JPS62256217A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62256217A
JPS62256217A JP61068675A JP6867586A JPS62256217A JP S62256217 A JPS62256217 A JP S62256217A JP 61068675 A JP61068675 A JP 61068675A JP 6867586 A JP6867586 A JP 6867586A JP S62256217 A JPS62256217 A JP S62256217A
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
recording layer
magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068675A
Other languages
Japanese (ja)
Other versions
JP2644994B2 (en
Inventor
Hiroshi Morita
廣 森田
Hiroyuki Ikeda
裕幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPS62256217A publication Critical patent/JPS62256217A/en
Application granted granted Critical
Publication of JP2644994B2 publication Critical patent/JP2644994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve corrosion resistance without spoiling reproduction output by successively laminating a magnetic recording layer essentially consisting of Co, and magnetic recording layer essentially consisting of Co and Cr on a nonmagnetic substrate. CONSTITUTION:A smooth layer 12, an underlying layer 13, the magnetic recording layer 14 and a protective lubricating layer 17 are successively formed on the nonmagnetic substrate 11 consisting of an Al alloy, etc. The layer 14 consists of the 1st magnetic recording layer essentially consisting of Co and the 2nd magnetic recording layer 16 essentially consisting of Co-Cr on the layer 15. The layer 15 may be formed by using Co and Ni as the essential components or adding one kind among Fe, P. W, Pt, and Cr to Co and Ni or incorporating one kind among Pt, Y, La, Ce, Pr, Sm, Nd, and Pm as the essential component to Co. The film thickness of the layer 15 is preferably 400-800Angstrom and the film thickness of the layer 16 is preferably 300-500Angstrom . Oxygen is preferably incorporated into the layer 15.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、磁気記録媒体に関するものである。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to magnetic recording media.

〈従来の技術) 現在実用化されている磁気記録媒体は不連続媒体を有す
るものが主流である。この不連続媒体の磁気記録層はF
e、Fe−Go、Fe2 o3゜CrO2等の磁性体粒
子を有機樹脂から成るバインダーに混合分散して基板上
に塗布、乾燥、焼成したものである。しかし、近年の記
録媒体の高密度化に伴って磁性体が媒体中で連続してい
る連続薄膜媒体、即ち、保磁力の大きくなるような磁気
記録層の薄膜化が進んでおり、従来の塗布型から、メッ
キ型、あるいはスパッタリング型へと成膜方式が推移し
つつある。
(Prior Art) Most of the magnetic recording media currently in practical use have discontinuous media. The magnetic recording layer of this discontinuous medium is F
Magnetic particles such as e, Fe-Go, Fe2 o3 ° CrO2, etc. are mixed and dispersed in a binder made of organic resin, and the mixture is coated on a substrate, dried, and fired. However, as the density of recording media has increased in recent years, the magnetic recording layer has become thinner, meaning continuous thin film media in which the magnetic material is continuous within the medium, in other words, the magnetic recording layer has become thinner and has a larger coercive force. Film forming methods are shifting from mold to plating or sputtering methods.

そのような状況の下で、磁気記録媒体に対してなされる
要求は磁気記録層は薄く、しかも十分な再生出力が得ら
れることである。このような媒体としては、コバルト系
合金を磁気記録層とするものが一般的である。この種の
磁気記録媒体は通常第7図のように、非磁性の基体(1
)上に平滑層(2)を形成した上に更にCrを主とした
下地層(3)を形成し、その上に磁気記録層(4)が形
成され、最表面に保護、潤滑層(5)を設けた構造を有
している。
Under such circumstances, the requirements for magnetic recording media are that the magnetic recording layer be thin and that sufficient reproduction output can be obtained. Such media generally have a magnetic recording layer made of a cobalt alloy. This type of magnetic recording medium usually has a non-magnetic base (1
), on which a smooth layer (2) is formed, an underlayer (3) mainly made of Cr is formed, a magnetic recording layer (4) is formed on top of this, and a protective and lubricating layer (5) is formed on the outermost surface. ).

(発明が解決しようとする問題点) CO−Ni系合金を磁気記録層とする場合、十分な再生
出力を得るために磁気記録層の厚みは500人乃至1o
oo人で十分である。しかし、Co−Ni系合金のみで
は耐食性に劣り、それを補うために磁気記録層上に更に
ACI、Cr等の耐食性に優れた非磁性層を数百人近く
設(ブることか知られている(米国特許明細書箱3.5
20.664号)。しかし再生出力を考えた場合、一般
に磁気ヘットのディスク(la磁気記録媒体からの浮上
量が2000人前後でなければならないと言われている
。このため、数百人近い非磁性層の厚みは、磁気ヘッド
から磁気記録層までの距離がこの分遠ざかる結果、スペ
ーシングロスによる再生出力低下につながっていた。
(Problems to be Solved by the Invention) When a CO-Ni alloy is used as a magnetic recording layer, the thickness of the magnetic recording layer is 500 mm to 1 mm in order to obtain sufficient reproduction output.
oo people is enough. However, Co-Ni alloy alone has poor corrosion resistance, and in order to compensate for this, several hundred people have added non-magnetic layers with excellent corrosion resistance such as ACI and Cr on the magnetic recording layer. (U.S. Patent Specification Box 3.5)
20.664). However, when considering the reproduction output, it is generally said that the flying height of the magnetic head from the disk (LA magnetic recording medium) must be around 2000.For this reason, the thickness of the non-magnetic layer is approximately several hundred. This increased distance from the magnetic head to the magnetic recording layer resulted in a reduction in reproduction output due to spacing loss.

一方Go−Cr系合金を磁気記録層とする場合、耐食性
に関しては優れているものの、材料固有の問題として飽
和磁化量が小さいために、十分な再生出力を得るために
磁気記録層厚みを1000人乃至2000人とらなCブ
ればならない。
On the other hand, when a Go-Cr alloy is used as the magnetic recording layer, although it has excellent corrosion resistance, the problem inherent to the material is that the amount of saturation magnetization is small. It must be between 2,000 and 2,000 people.

今後の高密度化への流れを考慮すると、Co−Ni系合
金は耐食性の点で、またC0−cr系合金は薄膜化に限
度がある点で、大きな妨げとなっており新しい磁気記録
層の開発が望まれていた。
Considering the future trend toward higher densities, Co-Ni alloys are a major hindrance in terms of corrosion resistance, and CO-Cr alloys are limited in their ability to be made into thin films. development was desired.

本発明は、以上の問題点に鑑みなされたもので、耐食性
に優れなおかつ再生出力を損なうことのない磁気記録層
を有する磁気記録媒体を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic recording medium having a magnetic recording layer that is excellent in corrosion resistance and does not impair reproduction output.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明は、薄膜
堆積法によって磁気記録層が形成される磁気記録媒体に
おいて、磁気記録層が、COを主成分とする第1の磁気
記録層と、第1の磁気記録層の上に形成されたCO及び
crを主成分とする第2の磁気記録層とからなるもので
ある。薄膜堆積法としては、真空蒸着法、スパツクリン
グ法、イオンブレーティング法、鍍金法等が利用される
(Means and effects for solving the problems) The present invention provides a magnetic recording medium in which a magnetic recording layer is formed by a thin film deposition method, in which the magnetic recording layer is a first magnetic recording layer containing CO as a main component. , and a second magnetic recording layer mainly composed of CO and Cr formed on the first magnetic recording layer. As a thin film deposition method, a vacuum evaporation method, a spackle method, an ion blating method, a plating method, etc. are used.

第1の磁気記録層は、膜厚が大きくなるのを抑え、なお
かつ良好な再生出力を得る。第2の磁気記録層は、第1
の磁気記録層の耐食性を向上させるとともに、磁性を持
つことにより膜厚増加によるスペーシングロスを改善す
る。
The first magnetic recording layer suppresses an increase in film thickness and still provides good reproduction output. The second magnetic recording layer is
In addition to improving the corrosion resistance of the magnetic recording layer, its magnetic properties improve spacing loss due to increased film thickness.

第1の磁気記録層は、Niを10乃至30at%含有す
る厚さ2000人を越えないCo−Niを主成分とする
層である。
The first magnetic recording layer is a layer mainly composed of Co--Ni containing 10 to 30 at% Ni and having a thickness of not more than 2000 nm.

あるいは、第1の磁気記録層は、COと、Pt、Y、L
a、Ce、Pr、Sm、Nd、及びpmの内から選ばれ
た少なくとも1つの元素Xを主成分とする。これらCo
以外の元素Xは5乃至4.0at%含有され、厚さ20
00人を越えないc o−xを主成分とする層である。
Alternatively, the first magnetic recording layer may include CO, Pt, Y, L.
The main component is at least one element X selected from a, Ce, Pr, Sm, Nd, and pm. These Co
Elements other than
This is a layer whose main component is CO-X, which does not exceed 0.00 people.

あるいは、第1の磁気記録層は、CO及びNiに、更に
、Fe、P、W、Pt、及びCrの内から選ばれた少な
くとも1つの元素Xを添加してなる。Ntを10乃至3
0at%、添加元素Xを30at%以下含有した厚さ2
000人を越えないco−Ni−Xを主成分とする層で
ある。添加元素Xは、Co−Ni系の電磁変換特性向上
のために添加され、Co−Niのみの磁気記録層と同じ
厚みの磁気記録層を形成した場合、飽和磁化、あるいは
保磁力において優れている。添加元素XをFeとした場
合、Co−Niのみの場合に比較し、飽和磁化及び角型
比に優れる。添加元素XをPt、W、Pとした場合、保
磁力、角型比に優れる。添加元素XをCrとした場合、
保磁力を増強せしめるとともに、耐食性を向上させる。
Alternatively, the first magnetic recording layer is made by adding at least one element X selected from Fe, P, W, Pt, and Cr to CO and Ni. Nt 10 to 3
Thickness 2 containing 0 at% and 30 at% or less of additive element X
This is a layer whose main component is co-Ni-X and does not exceed 1,000 people. Additive element . When Fe is used as the additive element X, the saturation magnetization and squareness ratio are excellent compared to when only Co--Ni is used. When the additive element X is Pt, W, or P, the coercive force and squareness ratio are excellent. When the additive element X is Cr,
It increases coercive force and improves corrosion resistance.

第2の磁気記録層は、Crを10乃至30at%含有す
る厚さ100乃至1000人のCo−Crを主成分とす
る層である。第2の磁気記録層は、耐食性を有する限り
、薄い方が良い。
The second magnetic recording layer is a layer mainly composed of Co--Cr containing 10 to 30 at% Cr and having a thickness of 100 to 1000 yen. The thinner the second magnetic recording layer is, the better, as long as it has corrosion resistance.

第1の磁気記録層がCo及びN1を主成分とし、また第
2の磁気記録層がCO及びCrを主成分とする場合、第
1の磁気記録層の厚さを400乃至800人、第2の磁
気記録層の厚さを300乃至500人とすることにより
、極めて安定した高密度記録媒体が得られる。
When the first magnetic recording layer mainly contains Co and N1 and the second magnetic recording layer mainly contains CO and Cr, the thickness of the first magnetic recording layer is 400 to 800 mm, and the second magnetic recording layer is 400 to 800 mm thick. By setting the thickness of the magnetic recording layer to 300 to 500 layers, an extremely stable high-density recording medium can be obtained.

発明者等は、Niを10乃至30at%含有したCO及
びNiを主とする第1の磁気記録層上に、Crを10乃
至30at%含有したGO及びcrを主とする第2の磁
気記録層を有する磁気記録媒体において、良好な再生出
力と優れた耐食性を示す第1及び第2の磁気記録層の膜
厚を種々検問した。
The inventors have developed a first magnetic recording layer mainly composed of CO and Ni containing 10 to 30 at% Ni, and a second magnetic recording layer mainly composed of GO and Cr containing 10 to 30 at% Cr. In the magnetic recording medium having the following, various thicknesses of the first and second magnetic recording layers, which exhibit good reproduction output and excellent corrosion resistance, were examined.

まず、耐食性を調べる為に、Co−Crより成る第2の
磁気記録層の厚味を100人乃至1000人まで変化さ
せて、加速試験を行なった。試験は温度85℃、湿度8
5%の恒温槽の中に媒体を放置し、欠陥の増加により腐
食の比較を行った。結果を第2図に示す。Co−Crの
厚味が300人より薄いと著しい腐食の増大が生じた。
First, in order to examine the corrosion resistance, an accelerated test was conducted by varying the thickness of the second magnetic recording layer made of Co--Cr from 100 to 1000 layers. The test was conducted at a temperature of 85℃ and a humidity of 8
The medium was left in a 5% constant temperature bath, and corrosion was compared based on the increase in defects. The results are shown in Figure 2. A significant increase in corrosion occurred when the Co--Cr thickness was less than 300 mm.

このときCo−Niより成る第1の磁気記録層の厚味を
100人乃至1000八まで変化させたが腐食状況はこ
の厚味によらず第2の磁気記録層のみに依存した。また
、実際の媒体では最表面に100人乃至300人のカー
ボン潤滑層を形成するか、この有無にも依存しなった。
At this time, the thickness of the first magnetic recording layer made of Co--Ni was varied from 100 to 10,008, but the corrosion state did not depend on this thickness but only on the second magnetic recording layer. In addition, in actual media, whether a carbon lubricant layer of 100 to 300 layers is formed on the outermost surface or not depends on the presence or absence of this layer.

次に信号出力、S/N値から各層の厚味を検討した。第
1の磁気記録層(Co−Ni)の厚味に対する信号出力
は第3図の曲線(18)のようになる。S/Nの低下し
ない範囲で信号出力、さらに膜厚を選ぶと、500人乃
至1000への範囲が良好となる。ここで第2の磁気記
録層(Co−Cr)を積層すると、第2の磁気記録層自
信が信号に寄与するので最適範囲は第3図の曲線(20
HCO−Crが300人のとき)のように薄い方ヘシノ
トする。しかしながら第2の磁気記録層が500人をこ
えると磁気記録層全体の厚味が増加し、記録密度特性が
急速に低下する。
Next, the thickness of each layer was examined from the signal output and S/N value. The signal output with respect to the thickness of the first magnetic recording layer (Co--Ni) is as shown by the curve (18) in FIG. If the signal output and film thickness are selected within a range where the S/N ratio does not decrease, the range from 500 to 1000 will be good. If the second magnetic recording layer (Co-Cr) is laminated here, the second magnetic recording layer itself contributes to the signal, so the optimal range is the curve (20
When HCO-Cr is 300 people), the thinner one is better. However, when the number of people in the second magnetic recording layer exceeds 500, the thickness of the entire magnetic recording layer increases, and the recording density characteristics rapidly deteriorate.

以上の検討結果から、第1の磁気記録層を400人乃至
800人、第2の磁気記録層を300人乃至500人と
すると極めて安定した高密度記録媒体が作成されること
が見出された。
From the above study results, it was found that an extremely stable high-density recording medium can be created by using 400 to 800 people for the first magnetic recording layer and 300 to 500 people for the second magnetic recording layer. .

また、第1の磁気記録層に酸素を5乃至15%の範囲で
添加すると、磁気特性、とりわ(プHc(保磁力)が向
上したり、高密度な記録媒体の作成が可能であることが
見出された。
Furthermore, by adding oxygen in the range of 5 to 15% to the first magnetic recording layer, magnetic properties and coercive force (Hc) can be improved, and it is possible to create a high-density recording medium. was discovered.

尚、C0−Cr磁気記録層の下地として低抗磁力材料層
、例えばパーマロイ層を形成したものが、特開昭54〜
51804号公報に記載されている。
Note that a low coercive force material layer, such as a permalloy layer, is formed as an underlayer for a C0-Cr magnetic recording layer.
It is described in Publication No. 51804.

しかし、これはCO−Crを垂直磁化媒体に用いたもの
で、下地の低抗磁力材料層は、垂直記録用磁気ヘッドの
補助磁極からの磁束を主磁極に集中させるように働くも
のである。従って、下地の低抗磁力材料層は磁気記録層
として作用するものではなく、本発明とは明確に異なる
ものである。
However, this uses CO--Cr as the perpendicular magnetization medium, and the underlying low coercive force material layer functions to concentrate the magnetic flux from the auxiliary magnetic pole of the perpendicular recording magnetic head onto the main magnetic pole. Therefore, the underlying low coercive force material layer does not function as a magnetic recording layer, and is clearly different from the present invention.

(実施例1) 第1図は本発明の磁気記録媒体の部分断面図である。(Example 1) FIG. 1 is a partial sectional view of the magnetic recording medium of the present invention.

第1図において、非磁性基体(11)として3.5イン
チのアルミニウム合金製ディスクを使用し、表面にNi
−PM金及び鏡面研磨がなされた非磁性平滑層(12)
を形成した。これに二極式高周波スパッタリング装置に
より磁気記録層、保護層・潤滑層等を形成した。成膜方
法、並びに成膜条件は以下の通りである。膜厚及び磁気
特性を均一にするために基板装着台は自公転可能で、台
を6rpmで回転させた。成膜は初期到達真空度8.0
X10−7TOrrで、導入Arガス圧を4. Ox 
to’Torrとし、スパッタリングパワー300W、
室温下に於いて行なった。まず、磁気記録層の結晶性を
良くするための下地層(13)としてCrを3000人
形成した。その上に、第1の磁気記録層(15)として
、C0−Niを約700人、次に第2の磁気記録IL!
 (16)としてCo−Crを同じく約700人形成し
、二層より成る磁気記録層(14)を構成した。また、
最表層に300人乃至500人のカーボン膜からなる保
護・潤滑層(17)を設けた。
In Fig. 1, a 3.5-inch aluminum alloy disk is used as the non-magnetic substrate (11), and the surface is coated with Ni.
- Non-magnetic smooth layer (12) with PM gold and mirror polishing
was formed. A magnetic recording layer, a protective layer, a lubricating layer, etc. were formed on this using a bipolar high-frequency sputtering device. The film forming method and film forming conditions are as follows. In order to make the film thickness and magnetic properties uniform, the substrate mounting table was rotatable and rotated at 6 rpm. The initial vacuum level for film formation is 8.0.
At X10-7 TOrr, the introduced Ar gas pressure was set to 4. Ox
to'Torr, sputtering power 300W,
The test was carried out at room temperature. First, 3,000 Cr layers were formed as an underlayer (13) to improve the crystallinity of the magnetic recording layer. On top of that, as a first magnetic recording layer (15), about 700 layers of C0-Ni are applied, and then a second magnetic recording layer (IL!) is applied.
Approximately 700 pieces of Co--Cr were also formed as (16) to form a two-layer magnetic recording layer (14). Also,
A protective/lubricating layer (17) made of a carbon film of 300 to 500 layers was provided on the outermost layer.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁カフ00エルステツドを得、また飽和磁
化量、その他の磁気特性に関しても優れた結果を得た。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercivity cuff of 00 oersted was obtained, and excellent results were also obtained regarding the amount of saturation magnetization and other magnetic properties.

更に、電磁変換特性及びヘッドとの摩耗試験及び環境試
験を行なった結果、次の特性を得た。電磁変換特性につ
いては20kbpi乃至40kbp iの高密度記録が
可能であった。磁気ヘッドとの摩耗試験では通常行なわ
れている2万回のコンタクト・スタート・ストップテス
トを行ない、ディスク表面に傷のつかないことを確認し
た。
Further, as a result of electromagnetic conversion characteristics, head wear tests, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 20 kbpi to 40 kbpi was possible. In the wear test with the magnetic head, we conducted a contact start/stop test of 20,000 times, which is the standard practice, and confirmed that there were no scratches on the disk surface.

また、耐環境性についても、温度80°C1相対湿度8
0%で700時間放置したが、外観上の変化は全黙認め
られず欠陥箇所の増加も皆無であり、十分な耐食性が確
認された。
In addition, regarding environmental resistance, the temperature is 80°C, the relative humidity is 80°C,
After being left at 0% for 700 hours, no change in appearance was observed and there was no increase in the number of defects, confirming sufficient corrosion resistance.

(実施例2) 実施例1と同様に、アルミニウム合金非磁性基体(11
)を用い、この表面を陽極酸化により、アルミナ(A1
203)の非金属層からなる非磁性平滑層(12)を形
成し、後ば先の実施例と同様に非磁性金属下地層(13
)、第1及び第2の磁気記録層(15)、(16)及び
保護・潤滑@(17)を形成した。
(Example 2) Similarly to Example 1, an aluminum alloy nonmagnetic substrate (11
), and the surface was anodized to alumina (A1
A non-magnetic smooth layer (12) made of a non-metallic layer (203) is formed, and a non-magnetic metal underlayer (13) is then formed as in the previous example.
), first and second magnetic recording layers (15), (16), and protection/lubrication@(17) were formed.

この実施例においでも実施例1と同様の効果を得た。In this example as well, the same effects as in Example 1 were obtained.

(実施例3) 非磁性基体(11)として3.5インチのアルミニウム
合金製ディスクを使用し、表面にN*−p鍍金及び鏡面
研磨がなされた非磁性平滑層(12)を形成した。下地
層(13)としてCrを3000人形成し、その上に第
1の磁気記録層(15)として、5m 16at%含有
するCo−3mを約700人、次に第2の磁気記録層(
16)としてCo−Crを同じく約500人形成し、二
層より成る磁気記録層(14)を構成した。
(Example 3) A 3.5-inch aluminum alloy disk was used as the nonmagnetic substrate (11), and a nonmagnetic smooth layer (12) whose surface was N*-p plated and mirror polished was formed. 3,000 layers of Cr were formed as the underlayer (13), and about 700 layers of Co-3m containing 5 m of 16 at% were formed thereon as the first magnetic recording layer (15), and then the second magnetic recording layer (15) was formed.
As 16), about 500 pieces of Co--Cr were similarly formed to form a two-layer magnetic recording layer (14).

また、最表面に300Δ乃至500Δのカーボン膜から
なる保護・潤滑層(17)を設けた。
Further, a protective/lubricating layer (17) made of a carbon film with a thickness of 300Δ to 500Δ was provided on the outermost surface.

この磁気記録媒体の磁気特性を測定したところ、面内保
磁力800エルステッドを得、また飽和磁化量、その他
の磁気特性に関しても優れた結果を得た。更に、電磁変
換特性及び磁気ヘッドとの摩耗試験及び環境試験を行な
った結果、次の特性を得た。電磁変換特性については2
0kbp i乃至40kbp iの高密度記録が可能で
あった。磁気ヘッドとの摩耗試験では2万回のコンタク
ト・スタート・ストップテストを行ない、ディスク表面
に傷のつかないことを確認した。
When the magnetic properties of this magnetic recording medium were measured, an in-plane coercive force of 800 Oe was obtained, and excellent results were also obtained regarding the amount of saturation magnetization and other magnetic properties. Furthermore, as a result of electromagnetic conversion characteristics, wear tests with magnetic heads, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, see 2.
High density recording of 0 kbp i to 40 kbp i was possible. In the wear test with the magnetic head, we conducted 20,000 contact start/stop tests and confirmed that there was no scratch on the disk surface.

また、耐環境性についても、温度80℃、相対湿度80
%で700時間放置したが、外観上の変化は全黙認めら
れず欠陥箇所の増加も皆無であり、十分な耐食性が確認
された。
In addition, regarding environmental resistance, the temperature is 80°C and the relative humidity is 80°C.
% for 700 hours, no change in appearance was observed, no increase in defective areas, and sufficient corrosion resistance was confirmed.

(実施例4) =  12 − 第1の磁気記録M (15)として、(:、e 20a
t%含有するCo−Ceを約6()0人形成した。その
他の条件は実施例3と同じとした。このようにして形成
した媒体の磁気特性は、保磁カフ50エルステツドを得
、電磁変換特性は、低域出力1.0mV、線記録密度(
D50) 28kbpiを得た。また耐食性も実施例3
と同様の結果を得た。
(Example 4) = 12 - first magnetic recording M (15), (:, e 20a
Approximately 6()0 Co-Ce containing t% was formed. Other conditions were the same as in Example 3. The magnetic properties of the medium thus formed have a coercive cuff of 50 oersted, and the electromagnetic conversion properties include a low frequency output of 1.0 mV, a linear recording density (
D50) 28kbpi was obtained. In addition, the corrosion resistance was also shown in Example 3.
obtained similar results.

(実施例5) 非磁性基体(11)として3.5インチのアルミニウム
合金製ディスクを使用し、表面にN1−P鍍金及び鏡面
研磨がなされた非磁性平滑層(12)を形成した。次に
、磁気記録層の結晶性を良くするための下地層(13)
としてCrを3000人形成した。
(Example 5) A 3.5-inch aluminum alloy disk was used as the nonmagnetic substrate (11), and a nonmagnetic smooth layer (12) whose surface was plated with N1-P and mirror-polished was formed. Next, an underlayer (13) for improving the crystallinity of the magnetic recording layer.
As a result, 3,000 Cr members were formed.

その上に、第1の磁気記録@ (15)として、Ni1
7at%、Fe  8at%他をCoとする組成でC0
−N 1−Feを約700人、次に第2の磁気記録層(
16)としてCo−Crを同じく約500A 形成し、
二層より成る磁気記録層(14)を構成した。また、最
表面に300人乃至500人のカーボン膜からなる保護
・潤滑層(17)を設(ブた。
On top of that, as the first magnetic recording @ (15), Ni1
7 at%, Fe, 8 at% and other Co
-N 1-Fe by about 700 people, then the second magnetic recording layer (
As 16), Co-Cr is also formed to a thickness of about 500A,
A magnetic recording layer (14) consisting of two layers was constructed. In addition, a protective/lubricating layer (17) made of 300 to 500 carbon films was provided on the outermost surface.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁カフ00エルスデツドを得、また飽和磁
化はCo−Ni系に比較し約15%増加した。更に、電
磁変換特性及び磁気ヘッドとの摩耗試験及び環境試験を
行なった結果、次の特性を得た。電磁変換特性について
は20kbp i乃至40kbp iの高密度記録が可
能であった。また、飽和磁化の増加に伴って出ノjの増
大が認められた。磁気ヘッドとの摩耗試験では2万回の
コンタクト・スタート・ストップテストを行ない、ディ
スク表面に傷のつかないことを確認した。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercive cuff of 00 eels was obtained, and the saturation magnetization was increased by about 15% compared to the Co--Ni system. Furthermore, as a result of electromagnetic conversion characteristics, wear tests with magnetic heads, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 20 kbp i to 40 kbp i was possible. Furthermore, an increase in output j was observed with an increase in saturation magnetization. In the wear test with the magnetic head, we conducted 20,000 contact start/stop tests and confirmed that there was no scratch on the disk surface.

また、耐環境性についても、温度80’C1相対湿度8
0%で700時間放置したが、外観上の変化は全黙認め
られず欠陥箇所の増加も皆無であり、十分な耐食性が確
認された。
In addition, regarding environmental resistance, the temperature is 80'C, the relative humidity is 80'C,
After being left at 0% for 700 hours, no change in appearance was observed and there was no increase in the number of defects, confirming sufficient corrosion resistance.

(実施例6) 第1の磁気記録層(15)として、Ni15a1%、P
t5%、他をCoとする組成のCo−Ni−Pl−を約
700八形成した。その他の条件は実施例5と同じとし
た。このようにして形成した媒体の磁気特性は、保磁カ
フ50エルステツドを得、電磁変換特性は、低域出力1
.0mVでCo−Ni系と同程度、線記録密度(D50
) 26kbpiでCoN i系の22kbpiを上回
った。
(Example 6) As the first magnetic recording layer (15), Ni15a1%, P
About 700% of Co--Ni--Pl- was formed with a composition of t5% and the rest being Co. Other conditions were the same as in Example 5. The magnetic properties of the medium thus formed have a coercive cuff of 50 oersted, and the electromagnetic conversion properties have a low frequency output of 1
.. At 0 mV, the linear recording density (D50
) 26 kbpi exceeded the 22 kbpi of the CoN i system.

(実施例7) 第1の磁気記録層(15)として、N i 25at%
、Cr7%、他をCoとする組成のCo−Ni−Crを
約700人形成した。他の条件は、実施例5と同じとし
た。このようにして作成した媒体の特性は保磁カフ20
エルステツド、低l或出力0.95mV、D5(、24
kbpiであり、Qo−Ni系媒体を凌ぐものであった
(Example 7) As the first magnetic recording layer (15), Ni 25at%
About 700 people formed Co--Ni--Cr with a composition of 7% Cr and the rest Co. Other conditions were the same as in Example 5. The characteristics of the medium created in this way are as follows:
Oersted, low l or output 0.95mV, D5 (, 24
kbpi, which exceeded the Qo-Ni-based media.

(実施例8) 第1図において、非磁性基体(11)とじで3.5イン
チのアルミニウム合金製ディスクを使用し、表面にN1
−P鍍金及び鏡面研磨がなされた非磁性平滑層(12)
を形成した。これにまず、磁気記録層の結晶性を良くす
るための下地層(13)としてCrを2000人形成し
た。その上に、第1の磁気記録R(15)としてCo−
Nrを500八、次に第2の磁気記録層(16)として
Co−Crを400人形成し、二層より成る磁気記録層
(14)を構成した。また、最表層に200人のカーボ
ン膜からんる保護・潤滑層(17)を設けた。
(Example 8) In Fig. 1, a 3.5-inch aluminum alloy disk is used with a non-magnetic substrate (11) bound, and the surface is coated with N1
-Nonmagnetic smooth layer (12) with P plating and mirror polishing
was formed. First, 2000 Cr layers were formed as an underlayer (13) to improve the crystallinity of the magnetic recording layer. On top of that, Co-
A magnetic recording layer (14) consisting of two layers was formed by forming 500 mm of Nr and then 400 mm of Co--Cr as a second magnetic recording layer (16). In addition, a protective/lubricating layer (17) made of 200 carbon films was provided on the outermost layer.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁力800エルステツドを得、また飽和磁
化量、その他の磁気特性に関()ても優れた結果を得た
。更に、電磁変換特性及び磁気ヘッドとの摩耗試験及び
環境試験を行った結果、次の特性を得た。電磁変換特性
については30kbp iの高密度記録が可能であった
。磁気ヘッドとの摩耗試験では2万回のコンタクト・ス
タート・ストップテストを行い、ディスク表面に傷のつ
かないことを確認した。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercive force of 800 oersted was obtained, and excellent results were also obtained regarding the amount of saturation magnetization and other magnetic properties. Furthermore, as a result of electromagnetic conversion characteristics, wear tests with magnetic heads, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 30 kbp i was possible. In the wear test with the magnetic head, we conducted 20,000 contact start/stop tests and confirmed that there was no scratch on the disk surface.

また、耐環境性についても、温度85°C1相対湿度8
5%で1000時間放置したが、外観上の変化は全黙認
められず欠陥箇所の増加も皆無であり、十分な耐食性が
確認された。
In addition, regarding environmental resistance, the temperature is 85°C, the relative humidity is 8
Although it was allowed to stand at 5% for 1000 hours, no changes in appearance were observed, and there was no increase in the number of defects, confirming sufficient corrosion resistance.

(実施例9) アルミニウム合金非磁性基体(11)を用い、この表面
を陽極酸化により、アルミナ(A1203)の非金属層
の非磁性平滑層(12)を形成し、後は実施例8と同様
に非磁性金属下地層(13)、第1及び第2の磁気記録
層(15)、(16)及び保護・潤滑層(17)を形成
した。ただし、第1の磁気記録層(15)には導入Ar
ガス中に30%の酸素を混入し、酸素を10%含んだC
o−N r −o膜を堆積させた。
(Example 9) Using an aluminum alloy nonmagnetic substrate (11), the surface thereof was anodized to form a nonmagnetic smooth layer (12) of a nonmetallic layer of alumina (A1203), and the rest was the same as in Example 8. A nonmagnetic metal underlayer (13), first and second magnetic recording layers (15) and (16), and a protective/lubricant layer (17) were formed on the substrate. However, the first magnetic recording layer (15) has introduced Ar.
C containing 10% oxygen by mixing 30% oxygen into the gas
An o-Nr-o film was deposited.

この実施例においては、面内保磁力850エルステツド
を得、電磁変換特性は32kbf) iと高密度化し、
耐久性、耐食性については先の実施例と同様の効果を得
た。
In this example, an in-plane coercive force of 850 oersted was obtained, and the electromagnetic conversion characteristics were increased to 32 kbf),
Regarding durability and corrosion resistance, the same effects as in the previous example were obtained.

(実施例10) 第4図に示すように、非磁性基体(22)として5.2
5インチの表面平滑なガラスを使用した。
(Example 10) As shown in FIG.
A 5 inch glass with a smooth surface was used.

これにマグネトロン式高周波スパッタリング装置により
磁気記録層、保護層・潤滑層等を形成した。
A magnetic recording layer, a protective layer, a lubricating layer, etc. were formed on this using a magnetron type high frequency sputtering device.

成膜方法、並びに成膜条件は以下の通りである3、膜厚
及び磁気特性を均一にするために基板装着台は自公転可
能で、台をiorpmで回転させた。成膜は初期到達真
空度5.0X 10’TOrrで、導入Arカス圧を3
、OX 1O−2TOrrとし、スパッタリングパワー
100OW、室温下に於いて行なった。まず、磁気記録
層の結晶性を良くするだめの下地層(23)としてcr
を3500人形成した。その上に、第1の磁気記録層(
24)として、N i 17at%、Fe8at%、他
をCoとする組成のCo−Ni−Feを約450人、次
に第2の磁気記録層(25)としてco−crを同じく
約300人形成し、二層より成る磁気記録層(26)を
構成した。また、最表層に200人のカーボン膜からな
る保護・潤滑層(27)を設(プた。
The film forming method and film forming conditions are as follows. 3. In order to make the film thickness and magnetic properties uniform, the substrate mounting table was rotatable and rotated at an iorpm. The film was formed at an initial vacuum level of 5.0X 10' TOrr and an Ar gas pressure of 3.
, OX 1O-2 TOrr, sputtering power 100OW, and room temperature. First, CR was used as an underlayer (23) to improve the crystallinity of the magnetic recording layer.
3,500 people were formed. On top of that, a first magnetic recording layer (
As 24), about 450 people formed Co-Ni-Fe with a composition of Ni 17 at%, Fe 8 at%, and Co as the second magnetic recording layer (25), and then about 300 people formed Co-Cr as the second magnetic recording layer (25). A magnetic recording layer (26) consisting of two layers was constructed. In addition, a protective/lubricating layer (27) made of 200 carbon films was installed on the outermost layer.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁力900エルステツドを得、また飽和磁
化はco−Ni系に比較し約15%増加した。更に、電
磁変換特性及び磁気ヘッドとの摩耗試験及び環境試験を
行なった結果、次の特性を得た。電磁変換特性について
は34kbp iの高密度記録が可能であった。また、
飽和磁化の増加に伴って出力の増大が認められた。磁気
ヘッドとの摩耗試験では2万回のコンタクト・スタート
・ストップテストを行ない、ディスク表面に傷のつかな
いことを確認した。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercive force of 900 oersted was obtained, and the saturation magnetization was increased by about 15% compared to the co-Ni system. Furthermore, as a result of electromagnetic conversion characteristics, wear tests with magnetic heads, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 34 kbp i was possible. Also,
An increase in output was observed with an increase in saturation magnetization. In the wear test with the magnetic head, we conducted 20,000 contact start/stop tests and confirmed that there was no scratch on the disk surface.

また、耐環境性についても、温度85°C1相対湿度8
5%で1000時間放置したが、外観上の変化は全黙認
められず欠陥箇所の増加も皆無であり、」=分な耐食性
が確認された。
In addition, regarding environmental resistance, the temperature is 85°C, the relative humidity is 8
Although it was left at 5% for 1000 hours, no change in appearance was observed and there was no increase in the number of defects, confirming excellent corrosion resistance.

(実施例11〉 第5図において、非磁性基体(31)として3.5イン
チの表面平滑なガラスを使用した。これにマグネトロン
式高周波スパッタリング装置により磁気記録層、保護層
・潤滑層等を形成した。成膜方法、並びに成膜条イ1は
以下の通りである。膜厚及び磁気特性を均一にするため
に基板装着台は自公転可能で、台を6 ppmで回転さ
せた。成膜は初期到達真空度5. OX 1O−7To
rrで、導入△rガス圧を4. OX 1O−2Tor
rとし、スパッタリングパワー1000W、室温下に於
いて行なった。まず、第1の磁気記録層(32)として
、Sm16at%含有するC O−smを700人、次
に第2の磁気記録層(33)どじでC0−Crを同じり
300人形成し、二層より成る磁気記録層(34)を構
成した。また、最表層に300人のカーボン膜からなる
保護・潤滑層(35)を設Cプた。
(Example 11) In Fig. 5, a 3.5-inch glass with a smooth surface was used as the nonmagnetic substrate (31).A magnetic recording layer, protective layer, lubricant layer, etc. were formed on this using a magnetron-type high-frequency sputtering device. The film-forming method and film-forming strip A1 were as follows.In order to make the film thickness and magnetic properties uniform, the substrate mounting table was capable of rotation and revolution, and the table was rotated at 6 ppm.Film-forming is the initial vacuum level 5.OX 1O-7To
With rr, increase the introduction △r gas pressure to 4. OX 1O-2 Tor
The sputtering was carried out at room temperature and a sputtering power of 1000 W. First, 700 layers of CO-sm containing 16 at% Sm were formed as the first magnetic recording layer (32), then 300 layers of C0-Cr were formed on the second magnetic recording layer (33). A magnetic recording layer (34) was constructed. In addition, a protective/lubricating layer (35) made of 300 carbon films was installed on the outermost layer.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁力900エルステッドを得、また飽和磁
化量、その他の磁気特性に関しても優れた結果を得た。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercive force of 900 Oe was obtained, and excellent results were also obtained regarding the amount of saturation magnetization and other magnetic properties.

更に、電磁変換特性及び磁気ヘッドとの摩耗試験及び環
境試験を行なった結果、次の特性を得た。電磁変換特性
については34kbpiの高密度記録が可能であった。
Furthermore, as a result of electromagnetic conversion characteristics, wear tests with magnetic heads, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 34 kbpi was possible.

磁気ヘッドとの摩耗試験では2万回のコンタクト・スタ
ート・ストップテストを行ない、ディスク表面に傷のつ
かないことを確認した。
In the wear test with the magnetic head, we conducted 20,000 contact start/stop tests and confirmed that there was no scratch on the disk surface.

また、耐環境性についても、温度85℃、相対湿度85
%で1000時間放置したが、外観上の変化は全黙認め
られず欠陥箇所の増加も皆無であり、十分な耐食性が確
認された。
In addition, regarding environmental resistance, the temperature is 85°C and the relative humidity is 85°C.
% for 1000 hours, no change in appearance was observed, no increase in defective areas, and sufficient corrosion resistance was confirmed.

(実施例12) 第6図゛に示すように、非磁性基体(41)として5.
25インチのアルミニウム合金製ディスクを使用し、表
面にN’i −P鍍金及び鏡面研磨がなざれた非磁性平
滑層(42)を形成した。これにマグネトロン式高周波
スパッタリング装置により磁気記録層、保護層・潤滑層
等を形成した。成膜方法、並びに成膜条件は以下の通り
である。膜厚及び磁気特性を均一にするために基板装着
台は自公転可能で、台をiorpmで回転させた。成膜
は初期到達真空度5. Ox 10’Torrで、導入
△rガス圧を4.Ox io”rorrとし、スパッタ
リングパワー1000W、室温下に於いて行なった。第
1の磁気記録層(42)として、Sm1Bat%含有す
るCo−3mを約700人、次に第2の磁気記録層(4
3)としてco−Crを同じく約500人形成し、二層
より成る磁気記録層(45)を構成した。また、最表層
に300人のカーボン膜からなる保護・潤滑層(46)
を設けた。
(Example 12) As shown in FIG. 6, 5.
A 25-inch aluminum alloy disk was used, and a nonmagnetic smooth layer (42) with N'i-P plating and mirror polishing was formed on the surface. A magnetic recording layer, a protective layer, a lubricating layer, etc. were formed on this using a magnetron type high frequency sputtering device. The film forming method and film forming conditions are as follows. In order to make the film thickness and magnetic properties uniform, the substrate mounting table was rotatable and rotated at an iorpm. Film formation is performed at an initial vacuum level of 5. Ox 10'Torr, introduction △r gas pressure 4. Oxio"rorr, sputtering power of 1000 W, and room temperature. About 700 people used Co-3m containing Sm1Bat% as the first magnetic recording layer (42), and then the second magnetic recording layer (42). 4
As for 3), about 500 pieces of co-Cr were also formed to form a two-layer magnetic recording layer (45). In addition, the outermost layer is a protective and lubricating layer made of 300 carbon films (46).
has been established.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁力950エルステツドを得、また飽和磁
化量、その他の磁気特性に関しても優れた結果を得た。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercive force of 950 oersted was obtained, and excellent results were also obtained regarding the amount of saturation magnetization and other magnetic properties.

更に、電磁変換特性及び磁気ヘットとの摩耗試験及び環
境試験を行なった結果、次の特性を得た。電磁変換特性
については36kbp iの高密度記録が可能であった
。磁気ヘッドとの摩耗試験では2万回のコンタクト・ス
タート・ストップテストを行ない、ディスク表面に傷の
つかないことを確認した。
Furthermore, as a result of electromagnetic conversion characteristics, wear tests with magnetic heads, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 36 kbp i was possible. In the wear test with the magnetic head, we conducted 20,000 contact start/stop tests and confirmed that there was no scratch on the disk surface.

また、耐環境性についても、温度85℃、相対湿度85
%で1ooo時間放置したが、外観上の変化は全黙認め
られず欠陥箇所の増加も皆無であり、十分な耐食性が確
認された。
In addition, regarding environmental resistance, the temperature is 85°C and the relative humidity is 85°C.
% for 100 hours, no change in appearance was observed, no increase in defective areas, and sufficient corrosion resistance was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば作用の異なる2つの磁気
記録層を設けることにより耐食性に優れ、なおかつ高密
度化へ向けての薄膜化可能な磁気記録媒体を提供するこ
とができる。
As described above, according to the present invention, by providing two magnetic recording layers with different functions, it is possible to provide a magnetic recording medium that has excellent corrosion resistance and can be made thinner for higher density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気記録媒体の部分断面図
、第2図は第2の磁気記録層の膜厚と腐食試験による欠
陥の増加数との関係を示す図、第3図は第1の磁気記録
層の膜厚と信号出力との関係を示す図、第4図、第5図
及び第6図はそれぞれ本発明の仙の実施例の磁気記録媒
体の部分断面図、第7図は従来技術の磁気記録媒体の部
分断面図である。 (11)・・・非磁性基体 (12)・・・非磁性平滑層 (13)・・・非磁性金属下地層 (14)・・・磁気記録層 (15)・・・第1の磁気記録層 (16)・・・第2の磁気記録層 (17)・・・保護・平滑層 代理人 弁理士 則 近 憲 佑 同  大胡典夫 (、cヒ憾ヒ11未tA> 第2図 第8図 第4図 第5図
FIG. 1 is a partial cross-sectional view of a magnetic recording medium according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the film thickness of the second magnetic recording layer and the increase in the number of defects in a corrosion test, and FIG. FIG. 4, FIG. 5, and FIG. 6 are partial cross-sectional views of a magnetic recording medium according to another embodiment of the present invention, respectively. FIG. 7 is a partial cross-sectional view of a conventional magnetic recording medium. (11)...Nonmagnetic base (12)...Nonmagnetic smooth layer (13)...Nonmagnetic metal underlayer (14)...Magnetic recording layer (15)...First magnetic recording Layer (16)...Second magnetic recording layer (17)...Protection/smooth layer Agent Patent attorney Nori Chika Yudo Norio Ogo Figure 4 Figure 5

Claims (8)

【特許請求の範囲】[Claims] (1)非磁性基体上に形成されたコバルトを主成分とす
る第1の磁気記録層と、この第1の磁気記録層上に形成
されたコバルト及びクロムを主成分とする第2の磁気記
録層とを有する磁気記録媒体。
(1) A first magnetic recording layer mainly composed of cobalt formed on a nonmagnetic substrate, and a second magnetic recording layer mainly composed of cobalt and chromium formed on this first magnetic recording layer. A magnetic recording medium having a layer.
(2)前記第1の磁気記録層がコバルト及びニッケルを
主成分とすることを特徴とする特許請求の範囲第1項記
載の磁気記録媒体。
(2) The magnetic recording medium according to claim 1, wherein the first magnetic recording layer contains cobalt and nickel as main components.
(3)前記第1の磁気記録層がコバルト及びニッケルに
、更に鉄、リン、タングステン、白金、及びクロムの内
から選ばれた少なくとも1種の元素を主成分として含む
ことを特徴とする特許請求の範囲第2項記載の磁気記録
媒体。
(3) A patent claim characterized in that the first magnetic recording layer mainly contains cobalt and nickel, and at least one element selected from iron, phosphorus, tungsten, platinum, and chromium. The magnetic recording medium according to item 2.
(4)前記第1の磁気記録層が、白金、イットリウム、
ランタン、セリウム、プラセオジウム、サマリウム、ネ
オジウム、プロメチウムの内から選ばれた少なくとも1
種の元素を主成分として含むことを特徴とする特許請求
の範囲第1項記載の磁気記録媒体。
(4) The first magnetic recording layer includes platinum, yttrium,
At least one selected from lanthanum, cerium, praseodymium, samarium, neodymium, and promethium
The magnetic recording medium according to claim 1, characterized in that the magnetic recording medium contains a seed element as a main component.
(5)前記第1の磁気記録層の膜厚が400Å乃至80
0Å、前記第2の磁気記録層の膜厚が300Å乃至50
0Åの範囲にあることを特徴とする特許請求の範囲第2
項記載の磁気記録媒体。
(5) The thickness of the first magnetic recording layer is 400 Å to 80 Å.
0 Å, and the film thickness of the second magnetic recording layer is 300 Å to 50 Å.
Claim 2 characterized in that it is in the range of 0 Å.
Magnetic recording medium described in Section 1.
(6)前記第1の磁気記録層が酸素を含むことを特徴と
する特許請求の範囲第2項記載の磁気記録媒体。
(6) The magnetic recording medium according to claim 2, wherein the first magnetic recording layer contains oxygen.
(7)前記酸素の含有量が5at%乃至15at%の範
囲にあることを特徴とする特許請求の範囲第6項記載の
磁気記録媒体。
(7) The magnetic recording medium according to claim 6, wherein the oxygen content is in the range of 5 at% to 15 at%.
(8)前記第2の磁気記録層上に保護・潤滑層が形成さ
れていることを特徴とする特許請求の範囲第1項記載の
磁気記録媒体。
(8) The magnetic recording medium according to claim 1, further comprising a protective/lubricant layer formed on the second magnetic recording layer.
JP61068675A 1985-07-18 1986-03-28 Disk-shaped magnetic recording medium Expired - Lifetime JP2644994B2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP60-156954 1985-07-18
JP15695485 1985-07-18
JP28787185 1985-12-23
JP60-287871 1985-12-23
JP29203585 1985-12-26
JP60-292035 1985-12-26
JP497986 1986-01-16
JP61-4979 1986-01-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1602397A Division JPH09190622A (en) 1997-01-14 1997-01-14 Magnetic recording medium
JP6747497A Division JPH1049851A (en) 1997-03-06 1997-03-06 Disk-shaped magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62256217A true JPS62256217A (en) 1987-11-07
JP2644994B2 JP2644994B2 (en) 1997-08-25

Family

ID=27454203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068675A Expired - Lifetime JP2644994B2 (en) 1985-07-18 1986-03-28 Disk-shaped magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2644994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146835A (en) * 1987-12-03 1989-06-08 Kanegafuchi Chem Ind Co Ltd Production of optically active 1,2-alkanediol
JPH01146834A (en) * 1987-12-03 1989-06-08 Kanegafuchi Chem Ind Co Ltd Production of optically active 1,2-alkanediol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860429A (en) * 1981-10-06 1983-04-09 Ulvac Corp Magnetic recording body and its manufacturing device
JPS5964734A (en) * 1982-09-30 1984-04-12 Nippon Gakki Seizo Kk Co-ni magnetic alloy
JPS59119531A (en) * 1982-12-25 1984-07-10 Tdk Corp Magnetic recording medium
JPS60214426A (en) * 1984-04-11 1985-10-26 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS60219626A (en) * 1984-04-13 1985-11-02 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860429A (en) * 1981-10-06 1983-04-09 Ulvac Corp Magnetic recording body and its manufacturing device
JPS5964734A (en) * 1982-09-30 1984-04-12 Nippon Gakki Seizo Kk Co-ni magnetic alloy
JPS59119531A (en) * 1982-12-25 1984-07-10 Tdk Corp Magnetic recording medium
JPS60214426A (en) * 1984-04-11 1985-10-26 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS60219626A (en) * 1984-04-13 1985-11-02 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146835A (en) * 1987-12-03 1989-06-08 Kanegafuchi Chem Ind Co Ltd Production of optically active 1,2-alkanediol
JPH01146834A (en) * 1987-12-03 1989-06-08 Kanegafuchi Chem Ind Co Ltd Production of optically active 1,2-alkanediol

Also Published As

Publication number Publication date
JP2644994B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPH05101369A (en) Magnetic thin-film recording medium and method for forming magnetic medium thin film
JPH0580804B2 (en)
JPH0572727B2 (en)
KR100238342B1 (en) Magnetic recording medium
JPH0566647B2 (en)
JPH0750008A (en) Magnetic recording medium
JPS62256217A (en) Magnetic recording medium
JPH0481268B2 (en)
EP0213346B1 (en) Magnetic recording medium
JP2552546B2 (en) Metal thin film magnetic recording medium
JPS62157323A (en) Magnetic recording medium
JPH0650683B2 (en) Magnetic memory
JP2540479B2 (en) Magnetic memory
JPS6333286B2 (en)
JP2527616B2 (en) Metal thin film magnetic recording medium
JPS62291719A (en) Magnetic recording medium
JPH09190622A (en) Magnetic recording medium
JPH1049851A (en) Disk-shaped magnetic recording medium
JPS62141628A (en) Magnetic recording medium
JPH0750009A (en) Magnetic recording medium
JPS6332720A (en) Magnetic recording medium
JPS62167614A (en) Magnetic recording medium
JP2527618B2 (en) Metal thin film magnetic recording medium
JPS62149024A (en) Magnetic recording medium
JPS6369019A (en) Magnetic recording medium