JPS62167614A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62167614A
JPS62167614A JP785786A JP785786A JPS62167614A JP S62167614 A JPS62167614 A JP S62167614A JP 785786 A JP785786 A JP 785786A JP 785786 A JP785786 A JP 785786A JP S62167614 A JPS62167614 A JP S62167614A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
magnetic
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP785786A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Hiroyuki Ikeda
裕幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP785786A priority Critical patent/JPS62167614A/en
Publication of JPS62167614A publication Critical patent/JPS62167614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve corrosion resistance by providing the 1st magnetic layer having cobalt as a component element and 2nd magnetic layer essentially consisting of iron oxide on a nonmagnetic substrate. CONSTITUTION:An aluminum alloy disk, sized 3.5 inches, is used for the nonmagnetic substrate 11 and a nonmagnetic smoothing layer 12 subjected to Ni-P plating and mirror polishing on the surface is formed thereon. The magnetic layer, protective layer, lubricating layer, etc., are formed thereon by a bipolar type high-frequency sputtering device. Cr is further formed an underlying layer 13 for improving the crystallinity of the magnetic layer and the magnetic layer consisting of two layers is constituted thereon by forming Co-Ni as the 2st magnetic layer 15 and Fe3O4 as the 2nd magnetic layer 16. The protective and lubricating layer 17 consisting of a carbon film is provided on the extreme surface layer.

Description

【発明の詳細な説明】 〔発明の屈する技術分野〕 本発明は、磁気記録媒体に関するものである。[Detailed description of the invention] [Technical fields where inventions succumb] The present invention relates to magnetic recording media.

〔発明の技術的背景〕[Technical background of the invention]

現在実用化されている磁気記録媒体は不連続媒体を有す
るものが主流である。この不連続媒体の磁気記録層はF
e、 Fe−Co、 Fe、03. Cry、等の磁性
体粒子を有機樹脂から成るバインダーに混合分散して基
板上に塗布、乾燥、焼成したものである。しかし、近年
の記録媒体の高密度化に伴って磁性体が媒体中で連続し
ている連続薄膜媒体、即ち、保持力の大きくなるような
磁性層の薄膜化が進んでおり、従来の塗布型から、メッ
キ型、あるいはスパッタリング型へと成膜方式が推移し
つつある。
Most of the magnetic recording media currently in practical use have discontinuous media. The magnetic recording layer of this discontinuous medium is F
e, Fe-Co, Fe, 03. Magnetic particles such as Cry are mixed and dispersed in a binder made of organic resin, and the mixture is coated on a substrate, dried, and fired. However, as the density of recording media has increased in recent years, continuous thin-film media in which the magnetic material is continuous within the medium, in other words, the magnetic layer has become thinner and have a higher coercive force. The film forming method is now shifting to a plating type or a sputtering type.

そのような状況の下で、磁気記録媒体に対してなされる
要求は磁性層は薄く、しかも十分な再生出力が得られる
ことである。このような媒体として最も注目されている
のがNiを20〜30at%含有するGo−Ni系合金
やあるいはCrを18〜20at%含有するCo−Cr
系合金を磁性層とするものである。この種の磁気記録媒
体は通常第2図のように、非磁性の基体田土に平滑層■
を形成した上に更にCrを主とした下地層(3)を形成
し、その上に磁性層は)が形成され、最表面に保護、潤
滑層■を設けた構造を有している。
Under such circumstances, the requirements for magnetic recording media are that the magnetic layer be thin and that sufficient reproduction output can be obtained. The media that are attracting the most attention as such media are Go-Ni alloys containing 20 to 30 at% Ni and Co-Cr containing 18 to 20 at% Cr.
The magnetic layer is made of a system alloy. This type of magnetic recording medium usually has a smooth layer on a non-magnetic substrate, as shown in Figure 2.
On top of this, an underlayer (3) mainly made of Cr is formed, a magnetic layer () is formed on top of this, and a protective and lubricating layer (2) is provided on the outermost surface.

〔背景技術の問題点〕[Problems with background technology]

Go −Ni系合金を磁性層とする場合、十分な再生出
力を得るために磁性層の厚みは500人乃至2000人
で十分である。しかし、Go−Ni系合金のみでは耐食
性に劣り、それを補うために磁性層上に更にCr等の耐
食性に優れた非磁性層を1ooo人近く設けなければな
らない。しかし再生出力を考えた場合、一般にヘッドの
ディスクからの浮上量が2000人乃至3000人でな
ければならないと言われている。このため、1000人
近い非磁性層の厚みは、ヘッドから磁性層までの距離が
この分遠ざかる結果、スペーシングロスによる再生出力
低下につながる。
When a Go-Ni alloy is used as the magnetic layer, a thickness of 500 to 2000 layers is sufficient to obtain sufficient reproduction output. However, the Go-Ni alloy alone has poor corrosion resistance, and to compensate for this, it is necessary to further provide a non-magnetic layer such as Cr with excellent corrosion resistance on the magnetic layer. However, when considering reproduction output, it is generally said that the flying height of the head from the disk must be 2,000 to 3,000. Therefore, the thickness of the non-magnetic layer of nearly 1,000 layers increases the distance from the head to the magnetic layer, resulting in a reduction in reproduction output due to spacing loss.

一方Co −Cr系合金を磁性層とする場合、耐食性に
関しては優れているものの、材料固有の問題として飽和
磁化量が小さいために十分な再生出力を得るために磁性
層厚みを1000人乃至4000人とらなければならな
い。
On the other hand, when a Co-Cr alloy is used as a magnetic layer, although it has excellent corrosion resistance, the problem inherent to the material is that the amount of saturation magnetization is small. I have to take it.

今後の高密度化への流れを考慮すると、Co−Ni系合
金は耐食性の点で、またCo−Crr系合金は薄膜化に
限定がある点で、大きなさまたげとなっており新しい磁
性層の開発が望まれていた。
Considering the future trend toward higher densities, the corrosion resistance of Co-Ni alloys and the limitation of thinning of Co-Cr alloys are major obstacles, and the development of new magnetic layers has been hindered. was desired.

また本発明者等は、耐食性に優れなおかつ再生出力を損
なうことのない磁性層を有する磁気記録媒体として、特
願昭60−156954号で、CO及びNiを主とする
第1の磁性層上にCo及びCrを主とする第2の磁性層
を積層した構造を提案した。
In addition, the present inventors have proposed a magnetic recording medium having a magnetic layer that has excellent corrosion resistance and does not impair reproduction output in Japanese Patent Application No. 156954/1982, in which a first magnetic layer mainly composed of CO and Ni is used. We proposed a structure in which a second magnetic layer mainly made of Co and Cr is laminated.

〔発明の目的〕[Purpose of the invention]

本発明は、より一層耐食性に優れなおかつ再生出力を損
なうことのない磁性層を有する磁気記録媒体を提供する
ことを目的とし、第2の磁性層として磁気特性を有し、
より耐食性の高い材料として鉄酸化物を用いた磁気記録
媒体を提案するものである。
An object of the present invention is to provide a magnetic recording medium having a magnetic layer that has even better corrosion resistance and does not impair reproduction output, and has magnetic properties as a second magnetic layer,
This paper proposes a magnetic recording medium using iron oxide as a material with higher corrosion resistance.

〔発明の概要〕[Summary of the invention]

本発明は薄膜堆積法によって磁性層が形成されろ磁気記
録媒体において、磁性層がコバルトを成分元素に有する
第1の磁性層と、この上に形成された酸化鉄を主成分と
する第2の磁性層からなることを特徴とする。薄膜堆積
法としては、真空熱着法、スパッタリング法、イオンブ
レーティング法、メッキ法等が利用できる。更に詳述す
ると、本発明では、ガラス基体或いは非磁性全屈基体。
The present invention provides a magnetic recording medium in which a magnetic layer is formed by a thin film deposition method. It is characterized by consisting of a magnetic layer. As the thin film deposition method, a vacuum thermal deposition method, a sputtering method, an ion blating method, a plating method, etc. can be used. More specifically, in the present invention, a glass substrate or a non-magnetic total bending substrate is used.

例えばAQ合合金体上にNL  Pメッキ層あるいは酸
化アルミニウム層を形成して平滑層としたものに、中間
下地層としてCr等を形成した上に第1の磁性層、更に
第2磁性層が形成され、最表層に保護膜が形成されたも
のである。
For example, an NLP plating layer or an aluminum oxide layer is formed on an AQ composite alloy to form a smooth layer, and then an intermediate underlayer of Cr or the like is formed, and then a first magnetic layer and then a second magnetic layer are formed. A protective film is formed on the outermost layer.

第1の磁性層は、膜厚が大きくなるのを抑え、なおかつ
良好な再生出力を得るためのものである。
The first magnetic layer is intended to suppress an increase in film thickness and to obtain a good reproduction output.

第2の磁性層は、第1の磁性層の耐食性を向上させると
ともに、磁性をもつことにより膜厚増加によるスペーシ
ングロスを改善するためのものである。第2の磁性層は
、耐食性を有する限り薄い方が良く、100〜1000
人 の範囲で選ぶことができる。
The second magnetic layer improves the corrosion resistance of the first magnetic layer, and has magnetism to improve spacing loss due to increase in film thickness. It is better for the second magnetic layer to be thin as long as it has corrosion resistance;
You can choose from a range of people.

コバルトを成分元素に有する第1の磁性層としては、C
o及びNiからなるもの、 Go及びNiに更に]?e
The first magnetic layer containing cobalt as a component element is C
Consisting of o and Ni, Go and Ni further]? e
.

P、W、Pt、Crの内から選ばれた少なくとも1つの
元素を添加したもの、更にはcoとPt、Y、La、C
e、Pr、S+m。
Added at least one element selected from P, W, Pt, and Cr, and furthermore, co, Pt, Y, La, and C.
e, Pr, S+m.

Nd、Pmの内から選ばれた少なくとも1つの元素とか
らなるもの、が挙げられる。Co−Niの場合は、Ni
を10〜30at%含有し厚さが2000人を越えない
ものが用いられる。Co−Niに電磁変換特性向上のた
めに第3の元素を添加したものは、Co −Niのみの
磁性層と同じBi−みの磁性層を形成した場合、飽和磁
化或は保磁力において優れる。添加元素をFeとした場
合には、飽和磁化及び角形比に優れる。また添加元素を
Pt、す或はPとした場合には、保磁力及び角形比に優
れる。添加元素をCrとした場合には、保磁力を増強さ
せるとともに耐食性を向上させることができる。またC
oとPt、Y、La、Ce、Pr、Sm。
Examples include those consisting of at least one element selected from Nd and Pm. In the case of Co-Ni, Ni
A material containing 10 to 30 at% of carbon dioxide and having a thickness of not more than 2000 mm is used. Co--Ni to which a third element is added to improve electromagnetic conversion characteristics is superior in saturation magnetization or coercive force when a Bi-based magnetic layer is formed, which is the same as a Co--Ni magnetic layer. When Fe is used as the additive element, the saturation magnetization and squareness ratio are excellent. Furthermore, when the additive element is Pt, Su or P, the coercive force and squareness ratio are excellent. When the additive element is Cr, the coercive force can be increased and the corrosion resistance can be improved. Also C
o and Pt, Y, La, Ce, Pr, Sm.

Nd 、 Piの内から選ばれた少なくとも1つの元素
とからなるものは、P t HY HL a HCe 
t P r HSta 1 N d HP mが5〜4
0at%含有され、2000人を越えたい厚さで形成さ
れる。
At least one element selected from Nd and Pi is P t HY HL a HCe
t P r HSta 1 N d HP m is 5 to 4
It contains 0at% and is formed to a thickness of more than 2000 layers.

〔発明の実施例〕[Embodiments of the invention]

実施例1 次に本発明の実施例を第1図を参照して説明する。第1
図は本発明の磁気記録媒体の部分断面図である。
Example 1 Next, an example of the present invention will be described with reference to FIG. 1st
The figure is a partial cross-sectional view of the magnetic recording medium of the present invention.

第11P+において、非磁性基体(11)として3.5
インチのアルミニウム合金製ディスクを使用し1表面に
N1−Pメッキ及び鏡面研磨がなされた非磁性平滑層(
12)を形成した。これに二極式高周波スパッタリング
装置により磁性層、保護層・潤滑層等を形成した。成膜
方法、並びに成膜条件は以下の通りである。膜厚及び磁
気特性を均一にするために基板装置台は自公転可能で1
台を6 rpmで回転させた。成膜は初期到達真空度8
.OX 10””Torrで。
In the 11th P+, 3.5 as the non-magnetic substrate (11)
A non-magnetic smooth layer (N1-P plated and mirror-polished) is used on one surface of an inch-inch aluminum alloy disk (
12) was formed. A magnetic layer, a protective layer, a lubricating layer, etc. were formed on this using a bipolar high-frequency sputtering device. The film forming method and film forming conditions are as follows. In order to make the film thickness and magnetic properties uniform, the substrate equipment stand can rotate around its axis.
The platform was rotated at 6 rpm. The initial vacuum level for film formation is 8.
.. At OX 10"" Torr.

導入Arガス圧を4.OX 10−”Torrとし、ス
パッタリングパワー300W、室温下に於いて行なった
。まず、磁性層の結晶性を良くするための下地層C13
)としてCrを2500人形成した。その上に、第1の
磁性層(15)として、Co−Niを約500人、 次
に第2の磁性層(16)としてFe3O4を約500人
形成し、二層より成る磁性層(14)を構成した。また
、最表層に300人乃至500人のカーボン膜からなる
保護・潤滑層(17)を設けた。
Introduced Ar gas pressure 4. The sputtering was carried out at OX 10-" Torr, sputtering power 300 W, and room temperature. First, a base layer C13 was formed to improve the crystallinity of the magnetic layer.
), 2,500 Cr members were formed. On top of that, a first magnetic layer (15) of approximately 500 layers of Co-Ni and a second magnetic layer (16) of approximately 500 layers of Fe3O4 are formed, forming a two-layer magnetic layer (14). was configured. Furthermore, a protective/lubricating layer (17) made of a carbon film of 300 to 500 layers was provided on the outermost layer.

こうして作成した磁気記録媒体の磁気特性を測定したと
ころ、面内保磁カフ00エルステツドを得、また飽和磁
化斌、その他の磁気特性に関しても優れた結果を得た。
When the magnetic properties of the magnetic recording medium thus prepared were measured, an in-plane coercivity cuff of 00 oersted was obtained, and excellent results were also obtained regarding saturation magnetization and other magnetic properties.

更に、電磁変換特性及びヘッドとの摩耗試験及び環境試
験を行なった結果、次の特性を得た。電磁変換特性につ
いては20kbpi〜40kbpiの晶密度記録が可能
であった。ヘッドとの摩耗試験では通常行なわれている
2万回のコンタクト・スタート・ストップテストを行い
、ディスク表面に傷のつかないことを確認した。
Further, as a result of electromagnetic conversion characteristics, head wear tests, and environmental tests, the following characteristics were obtained. Regarding electromagnetic conversion characteristics, crystal density recording of 20 kbpi to 40 kbpi was possible. In the wear test with the head, we conducted a 20,000-time contact start/stop test, which is the standard practice, and confirmed that there were no scratches on the disk surface.

また、本発明のポイントである耐環境性につぃても、温
度85℃、相対湿度85%で1000時間放置したが、
外観上の変化は全黙認められず欠陥箇所の増加も皆無で
あり、十分な耐食性が確認された。
In addition, regarding environmental resistance, which is the key point of the present invention, after being left at a temperature of 85°C and a relative humidity of 85% for 1000 hours,
No changes in appearance were observed, no increase in defective areas, and sufficient corrosion resistance was confirmed.

実施例2 実施例1と同様に、アルミニウム合金非磁性基体(11
)を用い、この表面を陽極酸化により、アルミナ(A9
zO3)の非金属層の非磁性平滑層(12)を形成し、
後は先の実施例と同様に非磁性金属下地層節1及び第2
の磁性層及び保護・潤滑層を形成した。この実施例にお
いても実施例1と同様の効果を得た。
Example 2 Similar to Example 1, an aluminum alloy nonmagnetic substrate (11
), and the surface was anodized to form alumina (A9
forming a nonmagnetic smooth layer (12) of a nonmetallic layer of
After that, as in the previous example, the non-magnetic metal underlayer nodes 1 and 2 are formed.
A magnetic layer and a protective/lubricant layer were formed. In this example as well, the same effects as in Example 1 were obtained.

実施例3 実施例1の第1の磁性層(15)としてNiを17at
%。
Example 3 Ni was used as the first magnetic layer (15) of Example 1 at 17at.
%.

Feを8at%他をCoとする組成で、 Co−Ni−
Feを約700人形成したものを作成したところ、面内
保磁カフ50エルステツドを得、電磁変換特性は低減出
力1゜OmVでCo−Niと同程度、線記録密度では約
1割の向上を示し、耐久性、耐環境性は実施例1と同様
良好であった。
With a composition of 8 at% Fe and other Co, Co-Ni-
When we created a material with about 700 Fe layers, we obtained an in-plane coercive cuff of 50 oersteds, and the electromagnetic conversion characteristics were the same as Co-Ni at a reduced output of 1°OmV, and the linear recording density was improved by about 10%. The durability and environmental resistance were as good as in Example 1.

実施例4 実施例1の第1の磁性JPJ(15)としてSmを16
at%含有するCo−5mを700人形成したものを作
成したところ、面内保磁力800エルステツドを得、電
磁変換特性、耐久性、耐環境性共に実施例1に損色ない
ことがわかった。
Example 4 Sm was 16 as the first magnetic JPJ (15) of Example 1.
When 700 pieces of Co-5m containing at% were prepared, an in-plane coercive force of 800 oersted was obtained, and it was found that the electromagnetic conversion characteristics, durability, and environmental resistance were as good as Example 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば作用の異なる2つの磁性
層を設けることにより耐食性に優れ、なおかつ高密度化
へ向けての薄膜化可能な磁気記録媒体を提供することが
できる。
As described above, according to the present invention, by providing two magnetic layers having different functions, it is possible to provide a magnetic recording medium that has excellent corrosion resistance and can be made thinner for higher density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気記録媒体の部分断面図
、第2図は従来技術の磁気記録媒体の部分断面1?1で
ある。 (11)・・非磁性基体、    (12)・・・非磁
性平滑層、(13)・・・非磁性金属下地層、(■4)
由磁性チjり、(15)・・・第1の磁性層、  (1
6)・・・第2の磁性層、(17)・・・保護・潤滑」
jり。 代理人 弁理士 則 近 憲 佑 同      大  胡  典  夫 第2図
FIG. 1 is a partial sectional view of a magnetic recording medium according to an embodiment of the present invention, and FIG. 2 is a partial sectional view 1-1 of a conventional magnetic recording medium. (11)...Nonmagnetic substrate, (12)...Nonmagnetic smooth layer, (13)...Nonmagnetic metal base layer, (■4)
magnetic flux, (15)...first magnetic layer, (1
6)...Second magnetic layer, (17)...Protection/lubrication"
jri. Agent Patent Attorney Noriyuki Chika Yudo Daiko Norio Figure 2

Claims (1)

【特許請求の範囲】[Claims] 非磁性基体上にコバルトを成分元素に有する第1の磁性
層と酸化鉄を主成分とする第2の磁性層とを有する磁気
記録媒体。
A magnetic recording medium having a first magnetic layer containing cobalt as a component element and a second magnetic layer containing iron oxide as a main component on a nonmagnetic substrate.
JP785786A 1986-01-20 1986-01-20 Magnetic recording medium Pending JPS62167614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP785786A JPS62167614A (en) 1986-01-20 1986-01-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP785786A JPS62167614A (en) 1986-01-20 1986-01-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62167614A true JPS62167614A (en) 1987-07-24

Family

ID=11677309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP785786A Pending JPS62167614A (en) 1986-01-20 1986-01-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62167614A (en)

Similar Documents

Publication Publication Date Title
JPH07114016B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0580804B2 (en)
JPH0566647B2 (en)
KR100644177B1 (en) Perpendicular magnetic recording medium
JPH0750008A (en) Magnetic recording medium
JPS62167614A (en) Magnetic recording medium
JPH0474772B2 (en)
JPH0481268B2 (en)
JP3582435B2 (en) Perpendicular magnetic recording medium
JP2644994B2 (en) Disk-shaped magnetic recording medium
EP0213346B1 (en) Magnetic recording medium
JPH0650683B2 (en) Magnetic memory
JPS62291719A (en) Magnetic recording medium
JPS6218624A (en) Magnetic recording medium
JPH08329442A (en) Magnetic recording medium
JPS6332720A (en) Magnetic recording medium
JPS6364623A (en) Magnetic recording medium
JPH03241526A (en) Magnetic recording medium
JPH09190622A (en) Magnetic recording medium
JPS62141628A (en) Magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JPH0566646B2 (en)
JPS6052918A (en) Magnetic memory medium
JPH0447521A (en) Magnetic recording medium
JPH10112019A (en) Magnetic recording medium and its production