JPH0383224A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPH0383224A
JPH0383224A JP21901889A JP21901889A JPH0383224A JP H0383224 A JPH0383224 A JP H0383224A JP 21901889 A JP21901889 A JP 21901889A JP 21901889 A JP21901889 A JP 21901889A JP H0383224 A JPH0383224 A JP H0383224A
Authority
JP
Japan
Prior art keywords
film
amorphous carbon
carbide
hard amorphous
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21901889A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
和宏 馬場
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21901889A priority Critical patent/JPH0383224A/en
Publication of JPH0383224A publication Critical patent/JPH0383224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a protective film having excellent abrasion resistance and adhesion property by providing a carbide film of one of Si, Ta, Co, W, Nb, Zr, Ti, and V, Mo, under a hard amorphous carbon film. CONSTITUTION:A magnetic recording medium layer 13 provided on a substrate 12 is almost wholly covered with a carbide film 14, on which a hard amorphous carbon film 15 containing H is formed. The film 14 consists of a carbide of one of Si, Ta, Co, W, Nb, Zr, Ti, V, and Mo. Particularly, when SiC is formed, plasma vapor phase precipitation method is preferable, and other carbides are preferably formed by sputtering. The hard amorphous carbon film 15 is preferably formed by plasma chemical precipitation method with using DC glow discharge on CH4 + H2. The obtd. magnetic disk 11 has extremely high hardness with excellent abrasion resistance and has a protective film of <=500Angstrom thickness, which can be practically used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気ディスクや磁気ヘッド等の表面に付着ぜ
しめて、硬度が高く、密着性に優れた耐摩耗性と潤滑性
とを兼ね備えた表面保護膜の用途に適する硬質非晶質炭
素膜に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a material that can be attached to the surface of a magnetic disk, magnetic head, etc., and has high hardness, excellent adhesion, wear resistance, and lubricity. The present invention relates to a hard amorphous carbon film suitable for use as a surface protective film.

(従来の技術) 磁気ディスクや磁気ヘッドは磁気ディスク装置と[〜で
コンピュータ端末情報記憶装置として広く用いられてい
る。磁気ディスクはアルミニウム金属基板ないしは、プ
ラスチック等の基板上にフェライトや鉄、コバルト、ニ
ッケルないしはこれらの化合物またはネオジウム、サマ
リ・クム、ガドリニウム、テルビウム等の弄土類金属や
それらからなる化合物を磁気記録媒体として塗布法やス
パッタ法により薄い膜状に付着させて用いられている。
(Prior Art) Magnetic disks and magnetic heads are widely used as magnetic disk drives and computer terminal information storage devices. A magnetic disk is a magnetic recording medium made of ferrite, iron, cobalt, nickel, or a compound thereof, or an earth metal such as neodymium, samari cum, gadolinium, or terbium, or a compound made of these on a substrate such as an aluminum metal substrate or a plastic substrate. It is used as a thin film by coating or sputtering.

磁気ヘッドは種々の方式があるが、記録媒体に書き込ま
れた磁気からの磁束を信号として取り出すもので、可能
な限り磁気ディスク面に近づけて使用されるものである
。このため磁気ヘッドと磁気ディスクは互いに衝突摩擦
しやすく、磁気ディスクの記録媒体上に発生する傷等か
ら記録媒体を保護するための保護膜を必要とする。
There are various types of magnetic heads, but they extract magnetic flux from magnetism written on a recording medium as a signal, and are used as close to the magnetic disk surface as possible. Therefore, the magnetic head and the magnetic disk are likely to collide and rub against each other, and a protective film is required to protect the recording medium from scratches and the like that occur on the recording medium of the magnetic disk.

保護膜の備えるべき要点は、耐摩耗性に優れていること
、基板への密着性に優れていること、表面の潤滑性に優
れていること等が挙げられる。膜の硬度は耐摩耗性の評
価に用いることができ、硬度が高いほど耐摩耗性に優れ
ている。密着性は磁気ヘッドの接触時あるいは、摩擦時
に保護膜が剥離しないために重要である。密着性は磁気
ディスク媒体の作成法によって表面性状が変化するため
、媒体の性状に合った保護膜材料が必要である。
Important points that the protective film should have include excellent wear resistance, excellent adhesion to the substrate, and excellent surface lubricity. The hardness of the film can be used to evaluate wear resistance, and the higher the hardness, the better the wear resistance. Adhesion is important so that the protective film does not peel off when the magnetic head contacts or rubs. Since surface properties of adhesion vary depending on the manufacturing method of the magnetic disk medium, a protective film material that matches the properties of the medium is required.

従来この目的のために厚み800A程度の二酸化ケイ素
(Si02)や窒化ケイ素(Si3N4)、アルミナ(
Al2O2)等の酸化物、窒化物あるいはカーボン膜が
用いらレテイル。Si3N4.5i02ヤA、1203
は通常シリコンやアルミニウムの有機金属化合物を溶媒
中に溶解したものを塗布乾燥後熱処理する方法、窒素中
ないしはアルゴンと酸素の混合ガス中でスパッタリング
するか、ないしは蒸着法で作られる。
Conventionally, for this purpose, silicon dioxide (Si02), silicon nitride (Si3N4), alumina (
oxides such as Al2O2), nitrides, or carbon films are used. Si3N4.5i02yaA, 1203
It is usually made by coating an organometallic compound of silicon or aluminum dissolved in a solvent, drying it and then heat-treating it, sputtering it in nitrogen or a mixed gas of argon and oxygen, or by vapor deposition.

カーボン膜は特開昭52−90281に記載されたよう
な炭素電極の放電によって作られる炭素イオンビームの
蒸着法ないしは1980年発行のジャーナル・オブ・ノ
ンブリスタリン・ソリツズ誌(Journal of 
NonCrystalline 5olids)第35
&36巻第435ページに記載されているような炭素の
蒸発付着等の方法で作られていた。
The carbon film can be produced using a carbon ion beam evaporation method made by discharging a carbon electrode as described in Japanese Patent Application Laid-open No. 52-90281, or by the method described in the Journal of Non-Blistering Solutions published in 1980.
NonCrystalline 5olids) No. 35
It was made by a method such as carbon evaporation deposition as described in &36, page 435.

磁気ディスク表面に炭素を主成分とする皮膜を設けた例
として、例えば特願昭52−58140にみられるよう
に、磁性記録媒体のない部分に炭素を主成分とする皮膜
を設けたり、磁気ヘッドとの衝突摩擦の生じやすい領域
に皮膜を厚くし、記録領域ではその皮膜を薄く設けた構
成のものもある。この時、皮膜の厚みは500−100
0人を記憶領域に、1000〜1oooo大を磁気ヘッ
ドが停止する領域に設けるものであった。
As an example of providing a film mainly composed of carbon on the surface of a magnetic disk, for example, as seen in Japanese Patent Application No. 52-58140, a film mainly composed of carbon is provided on the part where there is no magnetic recording medium, and a film mainly composed of carbon is provided on the magnetic head. There is also a structure in which the film is thicker in areas where collision friction is likely to occur, and the film is thinner in the recording area. At this time, the thickness of the film is 500-100
0 persons were provided in the storage area, and 1000 to 1000 persons were provided in the area where the magnetic head stopped.

近年の高度に発達した情報処理技術は、ますます大容量
の情報記録技術を必要としており、これにともなって高
密度磁気記録媒体技術は重要な位置を占めている。この
ための保護膜技術は、−層厚膜化し、100Aから50
夫程度のものも要求されつつある。
BACKGROUND ART The highly developed information processing technology of recent years requires increasingly large-capacity information recording technology, and high-density magnetic recording medium technology is occupying an important position along with this. The protective film technology for this purpose is to increase the thickness of the film from 100A to 50A.
People are starting to demand something similar to that of a husband.

(発明が解決しようとする課題) 従来の種々の保護膜材料は、しかしながら十分な硬度、
密着性、耐摩耗性や耐腐食性を有しておらず、例えばビ
ッカース硬度は5i02では2000Kg/mm2、ア
ルミナでは3000Kg/mm2、また窒化ケイ素や従
来のスパッタ法等による硬質カーボン膜では3000K
g/mm2程度であった。また保護膜厚みも500A程
度が最小厚みで、これ以下の膜厚ではその硬度、耐摩耗
性や、耐腐食性は格段に低下してしまう根本的欠陥を持
っていた。
(Problems to be Solved by the Invention) Various conventional protective film materials, however, do not have sufficient hardness or
It does not have adhesion, wear resistance, or corrosion resistance; for example, the Vickers hardness is 2000 Kg/mm2 for 5i02, 3000 Kg/mm2 for alumina, and 3000 K for hard carbon films made with silicon nitride or conventional sputtering methods.
It was about g/mm2. Furthermore, the minimum thickness of the protective film is about 500A, and a film with a thickness less than this has a fundamental defect in that its hardness, wear resistance, and corrosion resistance are significantly reduced.

またこのような特牲の保護膜であるため、特願昭52−
58140にみられるように特殊な構成とする必要が生
じ、加工技術上から製造コストが高くなる問題点もあり
、500A以下でも良好な特性の保護膜は実現されてい
なかった。
In addition, because it is such a special protective film, it is
As seen in 58140, a special configuration is required, and there is also the problem of high manufacturing costs due to processing technology, and a protective film with good characteristics has not been realized even at 500A or less.

本発明者らは、保護膜の性能について種々の検討を重ね
、特に保護膜を付着せしめるべき、下地材料の種類によ
って見かけの硬度や耐摩耗性が大きく変化することを見
いだし、本発明に至った。
The present inventors have conducted various studies on the performance of the protective film, and have found that the apparent hardness and abrasion resistance vary greatly depending on the type of base material to which the protective film is attached, and have arrived at the present invention. .

すなわち本発明の目的は、以上述べたような種々の欠点
を改良した高硬度で耐摩耗性及び基板との密着性に優れ
、かつ潤滑性の良好な磁気ディスク表面保護膜を提出す
るものである。
That is, the object of the present invention is to provide a magnetic disk surface protective film that has high hardness, excellent wear resistance and adhesion to a substrate, and has good lubricity, which improves the various drawbacks mentioned above. .

(課題を解決するための手段) 本発明は硬度が高く、耐摩耗性、密着性に優れた表面保
護の用途に適する保護膜材料として、非晶質炭素膜の下
面に炭化シリコン、炭化タンタル、炭化コバルト、炭化
タングステン、炭化ニオブ、炭化ジルコニウム、炭化チ
タン、炭化バナジウム、炭化モリブデンから選ばれた炭
化物の皮膜を設けておくことを特徴とする磁気ディスク
を提供することにある。
(Means for Solving the Problems) The present invention provides a protective film material having high hardness, excellent wear resistance, and adhesion that is suitable for surface protection applications. An object of the present invention is to provide a magnetic disk characterized in that it is provided with a film of a carbide selected from cobalt carbide, tungsten carbide, niobium carbide, zirconium carbide, titanium carbide, vanadium carbide, and molybdenum carbide.

以下図面に基づいて本発明を説明する。第1図は本発明
になる磁気ディスクの構造を示す図である。
The present invention will be explained below based on the drawings. FIG. 1 is a diagram showing the structure of a magnetic disk according to the present invention.

第1図(a)は磁気ディスク11の平面図を示し、第1
図(b)は磁気ディスクXx′での断面を示す図である
FIG. 1(a) shows a plan view of the magnetic disk 11, and the first
Figure (b) is a diagram showing a cross section of the magnetic disk Xx'.

第1図(b)で基板12の表面に設けられた磁気媒体層
13上に、はぼ全面にわたって炭化物皮膜14を設け、
その上に更に水素を含有せる硬質非晶質炭素膜15を設
けたものである。基板12としては有機フィルムやアル
ミニウム等の金属ないしは合金を用いることが可能であ
る。要するに磁気記録媒体層13を保持するものであれ
ばとくに材質は問題にならない。磁気記録媒体層13の
厚みは通常10μmないしはそれ以下の厚みとし、記録
された情報を保持するのに必要な厚みとされるものであ
る。炭化物皮膜14と硬質非晶質炭素膜は両者をあわせ
て保護膜を構成する。保護膜の厚みは可能な限り薄いほ
うが望ましいことは言うまでもない。
A carbide film 14 is provided over almost the entire surface of the magnetic medium layer 13 provided on the surface of the substrate 12 in FIG. 1(b),
A hard amorphous carbon film 15 containing hydrogen is further provided thereon. As the substrate 12, it is possible to use an organic film, a metal such as aluminum, or an alloy. In short, the material does not matter as long as it holds the magnetic recording medium layer 13. The thickness of the magnetic recording medium layer 13 is usually 10 μm or less, which is the thickness necessary to retain recorded information. The carbide film 14 and the hard amorphous carbon film together constitute a protective film. Needless to say, it is desirable that the thickness of the protective film be as thin as possible.

炭化物皮膜14は、均質な皮膜が形成できる方法であれ
−ば特↓こ制限されるものではない。すなわち、蒸着や
スパッタ法、とくに炭化シリコンについてはシリコン化
合物、例えばシラン(SiH4)の熱分解ないしはプラ
ズマ気相化学析出法等が使用できる。磁気記録媒体層と
炭化シリコン皮膜との密着性の良好な手法としては、プ
ラズマ気相析出法がとくに良好な結果を与えた。また他
の炭化物皮膜についてはスパッタ法がとくに良好な結果
を得た。
The method for forming the carbide film 14 is not particularly limited as long as it can form a homogeneous film. That is, vapor deposition or sputtering methods can be used, and in particular, for silicon carbide, thermal decomposition of a silicon compound such as silane (SiH4) or plasma vapor phase chemical deposition method can be used. As a method for achieving good adhesion between the magnetic recording medium layer and the silicon carbide film, the plasma vapor deposition method gave particularly good results. For other carbide films, particularly good results were obtained using the sputtering method.

硬質非晶質炭素膜15の形成手法は、メタン(CH4)
と水素(H2)の混合ガスの直流グロー放電プラズマ化
学析出法が低温で良好な膜を合成する手法として有効で
あった。第2図にその装置の例を示す。ここでは炭化シ
リコン形成のためのシランボンベが付加された構成にな
っている。
The hard amorphous carbon film 15 is formed using methane (CH4).
Direct current glow discharge plasma chemical deposition using a mixed gas of hydrogen (H2) and hydrogen (H2) was effective as a method for synthesizing good films at low temperatures. FIG. 2 shows an example of the device. Here, a silane cylinder for forming silicon carbide is added.

第2図において、真空槽21に陰極となる硬質非晶質炭
素を形成すべき基板を設置し、基板の両面に平行となる
ように平板型の電極22を置く。陽極電極22には直流
電源23を接続し、電極間でグロー放電を発生させる。
In FIG. 2, a substrate on which hard amorphous carbon is to be formed as a cathode is placed in a vacuum chamber 21, and flat electrodes 22 are placed parallel to both sides of the substrate. A DC power source 23 is connected to the anode electrode 22 to generate glow discharge between the electrodes.

炭化シリコン皮膜を形成する場合は真空槽21にはまず
、メタン28、シラン30および水素29の混合ガスを
ガス導入口24を通して導入し、炭化シリコンの皮膜を
形成する。この際、真空度は排気ポンプ26およびバル
ブ27で0.1トールから10)−ルの真空度に調整す
る。またメタン28とシラン30の混合比率はCH4/
SiH4= 0.8〜1.5、かつメタン28と水素2
9の混合比率がCH47H2=0.01〜0.10の範
囲の時良好な結果を与える。また炭化タンタル、炭化コ
バルト、炭化タングステン、炭化ニオブ、炭化ジルコニ
ウム、炭化チタン、炭化バナジウム、炭化モリブデンに
ついては通常のRFマグネトロンスパッタ装置により形
成できる。
When forming a silicon carbide film, a mixed gas of methane 28, silane 30, and hydrogen 29 is first introduced into the vacuum chamber 21 through the gas inlet 24 to form a silicon carbide film. At this time, the degree of vacuum is adjusted from 0.1 Torr to 10 Torr using the exhaust pump 26 and valve 27. Also, the mixing ratio of methane 28 and silane 30 is CH4/
SiH4 = 0.8-1.5, and methane 28 and hydrogen 2
9 gives good results when the mixing ratio of CH47H2 is in the range of 0.01 to 0.10. Further, tantalum carbide, cobalt carbide, tungsten carbide, niobium carbide, zirconium carbide, titanium carbide, vanadium carbide, and molybdenum carbide can be formed using a common RF magnetron sputtering device.

次に真空度およびメタン28と水素29の混合比率を前
記の状態でシラン30の供給を止め、硬質非晶質炭素膜
・の皮膜を行う。得られる膜の質は真空度、ガス混合比
や電極に印加する電圧によって大きく変化するので、最
適値を選ぶ必要がある。電圧の値は、正規グロー放電で
、かつ異常グロー放電が発生する直前の条件が比較的好
結果を与えた。
Next, with the degree of vacuum and the mixing ratio of methane 28 and hydrogen 29 maintained as described above, the supply of silane 30 is stopped, and a hard amorphous carbon film is formed. The quality of the obtained film varies greatly depending on the degree of vacuum, gas mixture ratio, and voltage applied to the electrodes, so it is necessary to select optimal values. Regarding the voltage value, conditions for normal glow discharge and just before abnormal glow discharge occurred gave relatively good results.

(作用) 従来の炭素を主成分とした保護膜においては、特願昭5
2−58140に見られるごとく、記録媒体に直接付着
させて用いているが、この形成方法ではさきに述べたよ
うに密着性が悪く、また付着させた炭素膜の均一性も良
好とは言えながった。この原因は、詳細については不明
なところがあるが、炭素膜と記録媒体間の結合力が関係
していると思われる。二酸化珪素やアルミナ等の膜をシ
リコン皮膜のかわりに用いても同様の事態が発生する。
(Function) Regarding the conventional protective film mainly composed of carbon,
As seen in No. 2-58140, the carbon film is directly attached to the recording medium, but as mentioned earlier, this formation method has poor adhesion and the uniformity of the deposited carbon film is not good. I got angry. Although the details of this cause are unclear, it is thought to be related to the bonding force between the carbon film and the recording medium. A similar situation occurs even if a film of silicon dioxide, alumina, or the like is used instead of the silicon film.

すなわち磁気記録媒体と炭化物膜、硬質非晶質炭素膜と
炭化物膜との間に何らかの化学結合力が動き、薄膜の密
着強度を上昇させているものと思われる。
That is, it seems that some kind of chemical bonding force moves between the magnetic recording medium and the carbide film, and between the hard amorphous carbon film and the carbide film, increasing the adhesion strength of the thin film.

更に、本発明の硬質非晶質炭素膜中には、その製造方法
かられかるように、炭化水素と水素の混合ガスを原料と
しているため、得られた膜中には水素が20〜30原子
%含まれており、この範囲の水素が炭素膜中の不飽和結
合を補償し、膜自体の硬度を高める機構も有効に作用し
ているものである。
Furthermore, since the hard amorphous carbon film of the present invention uses a mixed gas of hydrocarbon and hydrogen as a raw material, as can be seen from the manufacturing method, the resulting film contains 20 to 30 atoms of hydrogen. %, and the mechanism in which hydrogen in this range compensates for unsaturated bonds in the carbon film and increases the hardness of the film itself also works effectively.

以上述べた本発明の種々の特徴により、従来不可能であ
った薄膜、すなわち500A以下の厚みでも良好な磁気
ディスクの表面保護膜を形成する方法が得られる。
Owing to the various features of the present invention described above, it is possible to obtain a method of forming a good surface protective film for a magnetic disk even with a thin film, that is, a thickness of 500 Å or less, which was previously impossible.

以下実施例について述べる。Examples will be described below.

(実施例) 磁気ディスクの基板として直径5.25インチで厚み2
mmのアルミニウム合金とし、この上に記録媒体として
コバルト・タンタル・クロムの化合物をスパッタ法によ
り厚み約20pm付着させたものを用いた。
(Example) A magnetic disk substrate with a diameter of 5.25 inches and a thickness of 2
The recording medium was made of an aluminum alloy having a thickness of about 20 pm, on which a cobalt-tantalum-chromium compound was deposited to a thickness of about 20 pm by sputtering.

保護膜の形成は、まず炭化タンタル、炭化コバルト、炭
化タングステン、炭化ニオブ、炭化ジルコニウム、炭化
チタン、炭化バナジウムおよび炭化モルブデン膜につい
ては通常の灯マグネトロンスパッタ装置を用い、真空度
を10−3〜1O−2)−ルの範囲としアルゴンスパッ
タを用い、前記炭化物焼結体をそれぞれターゲットとし
、■電力を100〜150Wとし、室温で成膜した。炭
化物膜の厚みは、100〜100OAの範囲にスパッタ
時間を変えることで制御した。
To form the protective film, first, for tantalum carbide, cobalt carbide, tungsten carbide, niobium carbide, zirconium carbide, titanium carbide, vanadium carbide, and molybdenum carbide films, a normal light magnetron sputtering device is used, and the degree of vacuum is set to 10-3 to 1 O. -2) Using argon sputtering in the range of -2) and using the carbide sintered body as a target, the film was formed at room temperature at a power of 100 to 150 W. The thickness of the carbide film was controlled by changing the sputtering time in the range of 100 to 100 OA.

炭化シリコン及び硬質非晶質炭素膜の形成は第2図に示
す装置を用いた。直流グロー放電は基板25側をアース
とし、それに対向する電極22に直流電源23により正
の電圧で数百ボルトまでの電流を印加することにより発
生させた。放電電流密度は0.1から1mA/mm2と
した。まず始めに反応ガスとして、メタン、シランおよ
び水素の混合ガスを導入し、炭化珪素皮膜を形成した。
The silicon carbide and hard amorphous carbon films were formed using the apparatus shown in FIG. The DC glow discharge was generated by grounding the substrate 25 side and applying a positive voltage of up to several hundred volts to the electrode 22 facing the substrate 25 from the DC power supply 23. The discharge current density was 0.1 to 1 mA/mm2. First, a mixed gas of methane, silane, and hydrogen was introduced as a reaction gas to form a silicon carbide film.

この際、メタンとシランの流量比はCH4/SiH4=
 0.8〜1.5がつメタンと水素の流量比CH4/H
2=0.01〜0.1に設定した。また成膜時の圧力は
0.1トールから20トールとし、基板温度はほぼ室温
とした。次に硬質非晶質炭素膜は前記条件と同一とし、
シランの供給を止め形成した。
At this time, the flow rate ratio of methane and silane is CH4/SiH4=
Flow rate ratio of methane and hydrogen of 0.8 to 1.5 CH4/H
2=0.01 to 0.1. The pressure during film formation was 0.1 Torr to 20 Torr, and the substrate temperature was approximately room temperature. Next, the hard amorphous carbon film was made under the same conditions as above,
The silane supply was stopped and formation was completed.

この結果得られた膜は、反応時間によって膜厚を制御し
たが、いずれの膜も100AがらtoooAで均一な干
渉色を呈していた。表面カ凹凸はタリステップの測定限
界の±10Å以下であった。炭化珪素皮膜中は炭素、珪
素および若干量の水素からなり、膜は非晶質であった。
The thickness of the resulting films was controlled by the reaction time, but all films exhibited uniform interference colors from 100A to tooA. The surface unevenness was less than ±10 Å, which was the measurement limit of Talystep. The silicon carbide film consisted of carbon, silicon, and a small amount of hydrogen, and the film was amorphous.

また炭素膜も同様に非晶質であり、水素含有量は20〜
30原子%であった。
In addition, the carbon film is similarly amorphous and has a hydrogen content of 20~
It was 30 at%.

更にこの膜の硬度はビッカース硬度に換算して8000
〜10000Kg/mm2であった。
Furthermore, the hardness of this film is 8000 in terms of Vickers hardness.
~10000Kg/mm2.

膜の耐摩耗性は以下に述べる磁気ヘッドと磁気ディスク
との接触摩擦試験法で評価した。即ち磁気ヘッドとして
アルミニウムと炭化チタンからなるビッカース硬度40
00Kg/am2の焼結体を用い、磁気ディスク表面に
何重約60g/cm2で保護膜上に押し付け、つぎに磁
気ディスクを磁気ヘッドが浮上するまで高速回転させ、
浮上後回転を停止し、再びヘッドをディスク面に接触さ
せることを繰り返すいわゆるコンタクト・スタート・ス
トップ(C8S)試験で、10万回後も摩耗が発生しな
いことを確認した。
The wear resistance of the film was evaluated by the contact friction test method between a magnetic head and a magnetic disk described below. That is, the magnetic head is made of aluminum and titanium carbide and has a Vickers hardness of 40.
Using a sintered body of 00 kg/am2, press it onto the protective film on the surface of the magnetic disk at a weight of about 60 g/cm2, then rotate the magnetic disk at high speed until the magnetic head floats.
In a so-called contact start-stop (C8S) test, in which the head is repeatedly brought into contact with the disk surface after it has floated, rotation is stopped and the head is brought into contact with the disk surface again, it was confirmed that no wear occurred even after 100,000 cycles.

(発明の効果) 以上説明したように、本発明になる磁気ディスクは、極
めて高硬度で耐摩耗性に優れ高密度磁気記録技術に要求
される500A以下の保護膜を備え、実用性が高いもの
である。
(Effects of the Invention) As explained above, the magnetic disk of the present invention has extremely high hardness, excellent wear resistance, and has a protective film of 500A or less required for high-density magnetic recording technology, and is highly practical. It is.

また磁気記録媒体の種類には特にこだわらないことは言
うまでもない。
It goes without saying that the type of magnetic recording medium is not particularly important.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明になる磁気ディスクの構
造例を示す図である。 11・・・磁気ディスク、12・・・基板、13・・・
磁気記録媒体層、14・・・炭化物皮膜、15・・・硬
質非晶質炭素膜第2図は炭化珪素皮膜及び硬質非晶質炭
素膜を形成する装置の概略を示す図である。 21・・・真空槽、22・・・対向電極、23・・・直
流電源、24・・・ガス導入口、25・・・基板、26
・・・排気ポンプ、27・・・バルブ、28・・・メタ
ルボンベ、29・・・水素ボンベ、29・・・シランボ
ンベ
FIGS. 1(a) and 1(b) are diagrams showing an example of the structure of a magnetic disk according to the present invention. 11...Magnetic disk, 12...Substrate, 13...
Magnetic recording medium layer, 14...Carbide film, 15...Hard amorphous carbon film FIG. 2 is a diagram schematically showing an apparatus for forming a silicon carbide film and a hard amorphous carbon film. 21... Vacuum chamber, 22... Counter electrode, 23... DC power supply, 24... Gas inlet, 25... Substrate, 26
...exhaust pump, 27...valve, 28...metal cylinder, 29...hydrogen cylinder, 29...silane cylinder

Claims (9)

【特許請求の範囲】[Claims] (1)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化シリコン膜が
形成されていることを特徴とする磁気ディスク。
(1) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a silicon carbide film is formed on the lower surface of the hard amorphous carbon film.
(2)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化タンタル膜が
形成されていることを特徴とする磁気ディスク。
(2) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a tantalum carbide film is formed on the lower surface of the hard amorphous carbon film.
(3)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化コバルト膜が
形成されていることを特徴とする磁気ディスク。
(3) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a cobalt carbide film is formed on the lower surface of the hard amorphous carbon film.
(4)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化タングステン
膜が形成されていることを特徴とする磁気ディスク。
(4) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a tungsten carbide film is formed on the lower surface of the hard amorphous carbon film.
(5)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化ニオブ膜が形
成されていることを特徴とする磁気ディスク。
(5) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a niobium carbide film is formed on the lower surface of the hard amorphous carbon film.
(6)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化ジルコニウム
膜が形成されていることを特徴とする磁気ディスク。
(6) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a zirconium carbide film is formed on the lower surface of the hard amorphous carbon film.
(7)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化チタン膜が形
成されていることを特徴とする磁気ディスク。
(7) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a titanium carbide film is formed on the lower surface of the hard amorphous carbon film.
(8)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化バナジウム膜
が形成されていることを特徴とする磁気ディスク。
(8) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a vanadium carbide film is formed on the lower surface of the hard amorphous carbon film.
(9)硬質非晶質炭素膜を表面に設けた磁気ディスクに
おいて、該硬質非晶質炭素膜の下面に炭化モリブデン膜
が形成されていることを特徴とする磁気ディスク。
(9) A magnetic disk having a hard amorphous carbon film on its surface, characterized in that a molybdenum carbide film is formed on the lower surface of the hard amorphous carbon film.
JP21901889A 1989-08-25 1989-08-25 Magnetic disk Pending JPH0383224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21901889A JPH0383224A (en) 1989-08-25 1989-08-25 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21901889A JPH0383224A (en) 1989-08-25 1989-08-25 Magnetic disk

Publications (1)

Publication Number Publication Date
JPH0383224A true JPH0383224A (en) 1991-04-09

Family

ID=16728964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21901889A Pending JPH0383224A (en) 1989-08-25 1989-08-25 Magnetic disk

Country Status (1)

Country Link
JP (1) JPH0383224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056532A (en) * 1991-06-28 1993-01-14 Nec Corp Magnetic disk
US5577857A (en) * 1993-12-27 1996-11-26 Daido Concrete Co., Ltd. Joint structure for pillars and its joining method
JP2013037731A (en) * 2011-08-04 2013-02-21 Fuji Electric Co Ltd Recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961106A (en) * 1982-09-30 1984-04-07 Nec Corp Magnetic memory body
JPS62219320A (en) * 1986-03-20 1987-09-26 Seiko Epson Corp Magnetic memory body
JPS63205813A (en) * 1987-02-23 1988-08-25 Hitachi Ltd Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961106A (en) * 1982-09-30 1984-04-07 Nec Corp Magnetic memory body
JPS62219320A (en) * 1986-03-20 1987-09-26 Seiko Epson Corp Magnetic memory body
JPS63205813A (en) * 1987-02-23 1988-08-25 Hitachi Ltd Magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056532A (en) * 1991-06-28 1993-01-14 Nec Corp Magnetic disk
US5577857A (en) * 1993-12-27 1996-11-26 Daido Concrete Co., Ltd. Joint structure for pillars and its joining method
JP2013037731A (en) * 2011-08-04 2013-02-21 Fuji Electric Co Ltd Recording medium

Similar Documents

Publication Publication Date Title
US8009387B2 (en) Forming an aluminum alloy oxynitride underlayer and a diamond-like carbon overcoat to protect a magnetic recording head and/or media
JP2531438B2 (en) Magnetic head and manufacturing method thereof
JP3333156B2 (en) Thin-film magnetic disk manufacturing method
JPH0383224A (en) Magnetic disk
US20010029051A1 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
JPH04313812A (en) Magnetic disk
JP2623785B2 (en) Magnetic disk
JPS63297208A (en) Hard amorphous carbon film
JPH04106722A (en) Magnetic disk
JPS63162872A (en) Hard amorphous carbon film
JP2751396B2 (en) Magnetic disk
JPH0778871B2 (en) Magnetic disk
JPS61117727A (en) Magnetic storage body and its manufacture
JP2727817B2 (en) Magnetic disk
JPH0572471B2 (en)
JPH056532A (en) Magnetic disk
JPH05298689A (en) Formation of magnetic disk protective film
JPH049868B2 (en)
JPH056531A (en) Magnetic disk
JPH049870B2 (en)
JPH0613752B2 (en) Hard amorphous carbon film
JPH05325176A (en) Magnetic disk
JPH049869B2 (en)
JPH0534728B2 (en)
JPH01203211A (en) Hard amorphous carbon film