JPH03241526A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH03241526A
JPH03241526A JP3762190A JP3762190A JPH03241526A JP H03241526 A JPH03241526 A JP H03241526A JP 3762190 A JP3762190 A JP 3762190A JP 3762190 A JP3762190 A JP 3762190A JP H03241526 A JPH03241526 A JP H03241526A
Authority
JP
Japan
Prior art keywords
magnetic
film
substrate
texture
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3762190A
Other languages
Japanese (ja)
Inventor
Yasuhiro Notohara
康裕 能登原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3762190A priority Critical patent/JPH03241526A/en
Publication of JPH03241526A publication Critical patent/JPH03241526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To execute magnetic recording at a high density by applying a concentrical texture on the surface of an NiP alloy film formed on a nonmagnetic substrate and forming a magnetic layer via a nonmagnetic underlying layer on the substrate from which the surface oxide layer of the alloy film is removed. CONSTITUTION:The NiP alloy film 2 is formed in order to maintain the mechanical strength of a magnetic disk on the surface of the nonmagnetic substrate 1 consisting of an AlMg alloy. Since the surface of the film 2 is rugged, the surface is polished and further the texture is applied concentrically with the substrate on this surface to produce the disk substrate. Since the surface of the film 2 is coated with the surface oxide layer at the point of this time, the oxide film is removed and thereafter the Cr underlying layer 3, a magnetic film 4 and a protective film 5 are formed in order to improve the magnetic characteristics of the magnetic film. Such magnetic anistropy that the texture direction is a difficult axis is induced in spite of the concentrical texturing and, therefore, the squarness ratio of the texture direction is small and the high-density magnetic recording is executed with small medium noise.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電磁変換特性と耐久性能の向上に有効な下地
層を形成した磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic recording medium on which an underlayer is formed that is effective in improving electromagnetic conversion characteristics and durability.

従来の技術 近年、磁気ディスク装置には、記録の高密度化。Conventional technology In recent years, magnetic disk devices have become capable of higher recording densities.

アクセスタイムの短縮化トよび転送レートの高速化が壕
す1す要求されている。これにともない磁気記録媒体は
、酸化物の塗布型媒体からスパッタ法やメツキ法による
高保磁力、高残留磁束密度の金属薄膜媒体に変わろうと
している。
There is an increasing demand for shorter access times and faster transfer rates. Along with this, magnetic recording media are changing from oxide coated media to metal thin film media with high coercive force and high residual magnetic flux density produced by sputtering or plating methods.

高密度記録化のためには、信号出力を高め、ビットシフ
トなどと関連して媒体の変調ノイズを低減することが重
要な問題となってくる。
In order to achieve high-density recording, it is important to increase signal output and reduce media modulation noise associated with bit shifts and the like.

一般に媒体の変調ノイズは、消磁の関係から磁化−磁界
(B−H)曲線の角型比に依存しており、角型比が大き
くなれば、変調ノイズも大きくなり、小さくなれば、変
調ノイズも低くなる傾向にある。
In general, the modulation noise of a medium depends on the squareness ratio of the magnetization-magnetic field (B-H) curve due to the relationship of demagnetization, and as the squareness ratio increases, the modulation noise increases, and as the squareness ratio decreases, the modulation noise increases. is also trending lower.

角型比が小さく、変調ノイズの低い磁気記録媒体として
、スパッタ法により成膜時のガス圧を高くして作製した
磁気記録媒体とNiP合金をメツキしたディスク基板に
放射状にテクスチャを付けた磁気記録媒体がある。
A magnetic recording medium with a small squareness ratio and low modulation noise is manufactured using a sputtering method using high gas pressure during film formation, and a magnetic recording medium with a radially textured disk substrate plated with NiP alloy. There is a medium.

発明が解決しようとする課題 しかしながら、前者の磁気記録媒体では、成膜時のガス
圧を高くしなければならないため、膜内の粒子間の隙間
が大きく高温高湿な環境下では耐食性が劣る。
Problems to be Solved by the Invention However, in the former magnetic recording medium, since the gas pressure must be increased during film formation, the gaps between particles in the film are large and the corrosion resistance is poor in a high temperature and high humidity environment.

また、後者の磁気記録媒体では、磁気ヘッドの走行の横
方向に凹凸があるためコンタクトスタート・ストップ特
性(以下C3S特性と略す)釦よびヘッド浮上特性に劣
る。また、放射状に均質なテクスチャを付けることは困
難である。
Furthermore, in the latter magnetic recording medium, contact start/stop characteristics (hereinafter abbreviated as C3S characteristics) and head flying characteristics are inferior due to unevenness in the lateral direction of the magnetic head. Furthermore, it is difficult to provide a radially uniform texture.

したがって上記した磁気記録媒体では、角型比が小さく
、媒体の変調ノイズが低くても、耐環境性やC8S特性
ふ・よびヘッド浮上特性などに問題があるため、実機ド
ライブに組み込んで高密度磁気記録を達成することはで
きない。
Therefore, even if the above-mentioned magnetic recording media have a small squareness ratio and low modulation noise of the medium, there are problems with environmental resistance, C8S characteristics, head flying characteristics, etc. Records cannot be achieved.

本発明は、上記課題を解決し、ノイズ特性と耐久性能の
良好な磁気記録媒体を提供することを目的としている。
An object of the present invention is to solve the above problems and provide a magnetic recording medium with good noise characteristics and durability.

課題を解決するための手段 本発明は上記目的を達成するため、非磁性基板上に形成
したN i P合金膜の表面に同心円状のテクスチャを
付けてなるディスク基板の表面酸化層を除去し、前記基
板表面を酸化させることなく非磁性下地層を介して磁性
層を形成するものである。
Means for Solving the Problems In order to achieve the above object, the present invention removes the surface oxidation layer of a disk substrate formed by adding a concentric texture to the surface of an N i P alloy film formed on a non-magnetic substrate, A magnetic layer is formed through a nonmagnetic underlayer without oxidizing the substrate surface.

作   用 本発明の磁気記録媒体は、テクスチャは同心円状に付い
ているにもかかわらず、ディスク基板上の表面酸化層を
除去することにより、テクスチャと平行方向が困難軸と
なる磁気異方性が誘導されるため、角型比が小さくなる
Although the magnetic recording medium of the present invention has a concentric texture, by removing the surface oxidation layer on the disk substrate, the magnetic anisotropy in which the difficult axis is parallel to the texture can be improved. As a result, the squareness ratio becomes smaller.

実施例 第1図は本発明の一実施例にふ・ける磁気記録媒体を示
す断面図である。軽量で非磁性のAIMq合金基板1の
表面に磁気ディスクの機械的強度を保つため、NiP合
金膜(P濃度:11wt%)2を無電解メツキ法により
15μmの厚さに成膜する。N i P合金膜2の表面
は凹凸であるため、Ae203砥粒を用いて鏡面になる
ように研磨する。
Embodiment FIG. 1 is a sectional view showing a magnetic recording medium according to an embodiment of the present invention. In order to maintain the mechanical strength of the magnetic disk on the surface of the lightweight, non-magnetic AIMq alloy substrate 1, a NiP alloy film (P concentration: 11 wt%) 2 is formed to a thickness of 15 μm by electroless plating. Since the surface of the N i P alloy film 2 is uneven, it is polished to a mirror surface using Ae203 abrasive grains.

さらにへ42o3ラッピングテープを用い、その表面に
デイヌク基板と同心円状のテクスチャを平均表面粗さR
a=60人 となるように付けてディスク基板を作製す
る。このディスク基板は洗浄乾燥後にスパッタ装置にセ
ットする。この時点ではデイヌク基板表面、すなわちテ
クスチャリングが施されたN t P合金膜の表面は、
表面酸化層で覆われている。スパッタ装置の真空引きを
始め、真空度が10 ’、Torr台になったら200
W、30式の逆スパツタを行い、基板表面のN i P
合金膜の表面酸化層を除去する。その後連続してDCマ
グネトロンスパッタ法により、Ar ガス圧1mT o
 r rで磁性膜の磁気特性を向上させるためのCr下
地膜3を3000人とCo N i Cr 磁性膜4を
6oO人釦よびカーボンC表面保護膜5を200人連続
して形成し、本実施例の磁気記録媒体を作製する。
Furthermore, using 42o3 wrapping tape, a texture concentric with the Deinuk substrate was applied to the surface with an average surface roughness of R.
A disk substrate is manufactured by attaching the number of people so that a=60 people. After cleaning and drying, this disk substrate is set in a sputtering device. At this point, the surface of the Dainuk substrate, that is, the surface of the textured N t P alloy film, is
Covered with a surface oxide layer. Start vacuuming the sputtering equipment, and when the vacuum level reaches 10' and Torr level, increase the vacuum to 200
W, reverse sputtering of type 30 is performed to remove N i P on the substrate surface.
Remove the surface oxide layer of the alloy film. Thereafter, by continuous DC magnetron sputtering method, Ar gas pressure was 1 mTo.
3000 people successively formed the Cr base film 3 to improve the magnetic properties of the magnetic film using r r, 600 people formed the CoNiCr magnetic film 4, and 200 people successively formed the carbon C surface protective film 5. An example magnetic recording medium is manufactured.

第2図に比較例Aの磁気記録媒体の断面図を示す。実施
例と同じディスク基板の表面に、N L P合金膜の表
面酸化層6を除去することなしに、DCマグネトロンス
パッタ法により、Ar ガス圧30mTorrと高いガ
ス圧で、磁性膜の磁気特性を向上させるためのCr下地
膜3を3000人、CoNiCr 磁性膜4を600人
、カーボンC表面保護膜6を200人連続して形成し、
比較例Aの磁気記録媒体を作製した。
FIG. 2 shows a cross-sectional view of the magnetic recording medium of Comparative Example A. On the surface of the same disk substrate as in the example, without removing the surface oxide layer 6 of the NLP alloy film, the magnetic properties of the magnetic film were improved using Ar gas pressure as high as 30 mTorr by DC magnetron sputtering. 3,000 people successively formed the Cr base film 3, 600 people formed the CoNiCr magnetic film 4, and 200 people formed the carbon C surface protection film 6.
A magnetic recording medium of Comparative Example A was produced.

また、第2図に示すような構造で、実施例と同じディス
ク基板に、基板表面のNLP合金膜の表面酸化層eを除
去することなしに、DCマグネトロンスパッタ法によ5
Ar ガス圧1mTozrで、磁性膜の磁気特性を向上
させるためのCr下地膜3を3000人、CoNiCr
 磁性膜4を600人、カーボンC表面保護膜5を20
0人連続して形成し、比較例Bの磁気記録媒体を作製し
た。
In addition, with the structure shown in FIG. 2, the same disk substrate as in the example was coated with a 5.
At an Ar gas pressure of 1 mTozr, 3,000 CoNiCr and CoNiCr underlayers were formed to improve the magnetic properties of the magnetic film.
600 people for magnetic film 4, 20 people for carbon C surface protection film 5
A magnetic recording medium of Comparative Example B was produced by continuously forming 0 persons.

実施例と比較例A、比較例Bの磁気記録媒体の静磁気特
性の測定結果を次の表−1に、また媒体変調ノイズの記
録密度依存性を第3図に示す。
The measurement results of the magnetostatic properties of the magnetic recording media of Examples, Comparative Examples A and B are shown in Table 1 below, and the dependence of the media modulation noise on the recording density is shown in FIG.

実施例釦よび比較例Aの角型比は比較例Bに比べ非常に
小さくなっている。lた媒体変調ノイズも実施例お・よ
び比較例Aでは、比較例Bよシ非常に低くなっている。
The squareness ratio of the example button and comparative example A is much smaller than that of comparative example B. The medium modulation noise in Examples and Comparative Example A is also much lower than in Comparative Example B.

特に、実施例および比較例Aの媒体変調ノイズは記録密
度が高い領域壕で低いが、比較例Bでは媒体変調ノイズ
は、記録密度の高い領域で急激に高くな9、実施例およ
び比較例Aとの差が顕著になる。
In particular, the medium modulation noise in Example and Comparative Example A is low in areas with high recording density, but in Comparative Example B, the medium modulation noise increases rapidly in areas with high recording density9. The difference becomes noticeable.

なお、比較例Bでは角型比は0.90と大きな値を示し
ているが、これはテクスチャによシその平行方向を容易
軸とするような磁気異方性が誘導されるためである。実
施例と比較例Bとの違いは、ディスク基板の表面のN 
i P合金膜の表面酸化層の有無だけによるものである
。すなわち、実施例でもテクスチャは同心円状に入って
いるにもかかわらず、比較例Bの角型比と比べ非常に小
さいのは、デイヌク基板表面のN L P合金膜の表面
酸化層を除去したためテクスチャと平行方向を容易軸と
する磁気異方性が誘導されず、テクスチャの方向と垂直
方向を容易軸とする磁気異方性が誘導されるため、角型
比が小さくなり、媒体変調ノイズも小さくなったのであ
る。
In Comparative Example B, the squareness ratio shows a large value of 0.90, but this is because the texture induces magnetic anisotropy such that the easy axis is the parallel direction. The difference between the example and comparative example B is that the N on the surface of the disk substrate
This is due only to the presence or absence of the surface oxidation layer of the iP alloy film. In other words, even though the texture is concentric in Example B, the squareness ratio is very small compared to Comparative Example B because the surface oxide layer of the NLP alloy film on the surface of the Dainuk substrate was removed. Magnetic anisotropy with the easy axis parallel to the texture direction is not induced, but magnetic anisotropy with the easy axis perpendicular to the texture direction is induced, resulting in a smaller squareness ratio and smaller media modulation noise. It has become.

つきに、磁気記録媒体を実機ドライブに組み込む際に重
要な問題となる耐食性について調べた。
Finally, we investigated corrosion resistance, which is an important issue when incorporating magnetic recording media into actual drives.

実施例あ・よび比較例Aの磁気記録媒体を濃度1mol
/1の食塩水に6時間浸した後の飽和磁束密度Bと食塩
水に浸す前の飽和磁束密度B。との比B/Boを次の表
−2に示す。
The magnetic recording media of Example A and Comparative Example A were prepared at a concentration of 1 mol.
Saturation magnetic flux density B after being immersed in /1 saline solution for 6 hours and saturation magnetic flux density B before being immersed in saline solution. The ratio B/Bo is shown in Table 2 below.

表−2 B0二 食塩水に浸す前の飽和磁束密度B : 食塩水
に浸した後の飽和磁束密度実施例では食塩水に浸す前後
で飽和磁束密度の比B/B0は0.98で殆ど変化しな
い。一方、比較例Aでは食塩水に浸すことで、飽和磁束
密度の比B/Boは、0.86と小さくなるが、これは
磁性膜が食塩水により腐食され、非磁性化したためであ
る。すなわち、比較例Aでは耐食性が悪いが、実施例で
は耐食性も優れている。
Table 2 B02 Saturation magnetic flux density B before immersion in salt water: Saturation magnetic flux density after immersion in salt water In the example, the ratio of saturation magnetic flux density B/B0 is 0.98 and hardly changes before and after immersion in salt water. do not. On the other hand, in Comparative Example A, the saturation magnetic flux density ratio B/Bo decreases to 0.86 by immersing it in the saline solution, but this is because the magnetic film is corroded by the saline solution and becomes non-magnetic. That is, although Comparative Example A has poor corrosion resistance, Examples have excellent corrosion resistance.

な釦、本実施例では非磁性下地層にOr、磁性層にCo
NiCrを用いたが、非磁性下地層はCr以外にMoや
 Wなどの金属でもよく、磁性層はCo N i Cr
以外に、Co N iやCoP t 、 CoCr  
などの金属でもよい。
In this example, the non-magnetic underlayer is made of Or and the magnetic layer is made of Co.
Although NiCr was used, the nonmagnetic underlayer may be made of a metal other than Cr such as Mo or W, and the magnetic layer may be made of CoNiCr.
In addition, Co Ni, CoP t, CoCr
Metals such as

発明の効果 以上の実施例から明らかなように本発明は、非磁性基板
上に形成したN L P合金膜の表面に同心円状のテク
スチャを付け、N L P合金膜の表面酸化層を除去し
たデイヌク基板上にその表面を酸化させることなく非磁
性下地層を介して磁性層を形成したものであり、同・し
円状にテクスチャが入っているにもかかわらず、テクス
チャ方向が困難軸となるような磁気異方性が誘導される
ため、テクスチャ方向の角型比が小さく、したがって媒
体変調ノイズも小さく高密度磁気記録ができる。寸たA
rガス圧を低くした状態で膜形成ができるので、形成さ
れた膜は緻密な膜となシ、耐食性に関しても優れた磁気
記録媒体である。さらに、テクスチャは同心円状に入っ
ているため、C3S特性やヘッド浮上特性にも何ら問題
がない。したがって本発明の磁気記録媒体を実機ドライ
ブに組み込むことにより高密度磁気記録ができる。
Effects of the Invention As is clear from the above examples, the present invention provides a concentric texture on the surface of the NLP alloy film formed on a nonmagnetic substrate, and removes the surface oxide layer of the NLP alloy film. A magnetic layer is formed on a Deinuk substrate via a non-magnetic underlayer without oxidizing the surface, and even though the texture is circular, the direction of the texture is a difficult axis. Since such magnetic anisotropy is induced, the squareness ratio in the texture direction is small, and therefore, medium modulation noise is also small, allowing high-density magnetic recording. Dimension A
Since the film can be formed at a low r gas pressure, the formed film is a dense film and is a magnetic recording medium with excellent corrosion resistance. Furthermore, since the texture is concentric, there is no problem with C3S characteristics or head flying characteristics. Therefore, high-density magnetic recording can be achieved by incorporating the magnetic recording medium of the present invention into an actual drive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の磁気記録媒体の断面図、第2
図は比較例AI−よび比較例Bの磁気記録媒体の断面図
、第3図は媒体変調ノイズの記録密度依存特性図である
。 1・・・・・・非磁性基板、2・・・・・・N i P
合金膜、3・・・・・・Cr下地膜(非磁性下地層)、
4・・・・・・Co N i Cr磁性膜(磁性層)。
FIG. 1 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the magnetic recording media of Comparative Example AI- and Comparative Example B, and FIG. 3 is a recording density dependence characteristic diagram of medium modulation noise. 1...Nonmagnetic substrate, 2...NiP
Alloy film, 3...Cr base film (non-magnetic base layer),
4...CoNiCr magnetic film (magnetic layer).

Claims (1)

【特許請求の範囲】[Claims]  非磁性基板上に形成したNiP合金膜の表面に同心円
状のテクスチャを付け、前記合金膜の表面酸化層を除去
したディスク基板上に非磁性下地層を介して磁性層を形
成した磁気記録媒体。
A magnetic recording medium in which the surface of a NiP alloy film formed on a non-magnetic substrate is provided with a concentric texture, and a magnetic layer is formed on a disk substrate with a surface oxidation layer of the alloy film removed via a non-magnetic underlayer.
JP3762190A 1990-02-19 1990-02-19 Magnetic recording medium Pending JPH03241526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3762190A JPH03241526A (en) 1990-02-19 1990-02-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3762190A JPH03241526A (en) 1990-02-19 1990-02-19 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03241526A true JPH03241526A (en) 1991-10-28

Family

ID=12502704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3762190A Pending JPH03241526A (en) 1990-02-19 1990-02-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03241526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171676B1 (en) 1996-03-19 2001-01-09 Fujitsu Limited Magnetic recording medium containing fine magnetic crystal grains and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171676B1 (en) 1996-03-19 2001-01-09 Fujitsu Limited Magnetic recording medium containing fine magnetic crystal grains and its manufacture

Similar Documents

Publication Publication Date Title
US6667118B1 (en) Texture-induced magnetic anisotropy of soft underlayers for perpendicular recording media
JPH07169037A (en) In-surface type magnetic recording medium and its manufacture and magnetic recorder employing the medium
JPH03241526A (en) Magnetic recording medium
JP2625169B2 (en) Method of manufacturing magnetic disk medium
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JPH0877544A (en) Magnetic recording medium and its production
JPWO2004019322A1 (en) Backed magnetic film
JP2540479B2 (en) Magnetic memory
US6749956B1 (en) Magnetic recording medium
Osaka et al. An attempt on control of perpendicular coercivity toward film thickness direction of electroless plated cobalt alloy films for perpendicular magnetic recording
JP2721624B2 (en) Metal thin-film magnetic recording media
JPH08329442A (en) Magnetic recording medium
JP2718061B2 (en) Manufacturing method of magnetic recording medium
JP2593590B2 (en) Manufacturing method of magnetic recording media
JPH09147357A (en) Production of magnetic recording medium
JPS62141628A (en) Magnetic recording medium
JPH0512647A (en) Magnetic recording medium
JPS62256217A (en) Magnetic recording medium
US20020155322A1 (en) Magnetic recording medium
JP2549769B2 (en) Magnetic recording media
JPS6061920A (en) Magnetic recording medium
JPS6218624A (en) Magnetic recording medium
JPH05135342A (en) Magnetic recording medium
JPS62167614A (en) Magnetic recording medium
JPH04182925A (en) Magnetic recording medium