, etc.).

(従来技術とその問題点) 現在、主忙実用化されている磁気記憶体は。(Prior art and its problems) Currently, magnetic storage bodies are mainly put into practical use.

γ−Fe20B * CrO2e Fe、 Fe−Co
等の磁性体粒子を有機樹脂からなる結合剤中に混合分散
して、基板上に塗布、乾燥、焼成して製造されたもので
あり、磁気記憶体自身はこの磁性体粒子の大きさのレベ
ルで不連続である。このため、記録密度も8000BP
Iと低密度である。
γ-Fe20B * CrO2e Fe, Fe-Co
It is manufactured by mixing and dispersing magnetic particles such as in a binder made of organic resin, coating it on a substrate, drying, and baking it, and the magnetic memory itself is at the level of the size of these magnetic particles. It is discontinuous. Therefore, the recording density is also 8000BP.
I and low density.

そこで、近年、磁気記憶媒体の高記憶密度化の要請によ
り、連続薄膜媒体からなる保磁力の大きい磁気記憶媒体
の研究開発が盛んに行なわれている。この連続薄膜媒体
は主にメッキ、真空蒸着。
Therefore, in recent years, due to the demand for higher storage densities in magnetic storage media, research and development of magnetic storage media with high coercive force made of continuous thin film media has been actively conducted. This continuous thin film medium is mainly used for plating and vacuum deposition.

スパッタ、イオンブレーティング等の手法により作られ
る。
Manufactured using methods such as sputtering and ion blating.

ダブり瓢−・ティー・マロニー(W、T。Double Gourd Tea Maloney (W, T.

Maloney)氏により、アイ・イー・イーーイート
ランズ・マグン1979年マグー15巻1135ページ
(IEEE Trans、 Magn、 MAG−15
,1135(1979)に発表された論文においてガラ
ス基板上にクロムを被覆し、さら忙その上にコバルト薄
膜を被覆した磁気記憶媒体が報告されているが、高温、
高湿の劣悪な雰囲気では腐食し易く、この意味で十分耐
食性のある金属薄膜媒体はまだ知られていないと言える
。また上記コバルト薄膜媒体は残留磁束密度が大き過ぎ
るため、記録密度特性及びS/N比が悪(、高密度記録
には適さない。
Maloney), IEEE Trans, Magn, MAG-15, 1979, Volume 15, page 1135 (IEEE Trans, Magn, MAG-15
, 1135 (1979) reported a magnetic storage medium in which a glass substrate was coated with chromium and a cobalt thin film was further coated on top of the glass substrate.
It is easy to corrode in a poor atmosphere of high humidity, and in this sense, it can be said that a metal thin film medium with sufficient corrosion resistance is not yet known. Furthermore, since the cobalt thin film medium has an excessively large residual magnetic flux density, its recording density characteristics and S/N ratio are poor (and it is not suitable for high-density recording).

また、ツーチェン(Tu Chen)氏によりフイ・イ
ー・イー・イートランズ、マグ、1979年マグ−15
巻1444ページ(IEEE Tr;ans、Magh
In addition, Mr. Tu Chen, Hui E. E. Eatlands, Mag, 1979 Mug-15
Volume 1444 page (IEEE Tr;ans, Mag
.

MAG−15,1444(1979)) K発表された
論文におい不、レニウムを含むコバルト合金薄膜を被覆
した磁気記録媒体が報告されているが、保磁力が最高、
で500 Ga (エルステッド)と小さいため、記録
密度が25000BPIと低密度であり、かつ前記コバ
ルト薄膜媒体同様、耐食性も劣っている。
MAG-15, 1444 (1979)) In a published paper, a magnetic recording medium coated with a cobalt alloy thin film containing rhenium has been reported, but the coercive force is the highest,
Since the recording density is as low as 500 Ga (oersted), the recording density is as low as 25,000 BPI, and like the cobalt thin film medium, the corrosion resistance is also poor.

(発明の目的) 本発明は上述の現況に鑑み、上記281類の媒体よりは
るかに耐食性が優れ、残留磁束密度が小さく、さらに保
磁力が大きく、角形性が優れ、高記録密度及び高S/N
比が得られる金属薄膜媒体からなる磁気記憶体を提供す
るものである。
(Objective of the Invention) In view of the above-mentioned current situation, the present invention has been developed to have far superior corrosion resistance, lower residual magnetic flux density, larger coercive force, superior squareness, higher recording density and higher S/ N
The object of the present invention is to provide a magnetic storage body made of a metal thin film medium that can obtain a high magnetic ratio.

(発明の構成) すなわち、本発明の磁気記憶体は基板上に非磁性層が被
覆され、該非磁性層上に少なくともニッケルを10〜3
原子パーセント及びレニウムを2〜22原子パーセント
、同時に含むコバルト合金薄膜媒体が被覆されて構成さ
れている。あるいは本発明の磁気記憶体は基板上に非磁
性層が被αされ、該非磁性層上に非磁性金属下地層を介
して、少なくともニッケルを10〜30原子パーセント
及びレニウムを2〜22原子パーセント、同時に含むコ
バルト合金薄膜媒体が被覆されて構成されている。
(Structure of the Invention) That is, in the magnetic memory of the present invention, a nonmagnetic layer is coated on a substrate, and at least 10 to 3 nickel is coated on the nonmagnetic layer.
Coated with a cobalt alloy thin film medium simultaneously containing atomic percent rhenium and 2 to 22 atomic percent rhenium. Alternatively, in the magnetic memory of the present invention, a non-magnetic layer is coated on a substrate, and on the non-magnetic layer, at least 10 to 30 atomic percent of nickel and 2 to 22 atomic percent of rhenium are coated on the non-magnetic layer via a non-magnetic metal underlayer. At the same time, it is coated with a cobalt alloy thin film medium.

(構成の詳細な説明) 次に図面を谷照して本発明の詳細な説明する。(Detailed explanation of configuration) Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の第一の発明の磁気記憶体の部分断面図
である。第1図において磁気記憶体の基板1としてアル
ミ合金が軽くて加工性が良(安価なことから最も良(用
いられるが、場合によりてはチタン合金が用いられるこ
ともある。基板表面は機械加工圧より小さなうねり(円
周方向で50μm以下、半径方向で100μm以下)を
有する面に仕上げられている。) 次にこの基板1の上に非磁性層2としては二、・ケル−
燐合金をめっきにより被覆したものが望ましく、この下
地体2の表面は機械的研磨により最大表面粗さ0.03
μm以下に鏡面仕上げされる。
FIG. 1 is a partial sectional view of a magnetic storage body according to the first aspect of the present invention. In Fig. 1, aluminum alloy is used as the substrate 1 of the magnetic memory body because it is light and has good workability (it is the best because it is cheap), but titanium alloy is also used in some cases.The surface of the substrate is machined. The surface is finished with waviness smaller than the pressure (50 μm or less in the circumferential direction and 100 μm or less in the radial direction).
It is preferable that the base body 2 is coated with a phosphorus alloy by plating, and the surface of this base body 2 is mechanically polished to a maximum surface roughness of 0.03.
Mirror finish to micrometer or less.

次に上記非磁性層2の上に金属磁性媒体4として少なく
ともニッケルを10〜30原子パーセント及びレニウム
を2〜22原子パーセント、同時に含むコバルト合金か
らなる金属薄膜媒体が高周波スパッタ法により被覆され
る。このようにして作られた金属薄膜媒体は保磁力(’
Hc ) 5000e(エルステッド)以上、飽和磁束
密度(Bs)12000G (ガウス)以下、角形比(
Br/Bs )0.7〜0.9.保磁力角形比(8’ 
) 0.7〜0.9の範囲にあり、磁気記憶媒体として
優れたヒステリシス特性を示す。
Next, a metal thin film medium 4 made of a cobalt alloy containing at least 10 to 30 atomic percent of nickel and 2 to 22 atomic percent of rhenium is coated on the nonmagnetic layer 2 by high-frequency sputtering. The metal thin film medium made in this way has a coercive force ('
Hc) 5000e (Oersted) or more, saturation magnetic flux density (Bs) 12000G (Gauss) or less, squareness ratio (
Br/Bs)0.7-0.9. Coercive force squareness ratio (8'
) is in the range of 0.7 to 0.9 and exhibits excellent hysteresis characteristics as a magnetic storage medium.

さらに上記金属薄膜媒体4の上に保護膜を被覆してもよ
い。
Furthermore, the metal thin film medium 4 may be coated with a protective film.

金属薄膜体4の上に被覆される保護膜は硬質であること
が望ましく、オスミウム、ルテニウム、イリジウム、マ
ンガン、タングステン等の金属あるいはケイ素、チタン
、タンタルまたはノーフニウムの酸化物、窒化物または
炭化物あるいはホウ素、炭素またはホウ素と炭素の合金
あるいはポリ珪酸が望ましい。
The protective film coated on the metal thin film body 4 is preferably hard, and is made of metal such as osmium, ruthenium, iridium, manganese, or tungsten, or an oxide, nitride, or carbide of silicon, titanium, tantalum, or nofnium, or boron. , carbon or an alloy of boron and carbon, or polysilicic acid.

さらに保わ膜の上KR−G (R−は炭素数10〜40
の飽和又は不飽和炭化水素又はふっ素化炭化水素、Gは
C0OH,OH,NH2,C0OR’、 S i (O
些り3゜C0NH,などの官能基)からなる潤滑剤を塗
布することもできる。
Furthermore, on top of the retaining film KR-G (R- is carbon number 10-40
saturated or unsaturated hydrocarbons or fluorinated hydrocarbons, G is C0OH, OH, NH2, C0OR', S i (O
It is also possible to apply a lubricant consisting of a functional group such as 3°C0NH, etc.

第2図は本発明の第2の発明の磁気記憶体の部分断面図
である。基板1及び非磁性層2は第1図と同様にして、
上記非磁性層2の鏡面研磨1忙クロム、モリブデン、タ
ングステン等に代表される非磁性金属下地層3が高周波
スパッタ法忙より被覆される。又は411にクロム、銅
、鋼はメッキ法によりても被覆することができる。その
クロム、モリ7デン、タングステンに代表される非磁性
金属下地層3は第3図に示すように、金属磁性媒体4の
保磁力を高める。しかし、下地層3の膜厚が0.8μm
で磁性媒体4の保磁力がほぼ飽和するので0.8μmよ
り厚くシてもむだである。ここで、磁性媒体4は、第1
図の磁性媒体牛と同様である。非磁性金属下地IvI3
はクロム、モリブデン、タングステン以外でもビスマス
、スズ、鉛、アルミニウム、亜鉛、カドミウム、金、パ
ラジウム、白金、ロジウム、イリジウム、ルテニウム、
オスミウム、レニウム等の金属が有効である。
FIG. 2 is a partial sectional view of a magnetic storage body according to a second aspect of the present invention. The substrate 1 and the nonmagnetic layer 2 are prepared in the same manner as in FIG.
After mirror polishing the nonmagnetic layer 2, a nonmagnetic metal underlayer 3 typically made of chromium, molybdenum, tungsten, etc. is coated by high frequency sputtering. Alternatively, chromium, copper, or steel can be coated on 411 by plating. The nonmagnetic metal underlayer 3, typically made of chromium, molybdenum, or tungsten, increases the coercive force of the metal magnetic medium 4, as shown in FIG. However, the thickness of the base layer 3 is 0.8 μm.
Since the coercive force of the magnetic medium 4 is almost saturated at this point, it is useless to make it thicker than 0.8 μm. Here, the magnetic medium 4 is
It is similar to the magnetic medium cow in the figure. Non-magnetic metal base IvI3
In addition to chromium, molybdenum, and tungsten, there are also bismuth, tin, lead, aluminum, zinc, cadmium, gold, palladium, platinum, rhodium, iridium, ruthenium,
Metals such as osmium and rhenium are effective.

第4図は飽和磁束密度、保磁力及び角形性のニッケルを
20原子パーセント含む金属薄膜媒体中のレニウムの原
子パーセントによる変化を示したもので、レニウム2〜
22at、%の範囲で高密度記録が可能な磁気記憶媒体
として使用できる。
Figure 4 shows changes in saturation magnetic flux density, coercive force, and squareness depending on the atomic percent of rhenium in a metal thin film medium containing 20 atomic percent of nickel.
It can be used as a magnetic storage medium capable of high-density recording in the range of 22 at.%.

第5図は、以下に示す各実施例及び比較例を25℃の水
中に浸漬して飽和磁束密度Baの変化を調べたもので横
軸は水中浸漬日数で、縦軸は飽和磁束密度B8の変化率
(B s /B o +ただしBoは浸漬前の飽和磁束
密度)を示している。第5図の実施例5より耐食性に関
してニッケルとレニウムの合計含有量が12原子パ一セ
ント以上が望ましいことがわかった。
In Figure 5, the following Examples and Comparative Examples were immersed in water at 25°C to examine changes in the saturation magnetic flux density Ba. The horizontal axis represents the number of days of immersion in water, and the vertical axis represents the saturation magnetic flux density B8. The rate of change (B s /B o + where Bo is the saturation magnetic flux density before immersion) is shown. From Example 5 in FIG. 5, it was found that with regard to corrosion resistance, it is desirable that the total content of nickel and rhenium be 12 atomic percent or more.

以上の様にニッケルを10〜3o原子パーセント及びレ
ニウムを2〜22原子パーセント含むコバルト合金から
なる金属薄膜は磁気記録媒体をして耐食性及び磁気特性
共VC優れていることがわかった。
As described above, it has been found that a metal thin film made of a cobalt alloy containing 10 to 30 atomic percent of nickel and 2 to 22 atomic percent of rhenium has excellent corrosion resistance and magnetic properties when used as a magnetic recording medium.

送圧具体的に実施例及び比較例により本発明を説明する
Pressure Sending The present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例 1 合金円盤1として旋盤加工および熱矯正によって十分小
さなうねり(円周方向で50μm以下および半径方向で
10μm以下)を有する面釦仕上げられたディスク状ア
ルミニウム合金盤上に非磁性層2としてニッケルー燐合
金を約5o11t、+の厚さKめりきし、このニッケル
ー燐めっき膜を最大表面粗さ0.02μm1厚さ30μ
mまで鏡面研磨仕上げした。
Example 1 A non-magnetic layer 2 was formed on a disk-shaped aluminum alloy disk which had sufficiently small waviness (50 μm or less in the circumferential direction and 10 μm or less in the radial direction) and had sufficiently small waviness (50 μm or less in the circumferential direction and 10 μm or less in the radial direction) as the alloy disk 1. The phosphorus alloy is plated to a thickness of approximately 5011t, and the nickel-phosphorus plating film is coated with a maximum surface roughness of 0.02μm and a thickness of 30μ.
Mirror polished to m.

送圧このニッケルー燐めっき膜の1忙金属下地層3とし
てクロムを高周波スパッタ法により03μm被覆した。
This nickel-phosphorus plating film was coated with chromium to a thickness of 0.3 μm as a metallic underlayer 3 by high-frequency sputtering.

送圧このクロムスパッタ膜の上に金属磁性媒体4として
高周波スパヅタ法によりアルゴン圧4X10−2tor
r、パワー密度1.OW/ctIにて膜厚5ooXのニ
ッケルを201原子パーセント及びレニウムを12原子
パーセント含むコバルト合金薄膜を被覆した。さらにこ
の金属磁性媒体4の上に5in2を2ooXの膜厚に高
周波スパッタ法により被椀して磁気ディスクを作った。
Pressure: Argon pressure of 4 x 10-2 torr is applied to the chromium sputtered film as a metal magnetic medium 4 by high frequency sputtering method.
r, power density 1. A cobalt alloy thin film containing 201 atomic percent of nickel and 12 atomic percent of rhenium was coated with OW/ctI to a film thickness of 5ooX. Further, a 5 in 2 film was coated on top of this metal magnetic medium 4 to a thickness of 20× by high frequency sputtering to produce a magnetic disk.

保磁力He、残留磁束密度Br(BsX8)はそれぞれ
850Qe、4600Gであった。
The coercive force He and residual magnetic flux density Br (BsX8) were 850 Qe and 4600 G, respectively.

実施例 2 実施例1と同様に但し金属磁性媒体4としてニッケルを
20原子パーセント及びレニウムを4原子パーセント含
むコバルト合金薄膜な被Oして磁気ディスクを作った。
Example 2 A magnetic disk was prepared in the same manner as in Example 1 except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing 20 atomic percent of nickel and 4 atomic percent of rhenium.

Hc、Brはそれぞれ8000e。Hc and Br are each 8000e.

8800Gであった。It was 8800G.

実施例 3 実施例1と同様K、但し、金属磁性媒体4としてニッケ
ルを20原子ノ(−セント及びレニウムを18原子パー
セン、ト含むコバルト合金薄膜を被覆して磁気ディスク
を作りた。Hen B、rはそれぞれ5500に、、 
’1’800 Gであった。
Example 3 A magnetic disk was made using the same method as in Example 1, except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing 20 atomic percent of nickel (-st) and 18 atomic percent of rhenium.Hen B, r is 5500 each,
'1' It was 800G.

実施例 4 実施例1と同様に、但し、金属磁性媒体4としてニッケ
ル10原子パ・−セント及びレニウム12原子パーセン
ト含むコバルト合金薄膜を被覆して磁気ディスクを作っ
た。)(e、Brはそれぞれ550〜,6300Gであ
った。
Example 4 A magnetic disk was fabricated in the same manner as in Example 1, except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing 10 atomic percent of nickel and 12 atomic percent of rhenium. ) (e and Br were 550 to 6300G, respectively.

実施例 5 実施例1と同様に、但し、金属磁性媒体4としてニッケ
ルto原子、<−セント及びレニウム2原モバーセント
含むコバルト“合金薄膜を被覆して・磁気ディスクを作
った。He、Brはそれぞれ5500t。
Example 5 A magnetic disk was fabricated in the same manner as in Example 1, except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing nickel to atoms, <- cents, and rhenium di atoms. He and Br were respectively 5500t.

10000Gであった。It was 10,000G.

実施例 6 実施例1と同様忙、但し、金属磁性媒体4としてニッケ
ル30原子パーセント及びレニウム12原子パーセント
含むコバルト合金薄膜を被覆して磁気ディスクを作った
。He、Br はそれぞれ5oOOe、2800 Gで
あった。
Example 6 A magnetic disk was prepared in the same manner as in Example 1, except that the metal magnetic medium 4 was coated with a cobalt alloy thin film containing 30 atomic percent of nickel and 12 atomic percent of rhenium. He and Br were 5oOOe and 2800G, respectively.

実施例 7 実施例1と同様に、但し、非磁性金属下地層3としてク
ロムを高周波スパッタ法により0.1μm被覆して磁気
ディスクを作った。He * B r 6000e。
Example 7 A magnetic disk was manufactured in the same manner as in Example 1, except that chromium was coated with a thickness of 0.1 μm as the nonmagnetic metal underlayer 3 by high frequency sputtering. He * B r 6000e.

4600Gであった。It was 4600G.

実施例 8 実施例1と同様に、但し、非磁性金属下地層3としてク
ロムを0.5μm被覆して磁気ディスクを作った。He
、Brはそれぞれ11000*、4600Gであった。
Example 8 A magnetic disk was produced in the same manner as in Example 1, except that chromium was coated to a thickness of 0.5 μm as the non-magnetic metal underlayer 3. He
, Br were 11000* and 4600G, respectively.

実施例 9 実施例1と同様に、但し、非磁性金属下地層3として鍋
、銀、ダイヤモンド構造炭素(C)、ケイ素。
Example 9 Same as Example 1, except that the non-magnetic metal underlayer 3 was made of ladle, silver, diamond structure carbon (C), and silicon.

ゲルマニウム、マンガン、バナジウムをそれぞ、れ被覆
して磁気ディスクを作った。
Magnetic disks were made by coating them with germanium, manganese, and vanadium.

へ施例 10 実施例1と同様に、但し、非磁性金属下地層3としてア
ルミニウム2o原子パーセント會むりpム合金を被覆し
て磁気ディスクを作った。
EXAMPLE 10 A magnetic disk was produced in the same manner as in Example 1, except that the nonmagnetic metal underlayer 3 was coated with an aluminum 20 atomic percent pm alloy.

実施例 11 実施例1と同様に、但し、非磁性金属下地層3のクロム
を電気メツキ法により0.5μm被覆して磁気ディスク
を作った。
Example 11 A magnetic disk was manufactured in the same manner as in Example 1, except that the nonmagnetic metal underlayer 3 was coated with 0.5 μm of chromium by electroplating.

実施例 12 実施例1と同様忙して、但し、非磁性層としてアルミニ
ウム合金円盤1表面を陽極酸化により非磁性層として酸
化アルミを被覆し、この酸化アルミを最大表面粗さ0.
02μmまで鏡面研磨仕上げした。
Example 12 Same as Example 1, except that the surface of the aluminum alloy disk 1 was coated with aluminum oxide as a non-magnetic layer by anodizing, and the aluminum oxide was coated with a maximum surface roughness of 0.
Mirror polished to a depth of 0.02 μm.

実施例 13 実施例1と同様にして、但し、保護膜として次の物質を
それぞれスパッタ法により2ooXの厚さに被覆してそ
れぞれ磁気ディスクを作った。
Example 13 Magnetic disks were fabricated in the same manner as in Example 1, except that the following materials were coated as protective films to a thickness of 2ooX by sputtering.

実施例 14 実施例1と同様にして、但し、保護膜としてテトラヒド
ロキシシラ/20重量パーセントアルコール溶液をスピ
ン塗布法忙より塗布した後、200℃3時間焼成して磁
気ディスクを作った。
Example 14 A magnetic disk was produced in the same manner as in Example 1, except that a tetrahydroxysila/20 weight percent alcohol solution was applied as a protective film by spin coating and then baked at 200° C. for 3 hours.

実施例 15 実施例1と同様に、但し、非磁性金属下地層3としてモ
リブデンを被覆して磁気ディスクを作った。He、Br
はそれぞれ、900014.4600 Gであった。
Example 15 A magnetic disk was produced in the same manner as in Example 1, except that molybdenum was coated as the non-magnetic metal underlayer 3. He,Br
were 900014.4600 G, respectively.

実施例 16 実施例1と同様に、但し、非磁性金属下地層3としてタ
ングステンを被覆して磁気ディスクを作った。He、 
Brはそれぞれ、900De、 4.600 Gであっ
た0 実施例 17 実施例1と同様に、但し、非磁性金属下地層3を被覆し
ないで、非磁性層2に直接、金属磁性媒体4を被覆して
磁気ディスクを作った。He、 Brはそれぞれ、55
00e、 4600 Gであった。
Example 16 A magnetic disk was manufactured in the same manner as in Example 1, except that tungsten was coated as the non-magnetic metal underlayer 3. He,
Br was 900 De and 4.600 G, respectively. Example 17 Same as Example 1, except that the metal magnetic medium 4 was directly coated on the non-magnetic layer 2 without covering the non-magnetic metal underlayer 3. and created a magnetic disk. He, Br are each 55
00e, 4600G.

実施例 五8 実施例1と同様に、但し、保護膜の5i02を被覆しな
いで、磁気ディスクを作った。
Example 58 A magnetic disk was produced in the same manner as in Example 1, except that the protective film 5i02 was not coated.

比較例 1 実施例1と同様にして、但し、金属下地層3を介さず、
金属磁性媒体4としてコバルト#膜を5ooAの膜厚で
被覆して磁気ディスクを作った。He。
Comparative Example 1 In the same manner as in Example 1, but without the metal base layer 3,
A magnetic disk was fabricated by coating a cobalt # film with a thickness of 5ooA as the metal magnetic medium 4. He.

Brはそれぞれ1200e、 12000Gであった。Br was 1200e and 12000G, respectively.

比較例 2 実施例1と同様忙して、但し、金属磁性媒体4としてコ
バルト薄膜を5ooAの膜厚で被覆して磁気ディスクを
作った。He、Brはそれぞれ4500a。
Comparative Example 2 A magnetic disk was prepared in the same manner as in Example 1, except that the metal magnetic medium 4 was coated with a cobalt thin film with a thickness of 50A. He and Br are each 4500a.

12000 Gであった。It was 12000G.

比較例 3 実施例1と同様忙して、但し、金属下地層3を介さず、
金属磁性媒体4として、レニウムを10原子パーセント
含むコバルト合金薄膜を500Xの膜厚で被覆して磁気
ディスクを作った。He + B rはそれぞれ5oo
oe、63QOQであった。
Comparative Example 3 Same as Example 1, but without the metal base layer 3,
As the metal magnetic medium 4, a magnetic disk was fabricated by coating a cobalt alloy thin film containing 10 atomic percent rhenium with a film thickness of 500×. He + Br are each 5oo
oe, 63QOQ.

比較例 4 実施例1と同様にして、但し、金属磁性媒体化して、レ
ニウムを10原子パーセント含むコバルト合金薄膜を5
00久の膜厚で被覆して磁気ディスクを作った。He、
Brはそれぞれ500Da、6300Gでありた。
Comparative Example 4 In the same manner as in Example 1, however, a cobalt alloy thin film containing 10 atomic percent of rhenium was made into a metal magnetic medium.
A magnetic disk was made by coating with a film thickness of 0.00 kyu. He,
Br was 500 Da and 6300 G, respectively.

以上実施例1−18で示した磁気ディスクを用いて電磁
変換特性及びヘッドとの摩耗試験−及び環境試験を行な
った結果、次の特性を得た。ヘッドとの摩耗試験は2万
回のフンタクトスタートストップテストを行ない、ディ
スク表面に傷は全く見られなかった。又、環境試験につ
いて温度80℃、相対湿度90%で6ケ月放置した時の
エラー増加数は全て0であり、十分な耐食性を有してい
ることが分った。又、比較例IKついては保磁力が小さ
く十分な電磁変換が−得られなか、ったので、比較の為
、25℃の水中に浸漬して飽和磁束密度B8の変化を調
べた所、第5図の様な結果か得られ、比較例1に比べ、
実施例は優れた耐食性を有することが分った。第5図で
縦軸は飽和磁束密度B8の変化率(Bs/Be、但しB
eは浸漬前の飽和磁束密度)を示す。又、実施例1〜1
8のディスクについて30000〜70000BPIの
高密度記録ができ、かつ%30dB30dBれたS/N
比が得られたが、比較例1は保磁力が小さく、高密度記
録を達成することはできなかった。
Using the magnetic disk shown in Example 1-18 above, electromagnetic conversion characteristics, head wear tests, and environmental tests were conducted, and as a result, the following characteristics were obtained. As for the wear test with the head, a 20,000-time start-stop test was performed, and no scratches were found on the disk surface. Furthermore, in the environmental test, when the product was left at a temperature of 80°C and a relative humidity of 90% for 6 months, the number of errors increased was 0, indicating that it had sufficient corrosion resistance. In addition, for comparative example IK, the coercive force was small and sufficient electromagnetic conversion could not be obtained, so for comparison, it was immersed in water at 25°C and the change in saturation magnetic flux density B8 was investigated, as shown in Figure 5. The following results were obtained, and compared to Comparative Example 1,
The examples were found to have excellent corrosion resistance. In Figure 5, the vertical axis is the rate of change of the saturation magnetic flux density B8 (Bs/Be, where B
e indicates the saturation magnetic flux density (before immersion). Moreover, Examples 1-1
High-density recording of 30,000 to 70,000 BPI is possible on the 8th disc, and the S/N is %30dB30dB.
However, Comparative Example 1 had a small coercive force and could not achieve high density recording.

また、比較例2は電磁変換特性が得られたが、1000
0BPIと高密度記録は達成できず、かっS/N 比が
10dBと悪く、実用忙供することはできない。
In addition, in Comparative Example 2, electromagnetic conversion characteristics were obtained, but 1000
High-density recording of 0 BPI could not be achieved, and the S/N ratio was poor at 10 dB, making it impossible for practical use.

又、環境試験について温度80℃、相対湿度90チで6
ケ月放置した時のエラー増加数は1100になり、耐食
性が非常に劣りていることがわかった。
In addition, regarding the environmental test, the temperature was 80℃ and the relative humidity was 90℃.
The number of errors increased by 1,100 when left for several months, indicating that the corrosion resistance was extremely poor.

又、比較例1と同様に25℃の水中に浸漬して飽和磁束
密度B8の変化を調べた所、第5図に示すように比較例
1と同様に耐食性が非常は劣7ていす ることかわかった。
In addition, as in Comparative Example 1, the change in saturation magnetic flux density B8 was investigated by immersing it in water at 25°C, and as shown in Figure 5, the corrosion resistance was very poor, as in Comparative Example 1. Understood.

また、比較例3,4の電磁変換特性は両者とも2500
0BPIの低密度記録しか、達成できなかつた。又、環
境試験について温度80℃、相対湿度90%で6ケ月放
置した時のエラー増加数は1000になり、比較例1.
2と同様に耐食性が非常に劣っていることがわかった。
In addition, the electromagnetic conversion characteristics of Comparative Examples 3 and 4 are both 2500
Only low density recording of 0 BPI could be achieved. Furthermore, regarding the environmental test, the number of errors increased by 1000 when it was left at a temperature of 80°C and a relative humidity of 90% for 6 months, and Comparative Example 1.
Similar to No. 2, it was found that the corrosion resistance was very poor.

又、比較例1,2と同同様に25℃の水中に浸漬して飽
和磁束密度B8の変化を調べた所、第5図忙示すように
耐食性が非常に劣りていることがわかった。
In addition, as in Comparative Examples 1 and 2, the samples were immersed in water at 25° C. to examine changes in the saturation magnetic flux density B8, and as shown in FIG. 5, it was found that the corrosion resistance was very poor.

以上の結果から本発明の磁気記憶体は優れた耐食性(耐
環境性)及び耐摩耗性及び高記碌密度特性を有している
ことがわかった。
From the above results, it was found that the magnetic memory of the present invention has excellent corrosion resistance (environmental resistance), abrasion resistance, and high recording density characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の発明の磁気記憶体の部分断面図
である。図中、1は基板、2は非磁性層、4は金属薄膜
媒体である。第2図は本発明の第2の発明の部分断面図
である。図中、1は基板、2は非磁性層、3は非磁性金
属下地層%4は金属薄膜媒体である。第3図は金属薄膜
媒体がニッケル20原子パーセント、レニウムが12原
子パーセントのコバルト合金の場合の非磁性金属下地層
のクロム、モリブデン、タングステンの厚さに対する磁
性媒体の保磁力の変化を示した特性図である。 第4図は非磁性金属下地層のクロムが0.3μmの場合
及び非磁性金属下地層がない場合のニッケル20原子パ
ーセントを含むコバルト合金薄膜媒体における飽和磁束
密度、保磁力及び角形性の金属薄膜媒体中のレニウムの
原子バーセントによる変化を示した特性図である。第5
図は本磁気記憶体の実施例及び比較例の水浸漬時間によ
る飽和磁束密度の変化率の変化を示した特性図である。 代理人弁理士 内原 1 第1図 第2図 第 3 図 0 0.25 0.50 0.75 f、OQ下xrd
3のCr 、 No、 W ノlj) :” (、tt
m’))第4図 Rc 含廁量、χ (42%) C0θ、8−χ/V; o、2島Z 涜呆榎制例くべ欅←
FIG. 1 is a partial sectional view of a magnetic storage body according to a first aspect of the present invention. In the figure, 1 is a substrate, 2 is a nonmagnetic layer, and 4 is a metal thin film medium. FIG. 2 is a partial sectional view of the second aspect of the present invention. In the figure, 1 is a substrate, 2 is a nonmagnetic layer, 3 is a nonmagnetic metal underlayer, and 4 is a metal thin film medium. Figure 3 shows the change in coercive force of the magnetic medium with respect to the thickness of chromium, molybdenum, and tungsten in the nonmagnetic metal underlayer when the thin metal film medium is a cobalt alloy containing 20 atomic percent nickel and 12 atomic percent rhenium. It is a diagram. Figure 4 shows the saturation magnetic flux density, coercive force, and squareness of the metal thin film in a cobalt alloy thin film medium containing 20 atomic percent nickel when the chromium in the nonmagnetic metal underlayer is 0.3 μm and when there is no nonmagnetic metal underlayer. FIG. 3 is a characteristic diagram showing changes depending on the atomic percent of rhenium in the medium. Fifth
The figure is a characteristic diagram showing the change in the rate of change of saturation magnetic flux density depending on the water immersion time of the present magnetic storage body in Examples and Comparative Examples. Representative patent attorney Uchihara 1 Figure 1 Figure 2 Figure 3 Figure 0 0.25 0.50 0.75 f, OQ lower xrd
3 Cr, No, W nolj) :” (,tt
m')) Figure 4 Rc Retention content, χ (42%) C0θ, 8-χ/V;

Claims (2)

【特許請求の範囲】[Claims] (1) 基板上に非磁性層が被覆され、該非磁性層上に
少なくともニッケルを10〜30原子パーセント及びレ
ニウムを2〜22原子パーセント、同時に含むコバルト
合金薄膜媒体が被覆されて構成されたことを特徴とする
磁気記憶体。
(1) A nonmagnetic layer is coated on a substrate, and a cobalt alloy thin film medium containing at least 10 to 30 atomic percent of nickel and 2 to 22 atomic percent of rhenium is coated on the nonmagnetic layer. Characteristic magnetic memory.
(2) 基板上に非磁性層が被覆され、該非磁性層上に
非磁性層金属下地層を介して、少なくともニッケルを1
0〜30原子パーセント及びレニウムを2〜22原子パ
ーセント、同時忙含むコバルト合金薄膜媒体が被扱され
て構成されたことを特徴とする磁気記憶体。
(2) A non-magnetic layer is coated on the substrate, and at least one layer of nickel is coated on the non-magnetic layer via a non-magnetic metal underlayer.
1. A magnetic storage body comprising a cobalt alloy thin film medium containing rhenium in an amount of 0 to 30 atomic percent and rhenium in an amount of 2 to 22 atomic percent.
JP4782984A 1984-03-13 1984-03-13 Magnetic recording medium Pending JPS60193124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4782984A JPS60193124A (en) 1984-03-13 1984-03-13 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4782984A JPS60193124A (en) 1984-03-13 1984-03-13 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60193124A true JPS60193124A (en) 1985-10-01

Family

ID=12786240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4782984A Pending JPS60193124A (en) 1984-03-13 1984-03-13 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60193124A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231420A (en) * 1986-03-31 1987-10-12 Konika Corp Magnetic recording medium
US5484491A (en) * 1991-09-30 1996-01-16 Kabushiki Kaisha Toshiba Ferromagnetic film
US6544672B1 (en) 1994-11-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium and magnetic storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231420A (en) * 1986-03-31 1987-10-12 Konika Corp Magnetic recording medium
US5484491A (en) * 1991-09-30 1996-01-16 Kabushiki Kaisha Toshiba Ferromagnetic film
US6544672B1 (en) 1994-11-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium and magnetic storage

Similar Documents

Publication Publication Date Title
JPH0580804B2 (en)
US4074016A (en) Magnetic record carrier
JPH0572727B2 (en)
JPH0566647B2 (en)
US5122423A (en) Magnetic recording medium comprising a chromium underlayer deposited directly on an electrolytic abrasive polished high purity aluminum alloy substrate
JPS60193124A (en) Magnetic recording medium
JP2005108419A (en) THIN FILM MEDIUM WITH DUAL SEED LAYER OF RuAl/NiAlB
JPH0474772B2 (en)
JPS6018817A (en) Magnetic storage medium
JPS59180829A (en) Magnetic storage body
JPS5961107A (en) Magnetic memory body
JPS59177725A (en) Magnetic storage body
JPS6035332A (en) Magnetic storage body
US3549418A (en) Magnetic recording films of cobalt
JPS59116924A (en) Magnetic storage medium
JPS5996539A (en) Magnetic recording disc
JPS59116925A (en) Magnetic storage medium
JPS62141628A (en) Magnetic recording medium
JPH0580803B2 (en)
JPH0580805B2 (en)
JPS6364623A (en) Magnetic recording medium
JPS63161523A (en) Magnetic recording medium
JPH0467251B2 (en)
JPS62256217A (en) Magnetic recording medium
JPS6267719A (en) Magnetic recording medium