JPS62291719A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPS62291719A JPS62291719A JP13477086A JP13477086A JPS62291719A JP S62291719 A JPS62291719 A JP S62291719A JP 13477086 A JP13477086 A JP 13477086A JP 13477086 A JP13477086 A JP 13477086A JP S62291719 A JPS62291719 A JP S62291719A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic layer
- magnetic
- corrosion resistance
- layer
- iron nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229910001337 iron nitride Inorganic materials 0.000 claims abstract description 9
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 abstract description 16
- 230000005415 magnetization Effects 0.000 abstract description 6
- 229910052697 platinum Inorganic materials 0.000 abstract description 5
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 abstract description 4
- 229910052777 Praseodymium Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 51
- 239000010408 film Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910020630 Co Ni Inorganic materials 0.000 description 5
- 229910002440 Co–Ni Inorganic materials 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910000599 Cr alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) この発明は磁気記録媒体に関する。[Detailed description of the invention] 3. Detailed description of the invention [Purpose of the invention] (Industrial application field) The present invention relates to magnetic recording media.
(従来の技術)
近年、従来の塗イ5型磁気記録媒体とは異なり、蒸着、
スパッタリング法や湿式めっき法のように非磁性基板上
に直接、強磁性層を形成する方法にJ:す、磁気記5′
1媒体を製造する方法が検討さ゛れでいる。このように
して11ノられた磁気記録媒体は、塗イ1;型のものに
比べて極めて高い記録密層が達成される。(Prior art) In recent years, unlike conventional coated type 5 magnetic recording media, vapor deposition,
J:S, Magnetic Recording 5' for methods of directly forming a ferromagnetic layer on a nonmagnetic substrate, such as sputtering and wet plating.
1. A method for manufacturing the medium is currently under investigation. The magnetic recording medium coated in this manner achieves a much higher recording density layer than the one coated with the first coat.
磁気記録媒体に対してなされる要求は磁性層が薄く、し
かも充分な再生出力が1qられることである。このよう
な媒体として最も注目されているのがNiを20〜30
at%含有するco−Ni系合金やあるいはCrを18
〜20at%含有するCo−Cr系合金を磁性層とする
ものである。この種のla磁気記録媒体通常第2図のよ
うに、非磁性の基板(1)上に平滑層(2)を形成した
上に更にCrを主とした下地層(3)を形成し、その上
に磁性層(4)が形成され、最表面に保進・潤滑層(5
)を設りた構造を有している。The requirements for magnetic recording media are that the magnetic layer be thin and that a sufficient reproduction output of 1q be achieved. The medium that is attracting the most attention is Ni 20-30.
Co-Ni alloy containing at% or 18% of Cr
The magnetic layer is made of a Co--Cr alloy containing ~20 at%. This type of LA magnetic recording medium usually consists of forming a smooth layer (2) on a non-magnetic substrate (1), and then forming an underlayer (3) mainly made of Cr. A magnetic layer (4) is formed on top, and a holding and lubricating layer (5) is formed on the outermost surface.
).
Co−Ni系合金を磁性層とする場合、充分な再生出力
を得るために磁性層の厚みは500乃至2000人で充
分である。しかし、Co−Cr系合金のみでは耐食性に
劣り、それを補うために磁性層上に更にCr等の耐食性
に優れた非磁性層を1000人近くムジリなければなら
ない。しかし再生出力を考えた場合、一般にヘッドのデ
ィスクからの浮上ωが2000乃至3000人でなけれ
ばならないと言われている。このため、1ooo人近い
非tfi 41層の厚みは、ヘッドから磁性層までの距
離がこの分遠ざかる結束、スペーシングロスによる再生
出力の低下につながる。When the magnetic layer is made of a Co--Ni alloy, a thickness of 500 to 2,000 is sufficient to obtain sufficient reproduction output. However, the Co--Cr alloy alone has poor corrosion resistance, and to compensate for this, nearly 1,000 non-magnetic layers such as Cr or the like with excellent corrosion resistance must be added on top of the magnetic layer. However, when considering the reproduction output, it is generally said that the flying height ω of the head from the disk must be 2,000 to 3,000. Therefore, the thickness of the non-TFI 41 layer, which is close to 100 mm, leads to a decrease in reproduction output due to binding and spacing loss, which increases the distance from the head to the magnetic layer.
一方、Co−Cr系合金を磁性層とする場合、耐食性に
関しては優れているものの、材料固有の問題として飽和
磁化但が小さいために充分な再生出力を得るために磁性
層の厚みを1ooo乃至4000人とらなりればならな
い。On the other hand, when a Co-Cr alloy is used as the magnetic layer, although it has excellent corrosion resistance, the problem inherent to the material is that the saturation magnetization is small. You have to be with people.
このため、Co−Ni系合金は耐食性の点で、またCo
−r系合金は薄膜化に限度がある点で、高密度記録を実
現する磁気記録媒体の実用化の大きなさまたげとなって
いる。For this reason, Co-Ni alloys have good corrosion resistance and
-r alloys have a limit to their ability to be made into thin films, which is a major hindrance to the practical application of magnetic recording media that realize high-density recording.
(発明が解決しようとする問題点)
従来の磁気記録媒体では記録の高密度化と耐食性の確保
の両立が困難であった。本発明は、より一層耐食性に優
れ、なおかつ再生出力を1[1うことのない磁性層を有
する磁気記録媒体を提供することを目′的とする。(Problems to be Solved by the Invention) In conventional magnetic recording media, it has been difficult to achieve both high recording density and corrosion resistance. SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic recording medium having a magnetic layer which is even more excellent in corrosion resistance and which does not cause a reduction in reproduction output.
[発明の構成コ
(問題点を解決するための手段)
本発明は非磁性基板上にコバルトを成分元素に有する第
1の磁性層の上に窒化鉄を主成分とする第2の磁性層を
v1層することにより上述の問題点を解決した。[Structure of the Invention (Means for Solving Problems)] The present invention provides a second magnetic layer containing iron nitride as a main component on a first magnetic layer containing cobalt as a component element on a non-magnetic substrate. The above problems were solved by using the v1 layer.
(作用)
第1の磁性層は、膜厚が大きくなるのを抑え、なおかつ
良好な再生出力を得るためのものである。(Function) The first magnetic layer is for suppressing increase in film thickness and obtaining good reproduction output.
第2の磁性層は、第1の磁性層の耐食性を向上させると
ともに、磁性を持つことにより膜厚増加によるスペーシ
ングロスを改善するためのものである。The second magnetic layer improves the corrosion resistance of the first magnetic layer, and has magnetism to improve spacing loss caused by an increase in film thickness.
第1の磁性層としては、コバルトを成分元素に右じ、C
O及びNiからなるもの、Co及びNiに更にFc、
P、 W、 Pt、 Crのなかから選ばれた少なくと
も1つの元素を添加したもの、更にはCoとPt、Y、
La、Cc、Pr、 Sm、 Nd、 Pmの内から選
ばれた少なくとも1つの元素とからなるもの、等が挙げ
られる。co−nrの場合は、Niを10〜30a t
%金含有、厚さが2000人を越えないものが用いられ
る。Co−Niに電ri1変換特性向上のために第3の
元素を添加したものは、Co −Niのみの磁性層と同
じ厚みの磁性層を形成した場合、飽和磁化あるいは保持
力において優れる。添加元素をFeとした場合には、飽
和磁化及び角形比に優れる。また添加元素をpt、wあ
るいはPとした場合には、保持力及び角形比に優れる。For the first magnetic layer, cobalt is used as the component element, C
consisting of O and Ni, Co and Ni, and further Fc,
Added at least one element selected from P, W, Pt, and Cr, as well as Co, Pt, Y,
Examples include those consisting of at least one element selected from La, Cc, Pr, Sm, Nd, and Pm. In the case of co-nr, Ni is 10 to 30a t
% gold and the thickness does not exceed 2000. Co--Ni to which a third element is added to improve the electric ri1 conversion characteristics is superior in saturation magnetization or coercive force when a magnetic layer is formed with the same thickness as a magnetic layer of only Co--Ni. When Fe is used as the additive element, the saturation magnetization and squareness ratio are excellent. Furthermore, when the additive element is pt, w or phosphorus, the holding force and squareness ratio are excellent.
添加元素をOrとした場合には、保持力を増強させると
ともに耐食性を向上させることができる。またCOとp
t、 Y、 La、 Cc、 Pr、 Sm、 Nd、
Pmの内から選ばれた少なくとも1つの元素とからな
るものは、Pt、 Y、 La、 Cc、 pr。When the additive element is Or, it is possible to enhance the holding force and improve the corrosion resistance. Also CO and p
t, Y, La, Cc, Pr, Sm, Nd,
Pt, Y, La, Cc, pr.
Sm、Nd、Pmが5〜40at%含有され、2000
人を越えない厚さで形成される。Contains 5 to 40 at% of Sm, Nd, and Pm, and 2000
It is formed to a thickness that is no thicker than a person.
第2の磁性層としては、窒化鉄を主成分とする。The second magnetic layer mainly contains iron nitride.
窒化鉄は、鉄を原料素材として窒素ガスやアンモニアガ
スを導入しながら形成される、反応性蒸着法や高周波反
応性スパッタ法、高周波反応性イオンブレーティング法
により形成される。通常は、FOxNと表記される組成
を有する種々の結晶状態の集合体が形成される。この膜
は恒温、恒湿試験等の耐食性テストで極めて良い耐食性
が得られ、第1の磁性層よりも耐久性に優れる。更に基
体温度等の伯の成膜条件を選択することにJ:り得られ
るγ−FON、α−FC3Nなどの結晶状態の窒化鉄を
形成したものは、高耐食性は勿論のこと、飽和磁化、保
持力等の磁気特性にも優れていることを確認した。第2
の磁性層は、耐食性を有する限り薄い方が良く、100
〜1000人の範囲で選ぶことができる。Iron nitride is formed by a reactive vapor deposition method, a high frequency reactive sputtering method, or a high frequency reactive ion blating method, which uses iron as a raw material and introduces nitrogen gas or ammonia gas. Usually, an aggregate of various crystalline states is formed having a composition expressed as FOxN. This film exhibits extremely good corrosion resistance in corrosion resistance tests such as constant temperature and constant humidity tests, and is more durable than the first magnetic layer. Furthermore, by selecting specific film formation conditions such as substrate temperature, iron nitrides in the crystalline state such as γ-FON and α-FC3N, which are obtained, not only have high corrosion resistance but also have high saturation magnetization and It was also confirmed that it has excellent magnetic properties such as holding power. Second
It is better for the magnetic layer to be thin as long as it has corrosion resistance;
You can choose between ~1000 people.
(実施例1) 以下、図面を用いて本発明の実施例を詳細に説明する。(Example 1) Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明の磁気記録媒体の部分断面図である。FIG. 1 is a partial cross-sectional view of the magnetic recording medium of the present invention.
まず、外形95al、内径25Al11、板厚1.27
amのアルミニウム合金基板(11)を準備する。こ
の表面には、あらかじめ、S厚12μmのニック゛ル・
リンのめつぎ層が形成され1、表面を鏡面研磨仕上げを
して硬化・平滑層(12)が形成されている。First, the outer diameter is 95al, the inner diameter is 25Al11, and the plate thickness is 1.27.
An am aluminum alloy substrate (11) is prepared. On this surface, a nickel with an S thickness of 12 μm was applied in advance.
A matte layer of phosphorus is formed (1), and the surface is mirror-polished to form a hardened and smooth layer (12).
次に、二極式高周波スパッタリング装置により下地層、
磁性層、保護・a滑層を形成した。成膜方法、条件は次
の通りである。膜厚及び磁気特性を均一にするために基
板装着台は自公転運動が可能で、台を6 r、 p、
m、で回転させた。成膜は初期到達真空度8. Ox
10’rorrで、導入アルゴン・ガス圧を4 X 1
O−2TOrrとし、スパッタリング・パワー300W
、室温下に於いて行った。まず、磁性層の結晶性を良く
するための下地層(13)としてCrを3000人形成
した。その上に第1の磁性層(15)としてCo−Ni
を500八、次に第2の磁性層(16)としてγ−F
e 4Nを300人形成し、2層よりなる磁性層(14
)を形成した。ここで第2の磁性層(16)はFcをタ
ーゲットとして、窒素ガスを5 x 10−3丁orr
、導入Arガスと合せT 4 X 1O−2TOrrと
シテスパッタした冑た。また最表面層に200〜300
人のカーボン膜からなる保護・潤滑)Xi(17)を設
けた。Next, a base layer is formed using a bipolar high frequency sputtering device.
A magnetic layer and a protective/a slip layer were formed. The film forming method and conditions are as follows. In order to make the film thickness and magnetic properties uniform, the substrate mounting table is capable of rotation and revolution, and the table is set at 6 r, p,
Rotated with m. Film formation is performed at an initial vacuum level of 8. Ox
At 10'rorr, the introduced argon gas pressure was 4 x 1
O-2 TOrr, sputtering power 300W
, at room temperature. First, 3000 Cr was formed as an underlayer (13) to improve the crystallinity of the magnetic layer. Co-Ni as the first magnetic layer (15)
5008, then γ-F as the second magnetic layer (16)
e 4N was formed by 300 people, and a magnetic layer consisting of two layers (14
) was formed. Here, the second magnetic layer (16) is made of nitrogen gas at 5 x 10-3 orr with Fc as a target.
The capacitor was then sputtered with T 4 X 1O-2 TOrr in combination with introduced Ar gas. In addition, 200 to 300
Protection and lubrication) Xi (17) consisting of a human carbon film was provided.
こうして作成した磁気記録媒体の特性を測定したところ
、面内保磁力850エルステツドを冑、また飽和磁化M
、その他の磁気特性に関しても優れた結果を得た。更に
、電磁変換特性及びヘッドとの摩耗試験及び環境試験を
行った結果、次の特性を得た。電磁変換特性については
20〜40kbpiの高密度記録が可能であった。ヘッ
ドとの摩耗試験では通常行なわれている2万回のコンタ
クト・スタート・ストップ・テストを行ない、ディスク
表面に傷がつかないことを確認した。また、耐IMQ性
についても、温度85℃、相対温度85%で1500
fr、’j間放置したが外観上の変化は全黙認められず
欠陥箇所の増加も皆無であり、十分なFI4食性が確認
された。When we measured the characteristics of the magnetic recording medium created in this way, we found that the in-plane coercive force was 850 oersted, and the saturation magnetization was M
, excellent results were also obtained regarding other magnetic properties. Furthermore, as a result of electromagnetic conversion characteristics, head wear tests, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, high-density recording of 20 to 40 kbpi was possible. In the wear test with the head, we conducted a contact start/stop test 20,000 times, which is the standard practice, and confirmed that the disk surface was free from scratches. In addition, the IMQ resistance is 1500 at a temperature of 85°C and a relative temperature of 85%.
Although it was left for a period of time, no change in appearance was observed, and there was no increase in defective areas, and sufficient FI4 eating ability was confirmed.
(実施例2)
実施例1と同様にアルミニウム合金基板(11目二に陽
極酸化法によりアルマイト層を形成し、表面を研磨して
、硬化・平滑層(12)を形成した。この後、実施例1
と同様に非磁性金属下地層(13)、第1の磁性層(1
5)、第2の磁性層(16)、保護層・潤滑層(17)
の成膜を行った。この実施例にJ3いても実施例1と同
等以上の諸性性が確認された。(Example 2) As in Example 1, an alumite layer was formed on the aluminum alloy substrate (11 and 2) by anodizing, and the surface was polished to form a hardened and smooth layer (12). Example 1
Similarly, a non-magnetic metal underlayer (13) and a first magnetic layer (1
5), second magnetic layer (16), protective layer/lubricant layer (17)
A film was formed. Even with J3 in this example, various properties equivalent to or better than those in Example 1 were confirmed.
(実施例3)
実施例1の第1の磁性層(15)としてNiを17at
%、FOをaat%他をCoとする組成で、Co−Ni
−reを約700人形成したちのを作成したところ、
面内保持力900エルステッドを得、電磁変換特性は低
域出力LOmVでCo−Niと同程度、線記録密度では
約1割の向上を示し、耐久性、耐環境性は実施例1と同
様良好であった。(Example 3) As the first magnetic layer (15) of Example 1, 17at of Ni was used.
%, FO is aat%, and the others are Co, Co-Ni
-When I created a re group of about 700 people,
An in-plane coercive force of 900 oersteds was obtained, the electromagnetic conversion characteristics were on the same level as Co-Ni in the low-frequency output LO mV, and the linear recording density was improved by about 10%, and the durability and environmental resistance were as good as in Example 1. Met.
(実施例4)
実施例1の第1の磁性層(15)としてSmを16at
%○有するCo−3mを約700人形成したものを作成
したところ、面内保持力900エルステッドを冑、電磁
変換特性、耐久f[、耐環境性は実施例1に遜色ないこ
とがわかった。(Example 4) As the first magnetic layer (15) of Example 1, 16at of Sm was used.
When about 700 pieces of Co-3m having %○ were prepared, it was found that the in-plane retention force was 900 oersted, the electromagnetic conversion characteristics, the durability f[, and the environmental resistance were comparable to those of Example 1.
(実施例5)
実施例1の第2の磁性層(16)としてα−FC3Nを
約300A形成したものを作成した。α−Feして、基
板温度を120 ’Cとしてスパッタして1!7た。(Example 5) The second magnetic layer (16) of Example 1 was prepared by forming α-FC3N with a thickness of about 300A. Sputtering was performed using α-Fe at a substrate temperature of 120'C.
作成した磁気記録媒体は、面内保磁力870エルスデッ
ドを15.電磁変換特性、耐久性、耐環境性は実施例1
に遜色ないことがわかった。The created magnetic recording medium has an in-plane coercive force of 870 e.g. Electromagnetic conversion characteristics, durability, and environmental resistance are shown in Example 1.
I found that it was comparable to
以上のにうに、本発明によれば、作用の異なる2つの磁
性層を設りることににす、耐食性に優れ、なおかつ高密
度化へ向ての薄膜化可能な磁気記録媒体を提供すること
ができる。As described above, according to the present invention, it is possible to provide a magnetic recording medium that has two magnetic layers having different functions, has excellent corrosion resistance, and can be made thinner for higher density. Can be done.
第1図は本発明の一実施例の磁気記録媒体の部分断面図
、第2図は従来技術の磁気記録媒体の部分断面図である
。
(1)(11)・・・基板、(2)(12)・・・硬化
・平滑層、(3)(13)・・・下地層、(’I)(1
4)・・・磁性層、(15)・・・第1の磁性層、(1
6)・・・第2の磁性層、(5H17)・・・保護・潤
滑層。
代理人 ブ↑埋十 則 近 憲 佑
同 大胡典人FIG. 1 is a partial sectional view of a magnetic recording medium according to an embodiment of the present invention, and FIG. 2 is a partial sectional view of a conventional magnetic recording medium. (1)(11)...Substrate, (2)(12)...Hardened/smooth layer, (3)(13)...Underlayer, ('I)(1
4)...Magnetic layer, (15)...First magnetic layer, (1
6)...Second magnetic layer, (5H17)...Protective/lubricating layer. Agent BU↑Mumju Nori Ken Chika Yudo Norito Ogo
Claims (1)
層と窒化鉄を主成分とする第2の磁性層とを有する磁気
記録媒体。A magnetic recording medium having a first magnetic layer containing cobalt as a component element and a second magnetic layer containing iron nitride as a main component on a nonmagnetic substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13477086A JPS62291719A (en) | 1986-06-12 | 1986-06-12 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13477086A JPS62291719A (en) | 1986-06-12 | 1986-06-12 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62291719A true JPS62291719A (en) | 1987-12-18 |
Family
ID=15136155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13477086A Pending JPS62291719A (en) | 1986-06-12 | 1986-06-12 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62291719A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01243225A (en) * | 1988-03-24 | 1989-09-27 | Ricoh Co Ltd | Magnetic recording medium |
JPH02116010A (en) * | 1988-10-24 | 1990-04-27 | Matsushita Electric Ind Co Ltd | Magnetic recording medium |
-
1986
- 1986-06-12 JP JP13477086A patent/JPS62291719A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01243225A (en) * | 1988-03-24 | 1989-09-27 | Ricoh Co Ltd | Magnetic recording medium |
JPH02116010A (en) * | 1988-10-24 | 1990-04-27 | Matsushita Electric Ind Co Ltd | Magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4629660A (en) | Perpendicular magnetic-recording medium | |
US5252367A (en) | Method of manufacturing a magnetic recording medium | |
JPH0580804B2 (en) | ||
JPS63237210A (en) | Magnetic recording medium | |
JPH0323972B2 (en) | ||
JPS62291719A (en) | Magnetic recording medium | |
JP2644994B2 (en) | Disk-shaped magnetic recording medium | |
JPH0218710A (en) | Disk-shaped magnetic recording medium | |
JPS6332720A (en) | Magnetic recording medium | |
JPS6364623A (en) | Magnetic recording medium | |
JPH0513333B2 (en) | ||
JP2538124B2 (en) | Fixed magnetic disk and manufacturing method thereof | |
JPH0514325B2 (en) | ||
JPH04134718A (en) | Magnetic recording medium | |
JP2527617B2 (en) | Metal thin film magnetic recording medium | |
JPS62167614A (en) | Magnetic recording medium | |
JPS58171717A (en) | Magnetic recording medium | |
JPH09190622A (en) | Magnetic recording medium | |
JPH05205242A (en) | Magnetic recording medium and its manufacture | |
JPH04143920A (en) | Magnetic disk | |
JPS6035332A (en) | Magnetic storage body | |
JPH01277320A (en) | Magnetic recording medium | |
JPS6379954A (en) | Formation of magnetic structrue | |
JPH02103717A (en) | Magnetic recording medium | |
JPH0594612A (en) | Magnetic recording medium |